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Abstract

In this work, we present Vlogger, a generic AI system for
generating a minute-level video blog (i.e., vlog) of user de-
scriptions. Different from short videos with a few seconds,
vlog often contains a complex storyline with diversified
scenes, which is challenging for most existing video gen-
eration approaches. To break through this bottleneck, our
Vlogger smartly leverages Large Language Model (LLM)
as Director and decomposes a long video generation task
of vlog into four key stages, where we invoke various foun-
dation models to play the critical roles of vlog profession-
als, including (1) Script, (2) Actor, (3) ShowMaker, and (4)
Voicer. With such a design of mimicking human beings, our
Vlogger can generate vlogs through explainable coopera-
tion of top-down planning and bottom-up shooting. More-
over, we introduce a novel video diffusion model, Show-
Maker, which serves as a videographer in our Vlogger for
generating the video snippet of each shooting scene. By
incorporating Script and Actor attentively as textual and
visual prompts, it can effectively enhance spatial-temporal
coherence in the snippet. Besides, we design a concise
mixed training paradigm for ShowMaker, boosting its ca-
pacity for both T2V generation and prediction. Finally, the
extensive experiments show that our method achieves state-
of-the-art performance on zero-shot T2V generation and
prediction tasks. More importantly, Vlogger can generate
over 5-minute vlogs from open-world descriptions, without
loss of video coherence on script and actor.

1. Introduction
Vlogs represent a unique form of blogging, distinguished by
their utilization of video as the primary medium rather than
text. Due to more lively expression in the dynamic scenes,
vlog has become one of the most popular online-sharing
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Here is a Vlog shooting plan:

(1) Create the Script of this Vlog

(2) Design the Actor according to script

(3) Shoot all script scenes by ShowMaker

(4) Speak Vlog subtitle by Voicer

I had a dream last night: Teddy Bear traveling around the world. 

The story goes like this : Once upon a time……Teddy sat in the 

airport lobby…... Teddy visited the Eiffel Tower, the Great Wall……

Figure 1. Overview of Vlogger. Based on the user story, our Vlog-
ger leverages Large Language Model (LLM) as Director, and de-
composes a minute-long vlog generation task into four key stages
with Script, Actor, ShowMaker, and Voicer. Moreover, Show-
Maker is a novel video diffusion model to generate video snippet
of each shooting scene, with script and actor coherence.

ways in the digital world. In the past two years, the remark-
able success of diffusion models [31, 32, 59] has shown a
great impact on video creation [8, 25, 33, 57, 70, 76, 83, 87].
Hence, there is a natural question, can we build a generic AI
system to generate wonderful vlogs automatically?

Regrettably, the majority of current video diffusion ap-
proaches mainly generate short videos with a few sec-
onds, by temporal adaptation of image diffusion models
[8, 25, 57, 70, 76, 87]. In contrast, a vlog typically con-
stitutes a minute-level long video in the open world. Re-
cently, there have been some attempts in long video genera-
tion [67, 83]. However, these early works either require ex-
tensive training on large well-captioned long video datasets
[83] or suffer from noticeable incoherence of shot changes
[67]. Hence, it is still challenging to generate a minute-level
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vlog with complex narratives and multiple scenes.
Alternatively, we notice that a successful vlog produc-

tion is a systematical work in our realistic world, where
the key staffs are involved in script creation, actor design,
video shooting, and editing [22]. Drawing inspiration from
this, we believe that, generating a long-form video blog
requires elaborate systematical planning and shooting pro-
cesses, rather than simply designing a generative model.

Hence, we propose a generic AI system for vlog gen-
eration in this paper, namely Vlogger, which can smartly
address this difficult task by mimicking vlog profession-
als with various foundation models in the core steps. As
shown in Fig. 1, we first hire a Large Language Model
(LLM) as Director (e.g., GPT-4 [46]), due to its great power
of linguistic knowledge understanding. Given a user story,
this director schedules a four-step plan for vlog generation.
(1) Script. First, we introduce a progressive script creation
paradigm for the LLM Director. By the coarse-to-fine in-
structions in this paradigm, the LLM Director can effec-
tively convert a user story into a script, which sufficiently
describes the story by a number of shooting scenes and their
corresponding shooting duration. (2) Actor. After creating
the script, the LLM Director reads it again to summarize the
actors, and then invokes a character designer (e.g., SD-XL
[48]) to generate the reference images of these actors in the
vlog. (3) ShowMaker. With the guidance of script texts and
actor images, we develop a novel ShowMaker as a videogra-
pher, which can effectively generate a controllable-duration
snippet for each shooting scene, with spatial-temporal co-
herence. (4) Voicer. Finally, the LLM Director invokes a
voicer (e.g., Bark [1]) to dub the vlog with script subtitles.

It should be noted that our Vlogger overcomes the chal-
lenges previously encountered in long video generation
tasks. On one hand, it elegantly decomposes the user story
into a number of shooting scenes and designs actor images
that can participate in different scenes in the vlog. In this
case, it can reduce spatial-temporal incoherence of abrupt
shot changes, with explicit guidance of scene texts and ac-
tor images. On the other hand, Vlogger crafts individual
video snippets for every scene and seamlessly integrates
them into a single cohesive vlog. Consequently, this by-
passes the tedious training process with large-scale long
video datasets. Via such collaboration between top-down
planning and bottom-up shooting, Vlogger can effectively
transform an open-world story into a minute-long vlog.

Furthermore, we would like to emphasize that, Show-
Maker is a distinctive video diffusion model designed for
generating video snippets of each shooting scene. From
the structural perspective, we introduce a novel Spatial-
Temporal Enhanced Block (STEB) in this model. This
block can adaptively leverage scene descriptions and ac-
tor images as textual and visual prompts, which attentively
guide ShowMaker to enhance spatial-temporal coherence of

script and actors. From the training perspective, we develop
a probabilistic mode selection mechanism, which can boost
the capacity of ShowMaker by mixed training of Text-to-
Video (T2V) generation and prediction. More notably, by
sequential combination of generation and prediction mode
in the inference stage, ShowMaker can produce a video
snippet with a controllable duration. This allows our Vlog-
ger to generate a vlog with a preferable duration, according
to the planning of each scene in the script by LLM director.

Finally, our method achieves the state-of-the-art perfor-
mance on both zero-shot T2V generation and prediction,
by expensive experiments within the popular video bench-
marks. More importantly, our Vlogger outperforms the
well-known long video generation method, i.e., Phenaki
[67], despite utilizing only 66.7% of the training videos.
Remarkably, our Vlogger is capable of generating over 5-
minute vlogs, without loss of script and actor coherence in
the video. The models and codes will be released afterward.

2. Related Works
Text-to-Video Generation. Distinct from conventional un-
conditional and class-conditional video generation [7, 9,
13, 17, 23, 58, 63, 64, 72–74, 81, 85], T2V generation fo-
cuses on automatically converting textual descriptions into
videos. This is a challenging task, as it involves under-
standing text semantics and translating it into video content.
This often requires powerful cross-modal algorithms [50],
large computing resources [15, 29], and extensive video
data [3, 55, 56, 75, 76, 80]. Based on the success of diffu-
sion models in the Text-to-Image (T2I) generation [4, 6, 18,
40, 45, 51, 52, 54], a series of such works have been recently
transferred to T2V generation [8, 25, 33, 57, 70, 71, 76, 87].
However, whether trained from scratch [33, 57] or finetuned
from T2I model [8, 25, 70, 71, 76, 87], most of these ap-
proaches mainly work on generating short videos with few
seconds from simple descriptions. In contrast, our Vlogger
can generate a minute-long vlog with complex stories.
Long Video Generation. The generation of long videos
predominantly relies on parallel [83] or autoregressive [67]
structures. However, these early works still face challenges
for vlog generation. On the one hand, the parallel man-
ner can relax spatial-temporal content incoherence prob-
lems by coarse-to-fine generation. However, this approach
necessitates extensive and laborious training on large, well-
annotated long video datasets [83]. On the other hand, the
autoregressive manner can relax heavy data requirements
for training long videos, by applying short video genera-
tion models iteratively with sliding windows. However, this
solution often suffers from noticeable shot change and long-
term incoherence [14, 28, 49, 67, 69] which becomes prob-
lematic when generating vlogs encompassing complex nar-
ratives and multiple scenes. It is worth mentioning that the
community has gradually realized that delegating higher-
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S":	Teddy under the Eiffel Tower.
S#:	Teddy is enjoying a picnic.
S$:	Arrive at the Great Wall.
S%:	Teddy climbs the Great Wall.
S!&:	Teddy watches the scenery

from the Great Wall.
S!!:	Teddy leaves the Great Wall.

⋯

Figure 2. Top-Down Planning. Through four rounds of dialogue with the LLM, we gradually convert the user story into the final script.
Based on this script, we further extract actor reference images, and then determine which actor would star in each script scene.

order reasoning tasks to LLM is of great help to visual tasks
[6, 26, 27, 37, 41, 44, 79, 88, 90]. Our Vlogger introduces
LLM to the field of long video generation, and effectively
addresses the problems of training burden and content inco-
herence in the previous methods, by distinct cooperation of
top-down planning and bottom-up shooting.

3. Method

In this section, we introduce our Vlogger framework in de-
tail. First, we describe how to make a vlog by planning and
shooting with our Vlogger. Then, we further explain the
novel design of ShowMaker. As the videographer in our
Vlogger, it is critical for video generation in the vlog.

3.1. Overall Framework of Vlogger

To generate a minute-level vlog, our Vlogger leverages
LLM as the director, which can effectively decompose this
generation task by four key roles within the planning and
shooting stages. As shown in Fig. 1, the LLM Director
first creates Script and designs Actor in the planning stage.
Based on Script and Actor, ShowMaker generates a video
snippet for each scene in the shooting stage, and Voicer dubs
subtitles of this snippet. Finally, one can combine the snip-
pets of all the scenes as a vlog.

3.1.1 Top-Down Planning

A vlog often comes from a user story that contains diversi-
fied content within many shot changes. Clearly, it is chal-
lenging to produce a minute-long vlog, by directly feeding
such a complex story into video generation models. To this
end, we propose to leverage LLM as director and decom-
pose the user story by top-down planning in Fig. 2.

Script Creating. First, we parse the use story into
a script, which describes this story explicitly by a num-
ber of shooting scenes. In this case, we can generate a
video snippet for each shooting scene, instead of learning
a long video tediously from the entire story. Since LLM
has shown an impressive capacity in language understand-
ing [2, 10, 16, 46, 61, 62, 65, 86], we feed the user story
into such a director for script generation. As shown in Fig.
2, we introduce a progressive creation paradigm, which can
effectively parse the story by coarse-to-fine steps,

S(i) = LLM(S(i−1), I(i)
S ,U). (1)

Given the user story U and creation instruction I(i)
S , the

LLM Director generates the current script S(i) from the pre-
vious one S(i−1). More specifically, there are four steps in-
cluding (1) Rough. First, LLM generates a basic draft of the
script from the story. (2) Detailed. Then, LLM refines the
rough script with story details. (3) Completed. Next, LLM
checks if the detailed script misses the important parts of
the story. (4) Scheduled. Finally, LLM allocates a shooting
duration for each scene in the completed script, according
to the scene content. For convenience, we denote the final
script as S in the following. It contains the descriptions of
N shooting scenes {S1, ...,SN} and their allocated dura-
tion {T1, ..., TN}. Additionally, due to the limited pages,
please read the full descriptions of instructions and script in
the supplementary doc.

Actor Designing. After generating the script, it is time
to design actors in the vlog. As shown in Fig. 2, we ask the
LLM Director to summarize the actor list A from script S,

A = LLM(S, IA), (2)

where IA is the instruction for actor summarization. Then,
according to actor descriptions, the LLM Director invokes
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⋯ ⋯
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Great Wall. ⋯ 7s
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(Generation)
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Figure 3. Bottom-Up Shooting. For each scene, ShowMaker can generate the video snippet with script and actor coherence, by using
script description and actor image as textual and visual prompts. Moreover, ShowMaker can effectively control the snippet duration, by
performing generation and prediction sequentially in the inference. Finally, we apply a Text-To-Speech (TTS) model as Voicer for dubbing.

a designer to generate reference images of these actors R,

R = Stable-Diffusion(A). (3)

We choose Stable Diffusion XL [48] as the character de-
signer, due to its high-quality generation. Finally, based on
script S and actor A, the LLM Director decides the leading
actor (i.e., protagonist) in each shooting scene of the script,

P = LLM(S,A, IP ). (4)

where IP is the instruction for protagonist selection. The
resulting doc P is aligned with the script S, where Pn de-
scribes which actor appears in the scene Sn. For example,
{S6 is starred by A1} in Fig. 2.

3.1.2 Bottom-Up Shooting

Via the top-down planning above, the LLM Director flex-
ibly decomposes a complex user story into several script
scenes and designs actor reference image for each scene.
Such a manner largely reduces the difficulty of vlog gen-
eration, since we can generate vlogs by bottom-up shoot-
ing, i.e., we just need to generate the video snippet for each
shooting scene and combine all of them as a vlog.

ShowMaker Shooting. To generate the video snippet of
a shooting scene, we introduce a novel ShowMaker as the
videographer, which is a video diffusion model with two
distinct designs. First, it is important to maintain spatial-
temporal coherence of both script and actor in the gener-
ated snippet. Hence, our ShowMaker not only takes the
scene description Sn as a textual prompt but also takes ac-
tor image of this scene Rn as a visual prompt. Second, each

scene is allocated with a shooting duration in the script. To
control the duration of each scene, our ShowMaker contains
two learning modes including generation and prediction in
Fig.3. Specifically, it starts with the generation mode. For
the shooting scene n, we feed its script description Sn and
actor reference image Rn into ShowMaker,

C(1)
n = ShowMaker(N (1)

n | Sn,Rn,Generate), (5)

which generates the first video clip of this scene C(1)
n from

the noisy clip N (1)
n . If the duration of this clip is smaller

than the allocated duration Tn in the script, we continue to
perform the prediction mode, i.e., the last k frames of the
current clip C(j)

n (k) are used as context, when generating
the next clip from the noisy input N (j+1)

n ,

C(j+1)
n = ShowMaker(N (j+1)

n | Sn, C(j)
n (k),Predict). (6)

Note that, actor reference images are not necessary in the
prediction mode, since such an actor’s appearance has been
shown in the current clip C(j)

n (k) that is used as input for
prediction. This prediction procedure stops until the total
duration achieves the allocated Tn of this scene. Subse-
quently, we combine all the clips as the video snippet of
this scene, i.e., Cn = {C(1)

n , ..., C(J)
n }.

Voicer Speaking. To enhance the completeness of the
vlog, we apply a Text-To-Speech model (e.g., Bark [1]) as
a Voicer, which converts the scene description Sn into the
corresponding audio On = Bark(Sn). Finally, we add this
audio to the corresponding video snippet Vn = On ⊕ Cn,
and combine all the sounded video snippets as a complete
vlog, i.e., V = {V1, ...,VN}.
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Figure 4. ShowMaker. (a) The Overall Architecture. (b) Spatial-Temporal Enhanced Block (STEB). Via spatial-actor and temporal-text
cross attention, our STEB can further enhance actor and script coherence in the snippet. (c) Mode Selection. We introduce a mixed training
paradigm of T2V generation and prediction, via probabilistic selection of masked frames.

3.2. ShowMaker

As discussed in Section 3.1.2, ShowMaker plays a critical
role in generating video snippet of a shooting scene. In this
work, we introduce a text-to-video diffusion model for it.
It follows the style of latent diffusion model [52]. In the
diffusing stage, we add Gaussian noise progressively to the
latent code of a training snippet. In the denoising stage, we
reconstruct the latent code from the noisy latent code at any
iteration step. For simplicity, we just show the denoising
stage in Fig.4 (a). First, we forward a noisy training snippet
into the encoder of the autoencoder to extract its latent code.
Then, we feed this into a denoising U-Net [53] to learn the
clean latent code. Finally, we leverage the decoder to recon-
struct the original snippet with the clean latent code.

But, compared with the existing video diffusion mod-
els [8, 25, 33, 34, 76], our novel ShowMaker contains
two distinct designs, in terms of model structure (i.e.,
Spatial-Temporal Enhanced Block) in Fig.4 (b), and train-
ing paradigm (i.e., Mode Selection) in Fig.4 (c).

3.2.1 Spatial-Temporal Enhanced Block (STEB)

To reconstruct the clean latent code of a training video snip-
pet, each block in the denoising U-Net consists of both spa-
tial and temporal operations in previous works [76]. First,
spatial operations encode the feature of each frame sepa-
rately in the snippet. Typically, three operations are inher-
ited from text-to-image generation approaches [4, 45, 51,
52, 54], including spatial ConVolution (CV), spatial Self
Attention (SA), and spatial Cross Attention (CA),

Xcv = CV-Spatial(Xin,Ft), (7)
Xsa = SA-Spatial(Xcv), (8)
Xca = CA-Spatial-Text(Xsa,Sn), (9)

where Xin is the noisy feature of the training snippet, and
Ft is the positional embedding of the iteration step t. To
guide denoising with the given text, we use the scene de-
scription Sn as Key and Value of cross attention in Eq. (9).

However, we notice that such spatial encoding does not
consider actors. Hence, it inevitably suffers from actor inco-
herence when generating a snippet. To tackle this problem,
we introduce a spatial image cross attention,

Yca = CA-Spatial-Actor(Xsa,Rn). (10)

For a shooting scene Sn, we leverage the protagonist doc
(Eq. 4) to find the corresponding actor in this scene. Then,
we leverage actor reference image Rn as the visual context
of spatial cross attention. Subsequently, we enhance spatial
embedding with the complementary guidance of both script
and actor, i.e., Zse = Xca + βYca with a weight β.

After spatial encoding, it is time to learn the correlation
across frames in the snippet. Hence, the typical operation is
to perform self attention along the temporal dimension,

Zsa = SA-Temporal(Zse). (11)

However, such a temporal operation does not take the con-
straints of scene text into account. It often leads to text in-
coherence when generating video snippets. Hence, we in-
troduce a temporal text cross attention,

Zca = CA-Temporal-Text(Zsa,Sn), (12)

where we leverage the scene description Sn as the textual
context of temporal encoding. Via spatial-actor (Eq. 10)
and temporal-text (Eq. 12) cross attention, our STEB can
further enhance actor and script coherence in the snippet.
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Method FVD (↓)

VideoFactory [71] 410.00
Make-A-Video [57] 367.23
PYoCo [25] 355.19

Ours 292.43

(a) Hand-crafted prompt.

Method FVD (↓)

CogVideo (Chinese) [35] 751.34
CogVideo (English) [35] 701.59
MagicVideo [89] 699.00
Video LDM [8] 550.61

Ours 525.01
(b) Class label.

Table 1. Zero-shot comparison with the state-of-the-art meth-
ods on UCF-101. Hand-crafted prompt from [25].

3.2.2 Mixed Training Paradigm with Mode Selection

As discussed in Section 3.1.2, ShowMaker aims to gener-
ate a video snippet with the allocated duration in the script.
To this goal, it leverages the combination of both genera-
tion and prediction modes in the inference stage. Next, we
explain how to train our ShowMaker to learn these modes.

As shown in Fig.4 (c), we design a mode selection mech-
anism, which selects k frames of the clean snippet as the
context of the noisy snippet. The k=0 setting refers to the
generation mode since there is no context from the clean
snippet. Alternatively, the k>0 setting refers to the predic-
tion mode, since k frames of the clean snippet are already
available. The goal is to generate the rest frames of the
clean snippet from the noisy one. To integrate both modes
into training, we design a probabilistic manner to select k,

P(k) =

{
αk − αk+1, k ∈ [0,m)

αk, k = m
(13)

where P(k) is the selection probability distribution of k.
Moreover, 0<α<1 and 0≤m are the manual parameters,
which respectively control the mode selection tendencies of
P(k) and the maximum number of preserved frames.

After determining k, we introduce a frame mask Mk on
the latent code of the clean snippet Xclean,

Xk = Xclean ⊙Mk, (14)

where we only preserve k frames and mask the rest of the
frames. Then, we concatenate the mask Mk with the latent
code of snippet Xnoise and Xk,

Xin = Concat(Xnoise, Xk, Mk). (15)

This produces the input feature Xin for training the denois-
ing U-Net in Section 3.2.1. Via such a concise probabilistic
manner, we can effectively integrate both generation (k=0)
and prediction (k>0) modes in the training procedure.

4. Experiments
Datasets. To make state-of-the-art comparison, We con-
duct zero-shot evaluation on the popular video benchmarks,
i.e., UCF-101 [60], Kinetics-400 [39], and MSR-VTT [12].

Method Zero-Shot Pre-training Videos FID (↓)

T2V [42] ✗ ✗ 82.13
SC [5] ✗ ✗ 33.51
TFGAN [5] ✗ ✗ 31.76
NUWA [78] ✗ 0.97M 28.46

Phenaki [67] ✓ 15M 37.74
Ours ✓ 10M 37.23

Table 2. Comparison with the state-of-the-art methods on
Kinetics-400. Both under a zero-shot setting, our FID is better
than that of Phenaki, with only 66.7% pre-training videos.

Method Zero-Shot CLIPSIM (↑) CLIP-FID (↓)

GODIVA [77] ✗ 0.2402 -
NÜWA [78] ✗ 0.2439 47.68
CogVideo (Chinese) [35] ✓ 0.2614 24.78
CogVideo (English) [35] ✓ 0.2631 23.59
Video LDM [8] ✓ 0.2929 -
Make-A-Video [57] ✓ 0.3049 13.17
PYoCo [25] ✓ - 10.21

Ours ✓ 0.2908 12.67

Table 3. Comparison with the state-of-the-art methods on
MSR-VTT. PYoCo [25] sample 59,794 videos for CLIP-FID
(noted in gray) while others only sample less than 3,000 videos.

UCF-101 contains videos of 101 action categories. Follow-
ing [66], we use FVD to evaluate the distance between the
generated video and the real video. Kinetics-400 is a dataset
comprising videos of 400 action categories. Following
[5, 42, 67, 78], we use FID [30] to assess the performance of
video generation. MSR-VTT is a video dataset with open-
vocabulary captions, wherein CLIPSIM [77] and CLIP-FID
[47] are commonly employed for evaluating the T2V gen-
eration. Moreover, since these existing benchmarks either
have a small number of testing videos or contain only action
labels without complex descriptions, we propose to collect
an evaluation benchmark for ablation studies. It is called
as Vimeo11k, where we collect 11,293 open-world videos
along with their captions from 10 mainstream categories
in Vimeo. To our best knowledge, it is the largest testing
benchmark for zero-shot video generation. More details and
experiments can be found in the supplementary doc.
Implementation Details. (1) Director & Script & Actor
& Voicer. We choose GPT-4 [46] as our LLM director to
generate script. The specific instructions can be found in
the supplementary doc. Then we employ Stable Diffusion
XL [48] and Bark [1] as our designer and voicer to generate
reference actor images and convert scripts into speech. (2)
ShowMaker. We choose SD-1.4 [52] as our base model,
and follow [57] to add temporal self attention. Then, we
add our temporal text cross attention on top of each tem-
poral self attention. We expand the input channel of the
conv-in layer of U-Net from 4 to 9, so that model can take
the concatenated feature in Eq. (15) as input. We use zero
initialization for newly added channels. We use CLIP ViT-
L/14 [50] as text encoder εT , VQVAE [20] as autoencoder
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Figure 5. Long video generation. Comparison on UCF-101
(1000 frames). The lower FVD, the better generation performance.

Method CLIP-I (↑) CLIP-T (↑) Vlog Duration (↑)

w/o autoregressive [91] 0.5683 0.2752 1min03s
only autoregressive [67] 0.5642 0.2535 3min58s
Ours 0.6294 0.2756 3min58s

Table 4. Ablation for generation process. [91] cannot generate a
long video in a single scene and both [67, 91] can’t refer to images.

consisting of ε and D. Besides, we use OpenCLIP ViT-H/14
[38] as image encoder εI , and add spatial image cross atten-
tion in the STEB block. The diffusion step T is set to 1000
as [52]. For training, we set the parameter of mode selection
as α = 0.6 and m = 6 in Eq. (13), and β is set to 1. Follow-
ing [19, 33, 34, 67, 76], we employ publicly available image
dataset (i.e., Laion400M [55]) and video dataset (i.e., Web-
Vid10M [3]) for joint training. More training details can be
found in the supplementary doc.

4.1. Comparison with state-of-the-art

Tab. 1 shows that, no matter whether the input text is the
class label or hand-crafted prompt, our method achieves
the best FVD performance of zero-shot video generation
on UCF-101. Tab. 2 shows that, compared to Phenaki
[67], our method achieves a better FID performance of zero-
shot setting on Kinetics-400, but only using 66.7% training
videos. Furthermore, our generated videos have a resolution
of 320×512, which is higher than Phenaki’s 256×256. Tab.
3 shows that, our method achieves remarkably competitive
FID and CLIPSIM performance on MSR-VTT.

Furthermore, Fig. 5 illustrates that, we significantly sur-
pass TATS [24] (i.e., the only open-source long video gen-
eration model within our knowledge), for generating 1000-
frame videos on UCF-101. Moreover, our method does not
encounter the issue of TATS, where the video quality con-
tinuously declines as the number of frames increases. It is
noteworthy that, our method achieves this performance by
zero-shot generation, without any finetuning on UCF-101.

4.2. Ablation Study

Vlog Generation Process. Tab. 4 presents a comparison
between different generation processes. For a fair compar-
ison, we use the same scripts and employ our ShowMaker
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Figure 6. Ablation for spatial image cross attention. The val-
ues around a point on the curve correspond to the β. While β=0
means the original network without spatial image cross attention.

TTCA MTP 0/16 (↓) 1/15 (↓) 3/13 (↓) 5/11 (↓)

✗ ✗ 348.36 217.39 297.37 246.56
✓ ✗ 333.63 178.27 230.56 193.52
✓ ✓ 257.70 123.51 118.02 109.31

Table 5. Ablation for temporal text cross attention and mixed
training paradigm. “TTCA” and “MTP” refer to temporal text
cross attention and mixed training paradigm respectively. “3/13”
denotes predicting the following 13 frames after being given 3
frames of a ground truth video, and we evaluate the FVD between
the newly generated 13 frames and the corresponding frames in
the ground truth. “0/16”, “1/15”, “5/11” follow this pattern.

as videographer. We compare three approaches including
no autoregression at all as MovieFactory [91], fully autore-
gressive processes in one go as Phenaki [67], and the gener-
ation process of our Vlogger. Specifically, We use GPT-4 to
generate five stories and go through the Vlogger’s planning
process to get five vlog scripts. We set 20 different random
seeds, so that each of the above generation processes gen-
erates 20 different vlogs for each script. We use CLIP-I,
CLIP-T [82] and video duration to evaluate the quality of
the generated vlogs. The results demonstrate that, even us-
ing the same script and videographer, our Vlogger outshines
other existing frameworks for preferable vlog generation.
More details can be found in the supplementary doc.
Spatial-Temporal Enhanced Block. Fig. 6 and Tab. 5
evaluate two important operations in our STEB block, i.e.,
spatial image cross attention and temporal text cross atten-
tion. With spatial image cross attention in Fig. 6, the CLIP-I
is significantly improved as β increased, while the CLIP-T
reached its maximum at β=0.5 on COCO2017 [43]. With
temporal text cross attention (TTCA) in Tab. 5, both T2V
generation (0/16) and prediction (1/15, 3/13 and 5/11) show
a significant improvement on Vimeo11k.
Mixed Training Paradigm. Tab. 5 also presents a model
comparison by incorporating our mixed training paradigm
or the random mask training method in [11, 14, 21, 36, 68,
84]. The results show that the mixed training paradigm is
effective in enhancing the model’s T2V generation and pre-
diction capabilities. More details in the supplementary doc.
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Lots of traffic in futuristic city. ⋯ The camera moves away from the astronaut. The astronaut leaves the keyboard and walks to the left. ⋯ We 
are in an office room with empty desks. A lion runs on top of the office desks. ⋯ Timelapse of sunset in the modern city.
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Resolution:
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Figure 7. Qualitative comparison with the state-of-the-art methods on long video generation. The story and long video of Phenaki
[67] are available at phenaki.github.io. The scene diversity and picture quality generated by Vlogger are significantly better than Phenaki.
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Figure 8. Qualitative ablation for STEB and training paradigm. “TTCA” and “MTP” refer to temporal the text cross attention and
mixed training paradigm respectively. The sample without a visual prompt corresponds to the model without spatial image cross attention.

4.3. Visualization
First, we visualize long video generation, by comparison
with the well-known Phenaki [67]. Note that, since Phenaki
does not have the open-sourced codes, we alternatively use
the demo shown in its official website. Specifically, we feed
the same story description into our Vlogger. As shown in
Fig. 7, our Vlogger shows superior and more diverse video
content, compared to Phenaki. Moreover, our Vlogger suf-
ficiently exhibits the story with a much longer duration (i.e.,
7min59s), according to our LLM-created script.

We further visualize the ablation of T2V video gener-
ation and prediction by ShowMaker. As depicted in Fig.
8, ShowMaker had significant improvements in generation
and prediction performance, by incorporating our Show-
Maker designs. Additionally, it can leverage visual prompts
in the spatial actor cross attention, for distinguishing the

“Teddy” concept within text prompts.

5. Conclusion
In this paper, we introduce a generic system Vlogger, to
generate over 5-minute vlogs from open-world descriptions,
without loss of video coherence on script and actor. More-
over, we present a novel video diffusion model ShowMaker
for boosting state-of-the-art T2V generation and prediction.
Finally, we will release all the models, data and codes after-
ward, allowing to develop further designs toward long video
generation in the open world.
Acknowledgement. This work is supported by the Na-
tional Key R&D Program of China (NO.2022ZD0160102),
the National Natural Science Foundation of China under
Grant No. 62102150, and the Science and Technology
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