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Abstract

Out-of-distribution (OOD) detection has attracted a
large amount of attention from the machine learning re-
search community in recent years due to its importance in
deployed systems. Most of the previous studies focused on
the detection of OOD samples in the multi-class classifi-
cation task. However, OOD detection in the multi-label
classification task, a more common real-world use case,
remains an underexplored domain. In this research, we
propose YolOOD – a method that utilizes concepts from
the object detection domain to perform OOD detection in
the multi-label classification task. Object detection models
have an inherent ability to distinguish between objects of
interest (in-distribution data) and irrelevant objects (OOD
data) in images that contain multiple objects belonging to
different class categories. These abilities allow us to con-
vert a regular object detection model into an image classi-
fier with inherent OOD detection capabilities with just mi-
nor changes. We compare our approach to state-of-the-art
OOD detection methods and demonstrate YolOOD’s ability
to outperform these methods on a comprehensive suite of
in-distribution and OOD benchmark datasets.

1. Introduction
Machine learning and particularly deep learning-based net-
works have become a state-of-the-art solution for computer
vision tasks, such as image classification [8, 16], object de-
tection [27, 29], and image segmentation [3, 4]. However,
it has been shown that these models can produce overcon-
fident predictions on samples that are not within the distri-
bution they were trained on, i.e., out-of-distribution (OOD)
samples [26].

In the last few years, many solutions have been proposed
to address this problem, most of which focus on the separa-
tion of in-distribution and OOD data [1, 13, 17, 18]. How-
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Figure 1. Examples of (a) in-distribution (top) and OOD (bottom)
images with the (b) corresponding YolOOD confidence heatmap,
and (c) heatmap placed on top of the image.

ever, these studies only proposed solutions for the multi-
class classification task, in which an input is associated with
a single class category. The problem of OOD detection in
the multi-label classification domain has been overlooked
and remains underexplored. Despite its importance, only
two studies specifically addressed this problem [11, 34].

Multi-label image classification and object detection are
two closely related tasks. The former involves assigning
multiple labels to an image, while the latter goes a step fur-
ther by not only recognizing the objects present in an image
but also localizing them with bounding boxes. Therefore,
object detectors have the inherent ability to distinguish be-
tween objects of interest and irrelevant objects [22, 27, 29].
This ability, along with object detection’s similarity to
multi-label classification, can be leveraged to create an
OOD detection mechanism for the multi-label setting.

In this paper, we propose YolOOD, a multi-label classi-
fier that utilizes the main concepts of state-of-the-art ob-
ject detectors, and specifically, the YOLO object detec-
tor [2, 14, 27]. To convert YOLO’s network into an image
classifier, we simply replace the last layer of each detection
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head with a simplified one. YolOOD is based on the ob-
jectness score concept, which is commonly used in object
detectors [28, 29] to understand the relevance of different
parts of an image. This concept is realized by training the
network to predict low scores for background areas or areas
that contain irrelevant objects. In terms of OOD detection,
this can be interpreted as assigning low scores to OOD data
and high scores to in-distribution data, as shown in Figure 1.

As opposed to existing OOD methods, in which the net-
works are actively trained on negative data from an ex-
ternal OOD data source [12, 25], YolOOD offers a major
advantage, as it exploits all parts of the image to model
both the original data distribution and objects that might be
OOD, without the need for external data sources. To tackle
our approach’s requirement of bounding box annotations,
we leverage the tremendous progress large language mod-
els (LLMs) have made lately to perform fully-automated
dataset labeling. Using Grounding DINO [21], a multi-
modal open-set object detection model that can detect ar-
bitrary objects with textual inputs, we automatically gener-
ate bounding boxes for each image with just standard image
classification annotations (i.e., category names).

We perform extensive evaluations (more than 500 trained
models) which demonstrate YolOOD’s state-of-the-art per-
formance and superiority over commonly used OOD de-
tection methods on large-scale benchmark image datasets
(e.g., MS-COCO [19]). In addition, we propose new in-
distribution and OOD dataset benchmarks for OOD detec-
tion in the multi-label domain. To create the in-distribution
dataset, we extract a subset of 20 classes from the Ob-
jects365 dataset. With regard to the OOD datasets, we
aim to create datasets that better capture the complexity of
the multi-label setting in which images may contain mul-
tiple objects belonging to different class categories. The
new datasets consist of: (a) a subset of the Objects365
dataset [31] in which the classes are different than the
classes in the in-distribution subset mentioned above, and
(b) a subset of the NUS-WIDE dataset [5]. Our results
show that YolOOD substantially improves the FPR95 com-
pared to other OOD detection methods (e.g., when using
the Objects365 subset as the in-distribution dataset and the
NUS-WIDE subset as the OOD dataset, the FPR95 value
decreases by 12.27%).
We summarize our contributions as follows:
• We propose YolOOD, a novel OOD detection technique

for the multi-label image classification domain, which is
powered by the YOLO object detection system and out-
performs state-of-the-art techniques.

• We are the first to adopt the use of bounding box annota-
tions for OOD detection - a unique technique that exploits
all parts of an input image to model both the original data
distribution and OOD data, without depending on exter-
nal data sources.

• We introduce new benchmark datasets: (a) a large-scale
in-distribution dataset, and (b) two new OOD datasets
that better reflect the complexity of OOD detection in
the multi-label domain (i.e., images may contain multi-
ple objects of different class categories) and make them
available to the scientific community.

2. Background
2.1. Multi-Label Classification

The multi-label classification problem is defined as follows:
let X be the input space and Y be the output space of clas-
sifier f : X → R|Y| trained on samples drawn from distri-
bution D(X ,Y). Every input x ∈ X can be associated with
a subset of labels Y = {1, 2, ..., Nc}, which is represented
by a binary indicator vector y = {0, 1}Nc , where yn = 1 if
the input is associated with class n.

Object detection is a variant of the multi-label classifica-
tion task, in which the model also determines the location
of existing objects, i.e., bounding box coordinates.

2.2. Out-of-Distribution Detection

Let Din denote the marginal distribution of D over X , which
represents the distribution of in-distribution data. At infer-
ence time, the system may encounter an input drawn from
a different distribution Dout over X . For OOD detection in
the multi-label setting, a decision function G is defined such
that:

G(x; f) =

{
1 if x ∼ Din

0 if x ∼ Dout
(1)

where x is considered OOD if none of the objects present
in it are in-distribution objects.

2.3. YOLO Object Detector

In this paper, we focus on the state-of-the-art one-stage
YOLO object detector and leverage its capabilities. Our
proposed approach utilizes one of its latest versions,
YOLOv5 [14].
YOLO’s architecture. YOLO’s architecture is comprised
of two components: (a) a backbone network used to ex-
tract features from the input image, and (b) three detection
heads which process the image’s features at three different
scales. The size of a detection head is determined by the
size of the input image and the network’s stride (downsam-
pling factor) – 32, 16, and 8. This allows the network to de-
tect objects of different sizes: the first detection head (with
the largest stride) has a broader context, specializing in the
detection of large objects, while the smallest one has finer
resolution and specializes in the detection of small objects.

The last layer of each detection head predicts a 3D tensor
of size W ×H × (4 + 1 +Nc), where W ×H is the grid
size (W and H are the width and height, respectively) and
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4 + 1 +Nc (which will be referred to as a candidate in the
remainder of the paper) encodes three parts: the bounding
box offsets, objectness score, and class scores.
Training YOLO. Every ground-truth object is associated
with a single cell in each detection head. The input image
is divided into an W × H grid, and the responsible cell is
determined by the grid cell that the object’s center falls in.
YOLO does not assume that the class categories are mu-
tually exclusive; therefore the class score vector is trained
with the multi-label configuration (the sigmoid function is
applied on each output neuron).
Postprocessing. YOLO outputs a fixed amount of candi-
dates (the amount depends on the size of the input image)
which are then filtered in three sequential steps: objectness
score filtering, class score filtering, and non-maximum sup-
pression (NMS).

Additional details about YOLO’s architecture, training,
and inference can be found in the supplementary material.

3. Method
Object detectors provide a natural solution for OOD detec-
tion, because they have an inherent ability to distinguish
between objects of interest (in-distribution data) and irrel-
evant objects (OOD data). Additionally, object detectors
use passive negative learning during training, utilizing the
unlabeled data present in the training images (i.e., areas that
are not included within labeled bounding boxes), which al-
lows them to better generalize to the sub-task of discarding
irrelevant objects. In YOLO, this is accomplished using the
objectness score. Overall, the combination of these factors
makes object detectors perfect candidates for OOD detec-
tion tasks.

In this section, we introduce YolOOD, our novel OOD
detection method for the multi-label domain, inspired by the
YOLO object detector [14]. With just minor changes, we
convert a YOLO network into a multi-label image classifier.

3.1. YolOOD Detection Layer

Since we propose a method for the image classification do-
main, our model does not have to predict bounding box co-
ordinates. Therefore, we replace the last layer of each de-
tection head with a 3D tensor of size Wk ×Hk × (1 +Nc),
where k denotes the kth detection head (k ∈ {1, 2, 3}). The
size Wk ×Hk grid remains identical to the grid in the orig-
inal YOLO architecture, where each cell only predicts the
objectness score and Nc class scores.

Formally, let fYolOOD : X → C be a YolOOD image clas-
sifier that receives an input image x ∈ X and outputs a set of
candidates fYolOOD(x) = C such that C =

⋃
k Ck, where Ck

denotes the candidates of the kth detection head. Each set of
candidates Ck is comprised of Wk ×Hk candidates (based
on the downsampling factor mentioned in Section 2), and
thus |C| =

∑3
k=1 |Ck| =

∑3
k=1 Wk ·Hk.

(a) Clean (b) p = 0

(c) p = 0.5 (d) p = 1

Figure 2. An example of an image divided into a size 20× 20 grid
with various p values (k is omitted for simplicity). The ground-
truth bounding box is framed in orange. Grid cells highlighted in
red represent the responsible cells (explained in Section 3.1).

Objectness score. As explained in Section 2, in the orig-
inal YOLO model, only a single cell grid is responsible for
the prediction of an object. However, in image classifica-
tion, we are not limited to the case of a specific cell pre-
dicting the object’s bounding box. Therefore, we propose
enlarging the responsible areas, such that grid cells that con-
tain any part of an object are responsible for its detection,
allowing the model to capture broader representations of ob-
jects.

However, an important aspect to consider is that bound-
ing boxes do not accurately segment the object (i.e., objects’
shapes are not necessarily rectangular), which may result in
background areas that are not part of the object included in
the bounding box. This might result in incorrect associa-
tions of irrelevant areas within the object’s bounding box
with the object. Therefore, we propose using only a portion
of the grid cells that cover the object’s area.

More formally, let (Wo, Ho) ∈ [0, 1]2 ⊂ R2 be the
normalized width and height of an object. The relative
width and height of an object in a specific grid is de-
fined as: (Wr, Hr) = (Wo ·Wk, Ho ·Hk). In addition, let
(xk,center, yk,center) denote the indices of the cell that the ob-
ject’s center falls in in the kth grid. We define pk as the por-
tion of grid cells relative to the grid’s size with regard to the
object’s center, i.e., the responsible grid cells expand from
the object’s center to the object’s boundaries as a function
of pk. As shown in Figure 2, when pk = 0, the responsi-
ble cells are identical to those of the original YOLO model
(single cell), while when pk = 1, the responsible cells cover
the area of the entire object.
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Figure 3. An overview of YolOOD’s OOD detection pipeline: (1) the input image is fed to the model, which returns three groups of
candidates, each of which corresponds to a different detection head; (2) each candidate’s objectness score is multiplied by its corresponding
class scores; (3) the highest score for each class is extracted from each group of candidates (candidate-wise class scores); (4) the candidate-
wise class scores are aggregated into a single vector of image-wise class scores; and (5) the highest score, which will be referred to as the
OOD score, is extracted.

Let ĉ denote the corresponding ground-truth value of a
predicted candidate c ∈ Ck. The objectness score value of ĉ
at location (i, j) is defined as follows:

φu = i ≥ xk,center − pk · Wr

2
, φl = j ≥ yk,center − pk · Hr

2

φd = i ≤ xk,center + pk · Wr

2
, φr = j ≤ yk,center + pk · Hr

2
(2)

ĉobj(i, j) =

{
1 φu ∧ φd ∧ φl ∧ φr

0 else
(3)

The effect of the different pk values is discussed in Sec-
tion 4.

Class scores. Each predicted candidate c ∈ Ck contains
Nc class scores which represent the model’s confidence in
the presence of each class. Since multiple cells may be
responsible for the prediction of an object, a cell can be
assigned with multiple classes. As in the original YOLO
training procedure, we train each candidate in a multi-label
fashion, i.e., classes are not mutually exclusive. Formally,
the class score for a class n ∈ {1, .., Nc} in ĉ at location
(i, j) is:

ĉcls n(i, j) =

{
1 class n is in cell (i, j)
0 else

(4)

3.2. YolOOD Loss Function

To train YolOOD, we devised a custom loss function that is
composed of two components:
• Objectness score loss -

Lobj =
∑
c∈C

LBCE(cobj, ĉobj) (5)

where LBCE denotes the binary cross-entropy loss.

• Class score loss -

Lcls =
∑
c∈C

∑
n∈{1,..,Nc}

ĉobj · LBCE(ccls n, ĉcls n) (6)

Finally, the total loss function is:

Ltotal = Lobj + Lcls (7)

3.3. YolOOD as a Multi-Label Classifier

Since the core definition of a multi-label classifier’s output
is a single vector containing class probabilities, we aggre-
gate YolOOD’s output such that the score for each class n
is the highest score across all the candidates and is formally
defined as:

yn = max
c∈C

{σ(cobj) · σ(ccls n)} (8)

where σ denotes the sigmoid function.

3.4. YolOOD for Multi-Label OOD Detection

Similar to the YOLO candidates’ postprocessing (see Sec-
tion 2.3), we utilize both the objectness and class scores and
propose using YolOOD for OOD detection in the following
way (visualized in Figure 3):

YolOOD(x) = max
n∈{1,..,Nc}

∑
Ck∈fYolOOD(x)

max
c∈Ck

{σ(cobj) · σ(ccls n)}

(9)

G(x, τ) =

{
1 YolOOD(x) ≥ τ

0 YolOOD(x) < τ
(10)

where τ denotes the threshold, which can be selected ac-
cording to the value that yields a high percentage (e.g.,
95%) of in-distribution data correctly classified by G(x, τ).
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4. Evaluation

4.1. Experimental Setup

In-distribution datasets. We consider the following in-
distribution datasets, originally proposed in [11]:
• PASCAL VOC [7] - consists of 5,717 training, 5,823 val-

idation, and 10,991 test images across 20 class categories.
• MS-COCO [19] (2017 version) - consists of 117,266

training, 4,952 validation, and 40,670 test images across
80 class categories.

In addition, we propose a new benchmark, which is a subset
of the Objects365 dataset [31]:
• Objects365in - a subset of the original dataset which is

comprised of the 20 most frequent classes that do not
overlap with the classes in the OOD datasets (presented
below). It consists of 68,723 training, 5,000 validation,
and 10,000 test images. Further details can be found in
the supplementary material.

The training and validation images are used in the train-
ing process, while the test set is used as an in-distribution
set in the OOD detection evaluation. Furthermore, to
demonstrate that our approach is not limited to datasets that
contain bounding box annotations, we employ Grounding
DINO [21], a multi-modal open-set object detection model.
Grounding DINO takes a pair of ⟨IMAGE,CAPTION⟩ and
returns the location of objects in the image based on the pro-
vided caption. In our research, we use Grounding DINO to
automatically annotate the training set images, where the
caption is simply a concatenation of the category names
present in the image (i.e., standard image classification an-
notations).
Out-of-distribution datasets. In previous studies [11, 34]
proposing solutions for OOD detection in the multi-label
setting, the effectiveness of the proposed method was evalu-
ated on a subset of images from the ImageNet-22K [30] and
Textures [6] datasets. However, these datasets only contain
images with a single class category, resulting in an oversim-
plified setup. Therefore, we propose two new benchmarks
constructed from datasets which contain images associated
with multiple class categories and instances, thus reflecting
the complexity of the multi-label setting:
• Objects365out - a subset of the Objects365 dataset which

contains ∼200 classes that do not overlap with any of the
classes present in the in-distribution datasets (e.g., lamp,
tomato), and specifically with the Objects365in subset.
This subset contains 11,669 images.

• NUS-WIDEout - a subset of the original NUS-WIDE
dataset [5]. We remove overlapping class categories,
which leaves us with a subset of 54 categories (e.g., toy,
tree, whale). This subset contains 13,149 images.

Further details about the datasets are presented in the sup-
plementary material.

Metrics. In our evaluation, performance is measured with
metrics commonly used in the OOD detection domain: (a)
FPR95 - the false positive rate of OOD samples when the
true positive rate is at 95%; (b) AUROC - the area under the
receiver operating characteristic curve; and (c) AUPR - the
area under the precision-recall curve.
Networks’ architecture. For YolOOD, we use the latest
version of the YOLO object detector, YOLOv5 [14], pre-
trained on the MS-COCO dataset. As explained in Sec-
tion 2.3, the network is comprised of a backbone and three
detection heads. YOLOv5 provides several model sizes:
nano, small, medium, etc., each of which contains a dif-
ferent number of learnable parameters for the backbone
and detection heads. We use the YOLOv5 small version
(YOLOv5s), which contains ∼ 4.1M and ∼ 3M learn-
able parameters in the backbone and detection heads, re-
spectively, which amounts to a total of ∼ 7.1M parameters.
To apply our OOD detection approach, we replace the last
layer of each detection head with the detection layer de-
scribed in Section 3.1.

To perform a fair comparison between the proposed
method and other state-of-the-art OOD detection methods,
we also train a multi-label image classifier based on the
backbone of YOLOv5s. To this end, we replace the de-
tection heads with three fully connected layers, resulting in
a similar-sized network (total of ∼ 7.1M parameters). This
network is referred to as YOLO-cls in the evaluation.
Training details. For each in-distribution dataset, we fine-
tune a pair of YolOOD and YOLO-cls models using the
backbone’s pretrained weights for a total of 30 epochs.
More precisely, we fine-tune five pairs of models, each ini-
tialized with a different seed. The results presented in the
paper are averaged across the models (the complete results,
including the standard deviation values, are included in the
supplementary material). We use the Adam optimizer [15]
with an initial learning rate of 10−5 and 10−4 respectively
for the backbone and the remaining layers. The learning
rate is reduced by a factor of 10 if the mAP on the valida-
tion set does not improve for two consecutive epochs. For
the YOLO-cls model, we apply the logistic sigmoid func-
tion on the outputs of the classification layer (i.e., logits)
for multi-label training. For both models, the images are re-
sized to 640×640 pixels and applied with color-based aug-
mentations and geometric transformations. The mAPs for
YolOOD are on par with those of YOLO-cls on all of the
in-distribution datasets evaluated (∼1-2% difference). De-
tailed results are presented in the supplementary material.
The source code can be found online.1

4.2. Results

Effect of responsible grid cell percentage pk. We char-
acterize the effect of the percentage {pk|k ∈ {1, 2, 3}} of

1https://github.com/AlonZolfi/YolOOD
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Table 1. Comparison of the OOD detection performance of YolODD vs. state-of-the-art methods. ↓ indicates that lower values are better,
and ↑ indicates that higher values are better. Bold indicates superior results.
1Trained using the auto-generated annotations. 2Trained using the original annotations.

Dout Objects365out NUS-WIDEout
Din PASCAL-VOC MS-COCO Objects365in PASCAL-VOC MS-COCO Objects365in

Method FPR95 ↓ / AUROC ↑ / AUPR ↑
MaxLogit [11] 28.91 / 94.96 / 95.32 16.39 / 96.90 / 99.17 29.95 / 94.33 / 94.38 23.60 / 95.99 / 96.05 12.16 / 97.53 / 99.24 38.07 / 92.62 / 91.48
MSP [10] 50.78 / 88.36 / 88.61 46.25 / 86.78 / 95.63 65.20 / 83.99 / 84.13 47.34 / 89.34 / 88.71 40.89 / 88.33 / 95.53 78.08 / 78.42 / 76.91
Mahalanobis [17] 73.34 / 73.90 / 70.94 87.69 / 52.13 / 77.53 83.30 / 63.23 / 56.69 77.23 / 73.76 / 67.76 88.74 / 60.35 / 80.85 88.54 / 62.34 / 54.12
ODIN [18] 28.91 / 94.96 / 95.32 16.39 / 96.90 / 99.17 29.95 / 94.33 / 94.38 23.60 / 95.99 / 96.05 12.16 / 97.53 / 99.24 38.07 / 92.62 / 91.48
JointEnergy [34] 27.90 / 95.37 / 96.04 14.80 / 97.16 / 99.28 23.13 / 95.84 / 96.20 20.19 / 96.53 / 96.76 8.29 / 97.90 / 99.39 24.46 / 95.34 / 94.96
YolOOD-a1 18.37 / 96.10 / 95.85 11.70 / 97.21 / 99.19 18.40 / 95.76 / 95.15 21.24 / 96.29 / 96.08 7.62 / 98.13 / 99.43 12.19 / 97.64 / 97.29
YolOOD-o2 16.38 / 96.60 / 96.49 11.53 / 97.29 / 99.23 17.24 / 95.97 / 95.42 18.47 / 96.85 / 96.77 4.40 / 98.56 / 99.57 9.54 / 98.01 / 97.61

Figure 4. Models’ mAP for different pk combinations on the
COCO dataset. Each line represents a model trained with a sin-
gle combination.

responsible cells (described in Section 3.1), where p1 (resp.
p3) represents the smallest (resp. largest) detection head.
We perform an extensive evaluation to determine the effect
of different pk combinations, where pk is selected from 11
evenly spaced numbers in the range [0, 1]. To limit the num-
ber of possible combinations, we set a constraint such that
p3 > p2 > p1, based on the fact that the grid’s resolu-
tion increases in each subsequent detection head, resulting
in 165 different combinations. An illustration of the results
obtained on the COCO dataset is provided in Figure 4. Af-
ter training, we sort all of the models according to their in-
distribution mAP and select the 20 best-performing models.
Then, we count the number of occurrences of each pk value
(each pk is counted independently, not as a triplet) and se-
lect the most frequent values. After aggregating the results
over all in-distribution datasets, we found that the best con-
figuration is (p1, p2, p3) = (0.0, 0.1, 0.5). As expected, the
detection head with the highest resolution (k = 3) benefits
greatly from a large portion of responsible cells, while the
detection head with the smallest resolution works best with
just a single responsible cell. It should be emphasized that
we recommend using this configuration for all datasets, i.e.,
pk is not a hyperparameter that should be tuned. The com-
plete results can be found in the supplementary material.

YolOOD vs. state-of-the-art OOD detection methods.
We compare our approach to state-of-the-art OOD detection
methods using the YOLO-cls network: (a) MaxLogit [11],
(b) Maximum Softmax Probability (MSP) [10], (c)
ODIN [18], (d) Mahalanobis [17], and (e) JointEnergy [34].

Further details about each method can be found in the
supplementary material. In Table 1 we can see that
YolOOD outperforms all baselines and state-of-the-art ap-
proaches, including the multi-label OOD detection method,
JointEnergy. Specifically, when the networks are trained on
the PASCAL-VOC, MS-COCO, and Objects365in datasets
with the auto-generated annotations (i.e., constructed us-
ing Grounding DINO with solely standard classification
annotations), and OOD detection is evaluated on the
Objects365out OOD dataset, YolOOD reduces the FPR95 by
9.53%, 3.10%, and 4.73%, compared to the best-performing
method.

It should also be noted that the Mahalanobis method
shows poor performance compared to the other methods ex-
amined. In [34], the authors hypothesized that the Maha-
lanobis method may not be well suited for the multi-label
task, since it is based on the assumption that feature rep-
resentation forms class-conditional Gaussian distributions.
This assumption also holds in our case, however from a dif-
ferent perspective - the YOLO-cls backbone used for the
evaluation was originally trained for the object detection
task and therefore learned different feature representations.
Furthermore, the performance of ODIN and MaxLogit is
similar, since the best hyperparameter configuration found
for ODIN is equivalent to MaxLogit (a special case where
the temperature is set at one and the magnitude of noise is
set at zero), which correlates with the results in [34].

Objectness score vs. class score vs. joint score. We
also perform an analysis to examine the effect of differ-
ent aggregation methods on the candidates’ output scores,
i.e., objectness and class scores. We consider two differ-
ent approaches in addition to the regular YolOOD approach
described in Equation 9 (which uses a joint probability be-
tween the objectness and class scores):

YolOODCls(x) = max
n∈{1,..,Nc}

∑
Ck∈fYolOOD(x)

max
c∈Ck

{σ(ccls n)}

(11)

YolOODObj(x) =
∑

Ck∈fYolOOD(x)

max
c∈Ck

{σ(cobj)} (12)

5793



Figure 5. A comparison of the impact of different aggregation
methods on YolOOD candidates’ output scores (Section 4.2).

In Figure 5, we can see that when using the objectness
and class scores separately (YolOODObj and YolOODCls,
respectively), the objectness score contributes more to the
ability to distinguish between in-distribution and OOD sam-
ples. However, when using a joint probability (i.e., a com-
bination of the scores), the OOD detection performance ex-
ceeds the performance of both individually. Interestingly,
when using Objects365in as the in-distribution dataset,
YolOODObj achieves similar performance to YolOOD. This
can be attributed to the greater complexity of the image dis-
tribution in Objects365in compared to PASCAL-VOC and
COCO. This complexity results in the model learning less
robust class scores, ultimately impacting the joint score.

Effectiveness of different aggregation functions. Since
YolOOD’s output is comprised of candidates from three de-
tection heads, we consider the use of different aggregation
functions between them, i.e., instead of combining all of
the candidates from all three detection heads into one large
set C =

⋃
k Ck, we extract the best candidate from each

set Ck and then apply the aggregation function. In addition,
we also examine the effect of different aggregation func-
tions on the class score output vector (similar to [34] which
proposed summing energies over all of the labels). More
formally, we replace Equation 9 with the following:

agg1
n∈{1,..,Nc}

agg2
Ck∈fYolOOD(x)

max
c∈Ck

{σ(cobj) · σ(ccls n)} (13)

where agg1 can either be the summation or max function,
and agg2 can be one of the following functions: summation,
multiplication, or max.

In general, the results presented in Table 2 show that on
most in-distribution datasets, the approach that yields the
best results is summing the scores over the different candi-
date sets and then extracting the maximum value of all of the
class scores. It is interesting to see that when summing over
the class scores (Table 2, bottom), multiplication between
the candidate sets works better than the other functions.

Table 2. OOD detection performance when using different com-
binations of aggregation functions for YolOOD’s detection heads
and class scores output vector. The results are averaged across the
OOD datasets.

Din PASCAL-VOC MS-COCO Objects365in
Class Agg. Head Agg. FPR95 ↓ / AUROC ↑ / AUPR ↑

Max
Max 24.10 / 95.63 / 95.61 8.55 / 98.01 / 99.43 21.01 / 95.70 / 95.08
Multiply 19.76 / 96.02 / 95.74 10.55 / 97.59 / 99.30 18.22 / 96.23 / 95.68
Sum 17.43 / 96.73 / 96.64 7.97 / 97.93 / 99.41 13.39 / 96.99 / 96.52

Sum
Max 44.56 / 78.31 / 70.89 54.70 / 80.59 / 92.21 35.26 / 85.67 / 79.28
Multiply 19.58 / 96.04 / 95.80 9.61 / 97.81 / 99.38 17.55 / 96.39 / 95.94
Sum 40.11 / 84.91 / 81.83 39.50 / 90.20 / 96.71 26.18 / 93.68 / 92.39

Combining YolOOD with JointEnergy. Wang et al. [34]
presented the JointEnergy technique in the following way:

Eyn
(x) = − log(1 + efyn (x))

Ejoint(x) =
∑Nc

n=1
−Eyn

(x)
(14)

where fyn(x) denotes the logit of the nth class.
Since YolOOD’s output can be transformed into a single

vector of class probabilities (Section 3.3), JointEnergy can
be applied and used with the YolOOD architecture. There-
fore, instead of applying the sigmoid function to the ob-
jectness and class scores (Equation 9), we apply the energy
function Eyn and combine label-wise energies over all la-
bels for a single OOD score. Formally, the combination of
YolOOD and JointEnergy can be written as follows:

YolOODJointEnergy(x) =∑
n∈{1,..,Nc}

∑
Ck∈fYolOOD(x)

−max
c∈Ck

{Eyn(cobj) · Eyn(ccls n)}

We compare the results obtained with YolOODJointEnergy
to the performance of JointEnergy when using the
YOLO-cls network. We observe that YolOODJointEnergy out-
performs JointEnergy when applied to the YOLO-cls net-
work on most in-distribution and OOD examined datasets
across all metrics. For example, when using Objects365out
as the OOD dataset, the FPR95 metric improves by 10.49%,
7.7%, and 7.22% when the networks are trained on the
PASCAL-VOC, MS-COCO, and Objects365in datasets, re-
spectively. Moreover, in some cases, the performance of
YolOODJointEnergy even exceeds the performance obtained
using the regular YolOOD (e.g., when MS-COCO and
Objects365out are used as the in-distribution and OOD
datasets, respectively, the FPR95 decreases from 11.53% to
7.1%).

YolOOD vs. a vanilla YOLO We also examine the ad-
vantage of using YolOOD over a vanilla YOLO (i.e., a stan-
dard object detector). We train a YOLO detector using the
same configuration used to train YolOOD for a fair compar-
ison: pretrained weights are only used in the backbone lay-
ers and no custom augmentations are used (e.g., mosaic [2]).
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(a) YolOOD (FPR95=16.38%) (b) YOLO (FPR95=40.57%)

Figure 6. Score distribution when using PASCAL-VOC as the in-
distribution dataset and Objects365out as the OOD dataset.

The OOD score functions for the vanilla YOLO model are
similar to those of YolOOD, differing only at the anchor box
level, which results in 3× more candidates.

Our evaluation demonstrates that YolOOD outperforms
the vanilla YOLO on all of the in-distribution and OOD
datasets examined. An example of this is provided in
Figure 6, which presents the distribution of YolOOD
and vanilla YOLO scores when using PASCAL-VOC and
Objects365out as the in-distribution and OOD datasets, re-
spectively. As can be seen, there are notable differences in
the models’ performance. The vanilla YOLO (Figure 6b)
excels at assigning low scores to OOD data but faces chal-
lenges in definitively identifying in-distribution data, as ev-
idenced by the uniformly distributed scores obtained. On
the other hand, YolOOD (Figure 6a) performs well on OOD
data, while substantially enhancing in-distribution detec-
tion. We hypothesize that the difference in the models’ per-
formance is mainly the result of the fact that (a) the loss
function in the vanilla YOLO largely focuses on improving
the bounding box coordinates’ regression, and (b) YolOOD
uses more responsible grid cells for the detection of each
object, capturing broader representations.

5. Related Work
5.1. Object Detection

Object detectors have been studied extensively over the last
few years, demonstrating state-of-the-art performance, and
various solutions aimed at identifying the objects present in
an image and their precise location (i.e., bounding boxes)
have been proposed. Modern deep learning-based object
detectors are usually composed of two components, a back-
bone network and a head, which is used to predict the
bounding boxes and classes of existing objects in an image.
Broadly, there are two types of models: one-stage detec-
tors (e.g., SSD [22] and YOLO [2, 14, 27]) and two-stage
detectors (e.g., Mask R-CNN [9] and Faster R-CNN [29]).
Object detectors developed in recent years often insert addi-
tional layers between the backbone and the head, which are
used to collect feature maps from different stages [20, 33].

5.2. Out-of-Distribution Detection
Deep neural networks’ overconfidence for OOD data was
first noted by [26]. Several baseline approaches have been
proposed to tackle this problem; for example, Hendrycks et
al. proposed two baselines: MSP [10] and MaxLogit, which
uses the highest score from the classifier’s last layer as
an OOD score [11]. In recent years, OOD detection has
attracted the attention of the machine learning research
community, and researchers have proposed methods aimed
at improving OOD uncertainty estimation, such as: (1)
ODIN [18], which combines input preprocessing and tem-
perature scaling; (2) the Mahalanobis [17] distance-based
approach, which utilizes the network’s internal feature rep-
resentations; (3) the gradient-based GradNorm [13] score;
(4) ReAct [32], which rectifies activation values; (5) Iso-
Max [24], which proposes isotropy maximization loss; and
(6) the energy score [23]. These studies only addressed the
multi-class classification task, and the topic of OOD de-
tection in the multi-label domain remains largely underex-
plored. OOD detection in the multi-label domain has only
been addressed by [11], who proposed the MaxLogit base-
line, and [34], who proposed JointEnergy which combines
label-wise energies over all labels.

It should be noted that the OOD detection methods pro-
posed in many prior studies require external OOD data
(in addition to the OOD test dataset) to improve the de-
tector’s robustness. In some cases, the model is provided
with OOD samples for hyperparameter tuning [18], while
in other cases, these samples are used for negative learning
in which the model is explicitly trained on images that do
not contain in-distribution data [12, 25]. In contrast, object
detection models in general, and YOLO in particular, do not
require any type of external OOD data to model irrelevant
objects and background areas.

6. Conclusion
In this paper, we presented YolOOD – a novel approach for
OOD detection in the underexplored multi-label classifica-
tion domain, leveraging key concepts from object detectors,
and demonstrated how all parts of an input image can be
utilized to model both in-distribution and OOD data. In our
evaluation, we presented new benchmark datasets that bet-
ter capture the complexity of the multi-label domain. Our
comprehensive evaluation demonstrated that YolOOD out-
performs existing OOD detection methods, as well as a
standard YOLO object detector, achieving state-of-the-art
performance. Moreover, our findings highlight the signif-
icance of the objectness score, a characteristic shared by
YOLO and other object detectors, in enhancing OOD detec-
tion performance. These findings imply broader potential
for the utilization of object detectors in the OOD detection
task. In future work, we plan to explore modeling images at
a finer granularity level (pixel-level annotations).
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