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Abstract

Cross-domain few-shot learning (CDFSL) aims to ac-

quire knowledge from limited training data in the target

domain by leveraging prior knowledge transferred from

source domains with abundant training samples. CDFSL

faces challenges in transferring knowledge across dissim-

ilar domains and fine-tuning models with limited training

data. To address these challenges, we initially extend the

analysis of loss landscapes from the parameter space to

the representation space, which allows us to simultane-

ously interpret the transferring and fine-tuning difficulties

of CDFSL models. We observe that sharp minima in the

loss landscapes of the representation space result in repre-

sentations that are hard to transfer and fine-tune. More-

over, existing flatness-based methods have limited general-

ization ability due to their short-range flatness. To enhance

the transferability and facilitate fine-tuning, we introduce

a simple yet effective approach to achieve long-range flat-

tening of the minima in the loss landscape. This approach

considers representations that are differently normalized as

minima in the loss landscape and flattens the high-loss re-

gion in the middle by randomly sampling interpolated rep-

resentations. We implement this method as a new normal-

ization layer that replaces the original one in both CNNs

and ViTs. This layer is simple and lightweight, introducing

only a minimal number of additional parameters. Experi-

mental results on 8 datasets demonstrate that our approach

outperforms state-of-the-art methods in terms of average

accuracy. Moreover, our method achieves performance im-

provements of up to 9% compared to the current best ap-

proaches on individual datasets. Our code will be released.

1. Introduction

Cross-domain few-shot learning (CDFSL) is introduced as

a solution to mitigate the need for extensive training data

on the target domain. It leverages knowledge transferred

from non-overlapping source domain datasets that have suf-

ficient training data [2, 11]. It poses two primary chal-

*Corresponding author. Code is at https://github.com/Zoilsen/FLoR.

Figure 1. (a) Representation-space loss landscape (RSLL): Given

an input sample, the model maps it into a representation space,

where effective representations correspond to low classification

losses, i.e., minima in the landscape. Since domain shifts can be

reflected by the landscape shift and representation shift, a sharp

minimum in the landscape corresponds to a representation vulner-

able to domain shifts, making the training and finetuning difficult.

(b) We can easily find different minima in the RSLL, which covers

a longer range than current flatness-based methods. This inspires

us to flatten a long-range loss landscape by randomly interpolating

these minima. (c) Given a flattened minimum, the representation

and the model are more transferable against domain shifts and eas-

ier to be finetuned on the target domain.

lenges due to domain shifts between the source and target

domains. (1) Transferring: overcoming domain shifts to

transfer knowledge from source to target datasets. (2) Fine-

tuning: leveraging the transferred knowledge to learn from

limited training data in the target domain. Numerous ap-

proaches [20, 36] have been proposed to address these chal-

lenges. However, these challenges still remain unsolved.

Currently, several works [8, 18, 34] have attempted to

address the challenge posed by domain shifts by investigat-

ing the flatness of the loss landscape. However, these works

primarily concentrate on the parameter space, which can not

reflect the presence of domain shifts directly. To tackle the

CDFSL problem, we extend this concept from the parame-

ter space to the representation space, which provides a more

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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direct means of capturing domain shifts.

In the source domain training phase, a model is trained to

extract effective representations for each input training sam-

ple. The representation for a source-domain sample can be

seen as a point in the representation space, where good rep-

resentations correspond to low classification losses. Conse-

quently, we can draw landscapes to map each representation

point to its classification loss, with effective representations

corresponding to minima, as illustrated in Fig. 1a. Note that

this sample can also be represented by its original pixels,

which enables the direct analysis of domain shifts.

Since the model is trained on the source domain dataset,

the representation extracted by this model is effective

enough for recognition. Therefore, each source-domain

representation (in feature space or pixel space) extracted by

this model corresponds to a minimum in the loss landscape.

By applying domain shifts to this source-domain sample, its

representation may shift from the original minimum (black

dot in Fig. 1) to another point (black cross in Fig. 1). Com-

pare Fig. 1a and Fig. 1c, intuitively, we can see (1) a flat

minimum would tolerate larger representation shifts, mak-

ing the transferring easier; and (2) a flat minimum would

reduce the high-loss region between the source and target

representations, making the finetuning easier.

Therefore, our goal is to flatten the loss landscape in the

representation space during source-domain training to en-

hance both transferring and fine-tuning. However, we find

that the current flatness-based method [8] has limited per-

formance on the CDFSL task. By experiments, we con-

clude this is because current methods rely on the flatness of

the landscape in the vicinity of the minimum, which cov-

ers only a short range. Therefore, it struggles to effectively

address large domain shifts in CDFSL.

To handle this problem, we notice that we can easily

find different minima in the representation space: given

an un-normalized input representation, many normalization

methods have been proved to be effective in producing dis-

criminative normalized outputs, which can be viewed as dif-

ferent minima in the representation space. As the distance

between representations is much larger than the sunken re-

gion in the loss landscape around each minimum, we can

flatten a long-range loss landscape between these minima.

Based on this intuition, we randomly interpolate differ-

ently normalized representations at each layer of deep net-

works, and use interpolated representations for classifica-

tion. This would push interpolated representations to be ef-

fective, lowering the high-loss region between minima and

flattening the loss landscape. Specifically, we provide two

instantiations for both Convolutional Neural Networks and

Vision Transformers, and implement the above operations

as a normalization layer (FLoR layer) to replace the origi-

nal normalization layer. Our contribution can be listed as

• To the best of our knowledge, we are the first to extend

the analysis of loss landscapes from the parameter space to

the representation space for the CDFSL task, which inter-

prets the difficulty in transferring and finetuning.

• Based on the analysis, we propose a simple but effec-

tive method to flatten the loss landscape in a long range,

which simultaneously enhances the transferring and fine-

tuning of the model.

• We evaluate our model on 8 datasets to show the effec-

tiveness and rationale, indicating we can outperform state-

of-the-art works in the average accuracy, and outperform

current best works on individual datasets by up to 9%.

2. Analyzing Generalization from the Aspect of

Representation-Space Loss Landscapes

2.1. Preliminaries

Cross-domain few-shot learning (CDFSL) aims to rec-
ognize target-domain novel classes (Cnovel) by only a
few training samples, with knowledge transferred from
source-domain base classes (Cbase) with sufficient training
data [11]. Note that Cnovel∩Cbase = ∅, and a domain gap
exists between these two sets of classes [11]. The model is
firstly trained on the base-class dataset Dbase = {xi, yi}

N
i

where yi ∈ Cbase (base-class stage). Typically, the base-
class training is to minimize the cross-entropy loss

L = Lcls(F (xi), yi), (1)

where F (xi) = h(f(xi)) outputs the classification proba-
bility of xi, which is composed of a feature extractor f(·)
and a classifier h(·). Then, f(·) is transferred to novel-

class dataset Dnovel = {xu
i , y

u
i }

Nu

i where yui ∈ Cnovel

(novel-class stage). Typically, only 1 or 5 training sam-
ples are available for each novel class, which makes the
training on novel classes difficult. For a fair compari-
son, during the novel-class stage, current works [11] al-
ways sample k-way n-shot episodes for novel-class train-
ing and evaluation. Each episode contains a support set

S = {xs
ij , y

s
ij}

k,n
i,j with k novel classes and n training sam-

ples in each class for training, and a query set Q = {xq
i }

Nq

i

for evaluation. Denote the model trained on novel classes
as Fu(·) = hu(fu(·)), the prediction for x

q
i is

ŷ
u
i = argmaxF

u(xu
i ), (2)

Finally, the evaluation can be conducted based on the com-

parison between ŷui and the real label. As can be seen,

two major tasks are in CFDSL: (1) obtaining a generaliz-

able feature extractor on source-domain base classes, and

(2) effectively finetuning the model given only a few sam-

ples on target-domain novel classes. To handle these two

tasks, we first analyze model’s robustness to domain shifts,

by expanding the concept of loss-landscape flatness from

the parameter space to the representation space.

2.2. RepresentationSpace Loss Landscape

Given a deep network, its Parameter-Space Loss Landscape

(PSLL) [8, 18, 34] refers to drawing a curve to map its pa-
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rameters to classification losses. When the data changes,

the model parameters trained on this data will also change,

leading to a shift in the loss landscape. However, as the data

shift is reflected in the parameters trained on the data, it is

indirect to see how the domain shift influences the model

decision, since the model training is not deterministic. To

handle this problem, we try to directly analyze how the shift

in pixels or representations would influence the model deci-

sion (Representation-Space Loss Landscape, RSLL).

Specifically, denote a data point as x, it can be repre-

sented in the pixel space (e.g., RGB) or the feature space

through a feature extractor, which we uniformly term as the

representation space. Denote its representation as r(x) ∈
Rc×h×w. Since each point in the representation space can

be mapped to a loss value, we can draw a landscape cor-

responding to each representation point and its loss value

(black curve in Fig. 1a). During the base-class stage, the

model is encouraged to learn a good representation that cor-

responds to a low classification loss, which can be under-

stood as a minimum in the landscape (black dot in Fig. 1a).

After training, each representation extracted by the model

from each training sample can be viewed as a minimum.

Then, we fix and transfer this model to another data point

xu with domain shifts against x. To simplify the analysis,

suppose xu is directly generated by only shifting the do-

main information of x (Fig. 1a, the case of different images

will be included later). Ideally, the model should also map

xu to the same representation point as the original data x,

since ideally, the model is robust to domain shift. However,

xu is likely to be mapped to another point (black cross in

Fig. 1a, r(xu)). Since the model is fixed, the loss landscape

is still the original one. Therefore, the mapped point r(xu)
may correspond to a high loss, which means the represen-

tation r(xu) is not effective enough. If the original repre-

sentation r(x) is located in a sharp minimum, the shifted

representation r(xu) will tend to be located in a high-loss

region, demonstrating a badly transferred model. Therefore,

we can flatten the landscape around the minimum in RSLL.

It would make the shifted representation located in the

same low-loss region as the non-shifted representation,

facilitating the model in tolerating larger representation

shifts and making the transferring easier (Fig. 1c).

If we finetune the model on the target domain, the model

will be guided to minimize the loss of the representation,

which will shift both the loss landscape (move the black

curve to the blue curve in Fig. 1a) and the representation

point1 (move the black cross to the blue star in Fig. 1a) to

obtain a new minimum (blue star in Fig. 1a). However, if

the original representation r(x) is located in a sharp min-

imum, there may be high-loss regions between r(x) and

r(xu). This would make it hard to move r(xu) to a low-loss

region, especially for the few-shot scenarios, making the

1If the representation is in the pixel space, this point will not move.

Figure 2. To validate the analysis based on representation-space

loss landscapes (RSLL), we apply low-frequency noises to the rep-

resentation space (i.e., pixels and features) to be the domain shifts

on training data for a sanity check. The perturbation variance mea-

sures the distance between the perturbed representation and the

original representation (a minimum in RSLL). We use the perfor-

mance drop against perturbation variance to measure the sharpness

of the landscapes around the minimum, where a larger drop indi-

cates a sharper minimum. We can see the model based on Instance

Normalization (IN) is located in a flatter minimum than the model

based on Batch Normalization (BN), which brings the high perfor-

mance of the IN-based model in cross-domain tasks. This result

is consistent with current works [10] and validates the rationale of

the RSLL analysis. (a) Samples of the pixel perturbation. (b) Per-

turbation on pixels. (c) Perturbation on features.

few-shot finetuning difficult. Therefore, we can also flatten

the landscape around the minimum in RSLL. It would re-

duce the high-loss region between the source and target

representations, making the finetuning easier (Fig. 1c).

For the case of different images, there are two gaps be-

tween x and xu: (1) the domain shift and (2) the semantic

shift. Ideally, we can construct an intermediate sample xI

to represent xu in the same domain of x but preserve the se-

mantics of xu. If the source domain training set of x is large

enough, the model (e.g., Large Vision Models) trained on it

will also ensure a good representation for xI . Therefore,

this case will come back to the case we analyzed above.

In summary, the benefits of RSLL analysis are in

• It handles domain shifts more directly than PSLL.

• It interprets the difficulty of transferring and finetuning.

• We can easily find many minima in RSLL (shown later).

2.3. Verification and Interpretation

To verify the rationale of the above analysis, we first exper-

iment with the influence of domain shifts in the representa-

tion space for a sanity check. Since the Batch Normaliza-

tion [17] is frequently applied in the widely adopted back-

bone network for CDFSL, and Instance Normalization [26]

has been validated to be beneficial for cross-domain repre-

sentations [10], we compare these the network with these

two networks to validate the rationale of the above analysis.

Due to the difficulty in plotting the loss landscape in the

high dimensional representation space, we perturb the rep-
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Method Not Shifted Digital Blur Extra Noise Weather

BN 62.61 ±0.18 44.98 ±0.16 41.98 ±0.15 37.22 ±0.13 40.08 ±0.14 33.53 ±0.12

IN 68.70 ±0.18 54.92 ±0.18 49.92 ±0.18 44.30 ±0.16 47.56 ±0.16 40.61 ±0.14

Ours 68.89 ±0.18 55.44 ±0.18 50.63 ±0.17 45.74 ±0.16 48.80 ±0.16 42.29 ±0.14

Table 1. To verify our analysis also holds for the real-world

data, we evaluate our model on the test data of domain shifted

miniImageNet by 5-way 1-shot accuracy. Datasets are sampled

from the ImageNet-c dataset with 5 kinds of shifts. This dataset

provides 5 levels of perturbations, so we use the perturbation level

to measure how the representation shifts from the original rep-

resentation. The sharpness is also measured by the performance

drop. We can see IN-based model still shows a flatter minimum in

RSLL, which leads to its high performance in these datasets.

resentation of each data to see the performance drop against

the perturbation variance. This variance measures the dis-

tance between the perturbed representation and the original

representation (a minimum in RSLL). A larger drop indi-

cates a sharper minimum in the landscape.

We first apply pixel perturbation (i.e., representing each

data point by RGB pixels) to the training data. Current

works [9] show that the domain information is always cor-

related with the low-frequency information in the Fourier-

transformed images. Therefore, we randomly sample a

low-frequency perturbation from the Gaussian Distribution,

where the Variance controls the distance between the orig-

inal image and the perturbed image. The perturbation is at

the shape of hp × wp where hp and wp are much smaller

than the image size to ensure the frequency is low. Then,

the perturbation will be resized to the size of each image

and finally applied to them. Examples of such perturba-

tion are shown in Fig. 2a, and the magnitude of the per-

formance drop is shown in Fig. 2b. As can be seen, the

performance of all models drops under the perturbations,

but the IN model drops less than the BN model, indicating

its robustness to the domain shift. This result is consistent

with current works [10], and verifies the IN model makes

training images located in a flatter minimum in RSLL

Then, we apply perturbations to feature maps (i.e., rep-

resent each sample in the feature space). The perturbation

is also the low-frequency Gaussian noise, and the perfor-

mance drop is in Fig. 2c, where we can see similar results

as in Fig. 2b. This result verifies the RSLL analysis also fits

the feature map representation for each input sample.

To verify this analysis applies to real-world domain

shifts, we then construct 5 domain-shifted miniImageNet by

selecting the same classes from ImageNet-c [14]. The do-

main shifts contain blur, digital, extra, noise, and weather

Figure 3. Directly apply SAM on each representation of ResNet10

on CDFSL datasets. Only marginal improvements on the average

CDFSL 5-way 5-shot accuracy can be observed, and the perturba-

tion step size is small, indicating the complex loss landscape could

only support SAM to learn a short-range flatness.

Table 2. Our perturbation step size (flattened range) is much larger

than SAM in the representation output by each layer, no matter

when it is at the beginning (Init.) or the end of the training.

Rep. ID 1 2 3 4 5 6 7 8 9 10 11 12

Init. 5.06 3.45 2.12 3.58 1.99 3.57 3.25 2.33 3.34 4.69 3.80 4.84

End. 2.91 2.44 1.51 2.60 2.09 1.94 3.54 3.05 1.80 5.69 12.46 9.18

perturbations. Examples and results can be found in Tab. 1.

This dataset provides 5 levels of perturbations for each kind

of perturbation, so we utilize this level to represent the dis-

tance between the perturbed representation and the origi-

nal one (a minimum in the RSLL). Similar to Fig. 2, the

sharpness is measured by the performance drop. We can see

the results are consistent with the toy experiments in Fig. 2,

which further validates the rationale of the RSLL analysis.

In summary, by comparing IN and BN models on

domain-shifted datasets, experiments in Fig. 2 and Tab. 1

validate (1) the RSLL analysis is rationale; (2) the domain

perturbation on pixels and features, which we uniformly

name as representation, are consistent. Moreover, it also

interprets why IN models are better, as IN models’ repre-

sentations are in flatter minima compared with BN models.

2.4. ShortRange Flatness Limits Generalization

To improve the model’s robustness to domain shifts, current
works [8] provided an effective method named Sharpness-
Aware Minimization (SAM). It applies adversarial pertur-
bation to the model’s parameters to flatten the PSLL. It in-
spires us to conduct SAM on the RSLL. Take the last layer’s
representation as an example, the training loss is

L = Lcls(h(f(x) + ¸
∇f(x)

||∇f(x)|| ), y), (3)

where η is the step size to control the flattened range, x is

the input sample, y is the label, and ∇f(x) = ∂L
∂f(x) . Re-

sults are reported in Fig. 3, including the step size η and

perturbed layers. However, we can only see marginal im-

provements against the baseline performance (η = 0).

Moreover, we can observe the step sizes are small, but

the IN-based model could tolerate a larger step size with a

higher performance. Combining this result with the results

in Fig. 2 and Tab. 1, we hold that this is because the IN-

based model extracts features in a flatter RSLL minimum.
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Figure 4. We implement our method as a normalization layer

(FLoR layer) to replace the ordinary normalization layer in the

backbone network (e.g., CNNs or ViTs). This layer interpolates

two differently normalized representations, which flattens the in-

termediate high-loss region between two minima in RSLL.

As the perturbation direction is obtained by ∇f(xi) which

only estimates the local shape of RSLL, when the mini-

mum is sharp, it fails to estimate the complex loss landscape

shape outside the local minimum of f(xi). Therefore, the

perturbation direction ∇f(xi) will be less effective when

the step size is large. In contrast, since IN-based represen-

tations are in flatter minima than BN-based ones, it ensures

∇f(xi) is still effective given a larger perturbation step size.

In this scenario, a larger step size would help the model to

flat a longer range of RSLL and improve generalization.

Therefore, to learn a model robust to domain shifts, we

aim to flatten a long-range RSLL around each representa-

tion. Our flattened range is reported in Tab. 2 on the rep-

resentation output by each layer, where the range is much

larger than ordinary SAM methods in Fig. 3.

3. Flatten Long-Range Loss Landscapes

To enlarge the range of flattened area, basically relying on

the local information (such as gradient [8] or curvature [34])

of the optimum may not be enough, because this informa-

tion is only effective inside the sunken area in the landscape.

To handle this problem, we notice a distinguished differ-

ence between the PSLL and RSLL: there are many easy-

to-find minima in RSLL. For example, previous works

proposed many different normalization methods, such as

Batch Normalization or Instance Normalization. These

methods can provide effective representations suitable for

classification, although they may show differences in the

fitness for different tasks. In other words, given the same

training sample, different normalization methods could pro-

vide different minima in the same representation-space loss

landscape. This inspires us to flatten the loss in the area

between these minima (Fig. 1b).
Specifically, we utilize two normalization methods to

normalize each pre-normalized representation, which pro-

duces two effective representations and corresponds to two
minima in RSLL. Then, we propose to flatten the loss land-
scapes between these two minima, by means of classifying
the input sample through the interpolated representations
between two minima. Take the final layer’s representation
f(x) as an example, the classification can be represented as

L = Lcls(h((1− ¶)fnorm1(x) + ¶fnorm2(x)), y), (4)

where fnorm1(x) and fnorm2(x) refer to two normalized

representations, and δ ∈ [0, 1] is a ratio randomly sam-

pled from the Beta distribution. In implementation, we con-

duct the interpolation in every layer’s representation. Since

the classification is based on the interpolated representation,

this representation will be pushed to be effective, so it will

be mapped to a low loss in the RSLL. Thus, the high-loss

region between fnorm1(x) and fnorm2(x) will be flattened.

As this method is agnostic to the shape of the complex

loss landscape between minima, we do not need to consider

any local information around minima. We measure the dis-

tance between the BN and IN representations in Tab. 2,

where the distance of each representation is much larger

than step sizes in Fig. 3, indicating a larger flattened region.

Below, we provide two instantiations of the above idea

for both Convolutional Neural Networks (CNN) [12] and

Vision Transformers (ViT) [7] respectively.

3.1. Flattening for Convolutional Neural Networks

In CNNs, Batch Normalization is one of the most widely
used normalization methods, which is typically applied af-
ter the convolution layer. BN refers to normalizing repre-
sentations with batch statistics, which can be represented as

fBN (X) = µ
X − µ√
Ã2 + ϵ

+ ´, (5)

µ =
1

bhw

∑

i,j,k

Xi,:,j,k, Ã
2 =

1

bhw

∑

i,j,k

(Xi,:,j,k − µ)2,

where X ∈ Rb×c×h×w is the batch representation.
Instance normalization (IN) is another widely used nor-

malization method for CNNs, which refers to normalizing
representations with only the given image statistics as

fIN (X) = µ
X − µ√
Ã2 + ϵ

+ ´, (6)

µ =
1

hw

∑

j,k

X:,:,j,k, Ã
2 =

1

hw

∑

j,k

(X:,:,j,k − µ)2.

For CNN, we set fnorm1 to fBN , and set fnorm2 to fIN .

3.2. Flattening for Vision Transformers

In ViTs, Layer Normalization is widely applied as the nor-
malization method, which is represented as

fLN (X) = µ
X − µ√
Ã2 + ϵ

+ ´, (7)

µ =
1

c

∑

k

X:,:,k, Ã
2 =

1

c

∑

:,:,k

(X:,:,k − µ)2,
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Table 3. Dataset information. Please see the appendix for details.

Dataset Domain Classes Images

miniImageNet General recognition 64 38,400

CUB Fine-grained bird recognition 50 2,953

Cars Fine-grained car recognition 49 2,027

Plantae Plantae recognition 50 17,253

Places Scene recognition 19 3,800

CropDiseases Agricultural disease recognition 38 43,456

EuroSAT Satellite imagery recognition 10 27,000

ISIC2018 Skin lesion recognition 7 10,015

ChestX X-ray chest recognition 7 25,847

where X ∈ Rb×t×c is the batch representation.

Then, we follow [3] to only process the CLS token.

We use BN as the second normalization method. In other

words, we set fnorm1 to fLN , and set fnorm2 to fBN for

the CLS token in each layer.

3.3. Implementation

In implementation, as shown in Fig. 4, we implement the
above design as a normalization layer (FLoR layer) to re-
place the ordinary normalization layer in the backbone net-
work. This layer can be represented as

fFLL(x) = (1− ¶)fnorm1(x) + ¶fnorm2(x), (8)

which is the same as Eq. 4. Since δ is a random number

sampled from the Beta distribution Beta(a, b), our model

imports only two hyper-parameters (a, b) and learnable pa-

rameters only in the added normalization layer, which is

simple and lightweight.

During the base-class training, δ is randomly sampled

from the Beta(a, b). During the novel-class finetuning (if

needed), δ is set to a learnable parameter that is finetuned to-

gether with the whole network, where its value is initialized

as the expectation value of Beta(a, b). Finally, we evalu-

ate the model by either the prototype-based classifier or the

finetune-based classifier, as illustrated in Eq. 2.

4. Experiments
4.1. Dataset and evaluation setup

Following current works [2, 11], our model is firstly

trained on the miniImageNet dataset [28] (base classes,

source domain) and then transferred to 8 cross-domain

dataset (novel classes, target domain, including CUB [29],

Cars [19], Plantae [15], Places [35], CropDiseases [22], Eu-

roSAT [13], ISIC2018 [5] and ChestX [31]) for few-shot

training and evaluation, using the k-way n-shot classifica-

tion. Dataset information is listed in Tab. 3.

4.2. Implementation details

During the base-class training, our model is trained with

the AdamW optimizer [21] for 400 epochs with a learn-

ing rate of 0.001. For a fair comparison, we follow cur-

rent works [10] to utilize ResNet10 [12] and Vit-S [7] (with

DINO [33] pretraining on ImageNet1K [6]) as the backbone

network. We set the Beta distribution as a = b = 0.01 for

all experiments. During the novel-class finetuning, we use

Figure 5. To verify the loss landscape between BN and IN repre-

sentations, we train a baseline model with separate streams of IN

and BN, by means of specifying different mixing ratios ¶. Two

peaks and one valley can be observed in the baseline curve (gray),

indicating the high-loss region between the two representations. In

contrast, only one peak is observed in our curve (purple), indicat-

ing we can effectively flatten the loss landscapes.

the SGD optimizer with a momentum of 0.9 to finetune all

parameters. Please see the appendix for details.

4.3. Comparison with stateoftheart works

Comparisons utilizing ResNet10 are listed in Tab. 4 and 5.

For fairness, we group work by whether finetuning (FT) or

the transductive (TR) setting is used. For all groups, we fol-

low MN to use the cosine similarity, and subtract the mean

of the support (query) set for inductive (transductive) cal-

ibration. For the transductive setting, we pseudo-label the

query set by the prototype-based classifier or the finetune-

based classifier, and use the pseudo-labeled query set to fur-

ther update the classifier until convergence. As shown in

Tab. 4 and 5, we achieve the top average performance in all

settings, and achieve the highest performance in almost all

datasets. Notably, on ISIC2018, we can significantly out-

perform state-of-the-art works by as much as 9% in the 5-

shot setting. Comparisons with works using ViT-S are in

Tab. 6, and we also achieve state-of-the-art performance.

4.4. Ablation study

4.4.1 Verification of local loss landscapes

To verify the loss landscape between two normalized rep-

resentations, intermediate points are needed to be sampled

between these two representations. We first train a network

with a shared convolution layer and two separate normal-

izations in each convolution-normalization block. During

training, each branch’s final output will be classified sepa-

rately. During the evaluation, we manually mix two repre-

sentations in each layer of this model by specifying different

δ in Eq. 8. Since the loss value is not consistent for compari-

son between different models, we measure the 5-way 5-shot

accuracy of the plain prototype-based classification results

on different domains, which is plotted in Fig. 5 as the gray

curves. We can see that almost all datasets show two peaks

and one valley in accuracy, verifying the existence of the

high-loss region between the two representations.
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Table 4. Comparison with state-of-the-art works based on ResNet10 by 5-way 1-shot accuracy.

Method FT TR Mark CUB Cars Places Plantae ChestX ISIC2018 EuroSAT CropDiseases Average

GNN+FT [25] × × ICLR-20 45.50 32.25 53.44 32.56 22.00 30.22 55.53 60.74 51.53

GNN+ATA [30] × × IJCAI-21 45.00 33.61 53.57 34.42 22.10 33.21 61.35 67.47 43.84

MN+AFA [16] × × ECCV-22 41.02 33.52 54.66 37.60 22.11 32.32 61.28 60.71 42.90

GNN+AFA [16] × × ECCV-22 46.86 34.25 54.04 36.76 22.92 33.21 63.12 67.61 44.85

LDP-net [36] × × CVPR-23 49.82 35.51 53.82 39.84 23.01 33.97 65.11 69.64 46.34

FLoR × × Ours 49.99 37.41 53.18 40.10 23.11 38.11 62.90 73.64 47.31

Fine-tuning [11] ✓ × ECCV-20 43.53 35.12 50.57 38.77 22.13 34.60 66.17 73.43 45.54

FLoR ✓ × Ours 50.01 38.13 53.61 40.20 23.12 38.81 69.13 84.04 49.63

TPN+ATA [30] × ✓ IJCAI-21 50.26 34.18 57.03 39.83 21.67 34.70 65.94 77.82 47.68

TPN+AFA [16] × ✓ ECCV-22 50.85 38.43 60.29 40.27 21.69 34.25 66.17 72.44 48.05

FLoR × ✓ Ours 55.35 38.86 60.94 41.61 22.92 39.78 70.96 85.95 52.04

TPN+ATA [30] ✓ ✓ IJCAI-21 51.89 38.07 57.26 40.75 22.45 35.55 70.84 82.47 49.91

RDC [20] ✓ ✓ CVPR-22 50.09 39.94 61.17 41.30 22.32 36.28 70.51 85.79 50.81

LDP-net [36] ✓ ✓ CVPR-23 55.94 37.44 62.21 41.04 22.21 33.44 73.25 81.24 50.85

FLoR ✓ ✓ Ours 55.94 40.01 61.27 41.70 23.12 41.67 71.38 86.30 52.67

Table 5. Comparison with state-of-the-art works based on ResNet10 by 5-way 5-shot accuracy.

Method FT TR Mark CUB Cars Places Plantae ChestX ISIC2018 EuroSAT CropDiseases Average

GNN+FT [25] × × ICLR-20 64.97 46.19 70.70 49.66 24.28 40.87 78.02 87.07 57.72

GNN+ATA [30] × × IJCAI-21 66.22 49.14 75.48 52.69 24.32 44.91 83.75 90.59 60.89

MN+AFA [16] × × ECCV-22 59.46 46.13 68.87 52.43 23.18 39.88 69.63 80.07 54.96

GNN+AFA [16] × × ECCV-22 68.25 49.28 76.21 54.26 25.02 46.01 85.58 88.06 61.58

LDP-net [36] × × CVPR-23 70.39 52.84 72.90 58.49 26.67 48.06 82.01 89.40 62.60

FLoR × × Ours 70.39 53.43 72.31 55.80 26.70 51.44 80.87 91.25 62.77

Fine-tuning [11] ✓ × ECCV-20 63.76 51.21 70.68 56.45 25.37 49.51 81.59 89.84 61.05

FLoR ✓ × Ours 73.39 57.21 72.37 61.11 26.77 56.74 83.06 92.33 65.37

TPN+ATA [30] × ✓ IJCAI-21 65.31 46.95 72.12 55.08 23.60 45.83 79.47 88.15 59.56

TPN+AFA [16] × ✓ ECCV-22 65.86 47.89 72.81 55.67 23.47 46.29 80.12 85.69 59.73

FLoR × ✓ Ours 70.83 53.55 73.88 56.28 26.27 52.16 82.04 92.32 63.42

TPN+ATA [30] ✓ ✓ IJCAI-21 70.14 55.23 73.87 59.02 24.74 49.83 85.47 93.56 63.98

RDC [20] ✓ ✓ CVPR-22 67.23 53.49 74.91 57.47 25.07 49.91 84.29 93.30 63.21

LDP-net [36] ✓ ✓ CVPR-23 73.34 53.06 75.47 59.64 26.88 48.44 84.05 91.89 64.10

FLoR ✓ ✓ Ours 74.06 57.98 74.25 61.70 26.89 57.54 83.76 93.60 66.22

Similarly, we also manually specify different δ to form

a mixed representation for our model, and measure the cor-

responding accuracy (purple curve in Fig. 5). We can see

(1) our model achieves higher performance, especially on

cross-domain datasets, (2) there is only one peak in the

curve and (3) the high-accuracy (low-loss) region is much

larger than that of the baseline model, verifying the flatness.

4.4.2 Verification of each design

We ablate each design in Tab. 7 with the prototype classifier

for fairness (i.e., fixing the backbone network, using Eu-

clidean distance without domain calibration). We can see:

(1) SAM on RSLL is better than PSLL. We imple-

ment the sharpness-aware minimization (SAM [8]) on both

the RSLL and PSLL, and see the performance on RSLL is

higher, because RSLL handles domain shifts directly.

(2) IN can partly account for our improvements. By

simply replacing BN with IN, the performance increases,

since IN leads to a flatter minimum in the representation-

space loss landscapes (verified in Fig. 2 and 1). But this is

still much lower than ours.

(3) Our perturbation direction is effective. Since the

flattening can be viewed to perturb representations, we com-

pare it with some perturbation methods. We first follow

Fig. 2 to add low-frequency noise for domain shifting on the

input image (IN + Inp. PTB) and representations (IN + Rep.

PTB). The result is higher than that of IN but lower than

ours, verifying the effectiveness of low-frequency noise and

experiments in Fig. 2. An alternative is to perturb in the gra-

dient direction (adversarial attack [1]), therefore we tried

this option as IN + Inp Adv, whose performance is similar,

due to the attacked semantics in samples

(4) Learnable mixing ratio is not effective enough.

Some works also combine the output of BN and IN outputs,

generating a learnable mixing ratio. Meta BIN [4] is chosen

as a representative but its performance is also limited. This

is because the learnable ratio simplifies the representation

learning, while FLoR increases the difficulty as it addition-

ally constrains the high-loss region between two minima.

(5) Random ratio is better. We test with two setups:

Fix. BN + IN means to manually specify a pre-defined δ

for both the base-class training and novel-class evaluation,

and Sep. BN + IN refers to the model in Fig. 5. We can see

such simple designs can lead to better results than Meta BIN

which utilizes a learnable weight. However, since it can

only cover one intermediate point while ours can randomly

cover all points, our performance is better.

4.4.3 Verification of easier finetuning

We report the finetuning performance in Fig. 6. Typical

finetuning methods [11, 37] refer to finetuning the backbone

with a small learning rate and fixing shallow layers due to
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Table 6. Comparison with state-of-the-art works with VIT-S pretrained by DINO on ImageNet-1K.

Method Shot FT Mark CUB Cars Places Plantae ChestX ISIC2018 EuroSAT CropDiseases Average

StyleAdv [10] 1 × CVPR-23 84.01 40.48 72.64 55.52 22.92 33.05 72.15 81.22 57.75

FLoR 1 × Ours 84.60 40.71 73.85 51.93 22.78 34.20 72.39 81.81 57.78

PMF [23] 1 ✓ CVPR-22 78.13 37.24 71.11 53.60 21.73 30.36 70.74 80.79 55.46

StyleAdv [10] 1 ✓ CVPR-23 84.01 40.48 72.64 55.52 22.92 33.99 74.93 84.11 58.57

FLoR 1 ✓ Ours 85.40 43.42 74.69 52.29 23.26 35.49 73.09 83.55 58.90

StyleAdv [10] 5 × CVPR-23 95.82 61.73 88.33 75.55 26.97 47.73 88.57 94.85 72.44

FLoR 5 × Ours 96.18 61.75 89.23 72.80 26.71 49.52 90.41 95.28 72.74

PMF [23] 5 ✓ CVPR-22 - - - - 27.27 50.12 85.98 92.96 -

StyleAdv [10] 5 ✓ CVPR-23 95.82 66.02 88.33 78.01 26.97 51.23 90.12 95.99 74.06

FLoR 5 ✓ Ours 96.53 68.44 89.48 76.22 27.02 53.06 90.75 96.47 74.75

Table 7. Ablation study of RSLL, Mixup, IN, perturbations and ¶

by 5-way 5-shot accuracy with plain prototype classifier.

Method CropDisease EuroSAT ISIC2018 ChestX Ave.

BN (Baseline) 85.80 ±0.27 78.01 ±0.22 39.10 ±0.33 26.13 ±0.17 57.26 ±0.13

PSLL SAM 86.60 ±0.44 76.83 ±0.50 40.42 ±0.42 26.03 ±0.34 57.47 ±0.38

RSLL SAM 86.19 ±0.32 78.03 ±0.33 41.26 ±0.31 26.26 ±0.17 57.95 ±0.17

Mixup 86.78 ±0.33 78.49 ±0.31 42.89 ±0.35 25.68 ±0.19 58.46 ±0.15

Manifold Mixup 87.04 ±0.34 78.90 ±0.33 42.16 ±0.30 26.01 ±0.16 58.53 ±0.15

IN 86.67 ±0.20 76.17 ±0.24 47.25 ±0.21 24.79 ±0.15 58.72 ±0.10

IN + Inp. PTB. 86.51 ±0.22 77.91 ±0.24 46.50 ±0.20 24.75 ±0.14 58.92 ±0.11

IN + Inp. Adv. 88.04 ±0.21 79.04 ±0.24 44.76 ±0.21 25.92 ±0.15 59.23 ±0.12

IN + Rep. PTB. 87.76 ±0.21 77.70 ±0.25 47.92 ±0.23 25.25 ±0.18 59.66 ±0.10

Meta BIN 86.66 ±0.19 78.52 ±0.28 46.06 ±0.31 25.28 ±0.16 59.13 ±0.12

Fix. BN + IN 86.66 ±0.21 77.79 ±0.27 48.67 ±0.29 25.26 ±0.17 59.59 ±0.13

Sep. BN + IN 88.51 ±0.20 79.38 ±0.19 44.85 ±0.21 26.25 ±0.18 59.66 ±0.14

Ours 89.35 ±0.17 79.40 ±0.27 50.75 ±0.30 26.57 ±0.16 61.52 ±0.12

the overfitting caused by scarce training data. We first test

this claim by finetuning the BN baseline model (gray curve

in Fig. 6). We can see this claim holds for this BN model.

The best performance is achieved by fixing the first 3 stages

and setting the learning rate to 0.1 times of the classifier,

making the finetuning sensitive to hyper-parameter choices.

In contrast, the IN model shows more layers can be fine-

tuned with a larger learning rate. For ours, we can directly

apply all layers into the finetuning, with a large learning

rate at 8 times that in the classifier. This means our model

is easier to finetune under the few-shot scenarios and is not

sensitive to the hyper-parameter choices, which is the con-

sequence of the flat minimum as validated in Fig. 2 and 5.

5. Related Work

5.1. Cross domain fewshot learning (CDFSL)

CDFSL aims to effectively learn from target domains with

only a few training samples [2, 11]. Compared with the

ordinary few-shot learning task, CDFSL needs to han-

dle a larger domain gap, which makes it more difficult

to transfer and finetune. Current works can be grouped

into transferring-based [16, 30, 36] and finetuning-based

works [11, 20]. Compared with them, our method focuses

on source-domain training, but we can benefit the knowl-

edge transfer and target-domain finetuning at the same time.

Some works [25, 36] show that the BN module is vul-

nerable to domain shifts. We also follow this conclusion,

but we are the first to study the loss landscape around BN

representations. Mixup [27, 32] is another line of learning

Figure 6. To verify the easy finetuning, we evaluate the finetuning

with different layers and learning rates. FC: fully-connected layer,

S: ResNet Stage, No: Prototype classifier without finetuning. Our

model can directly finetune all layers with a large learning rate,

indicating the easiness of few-shot finetuning.

transferable models. Compared with them, our method only

shares a similar formulation in interpolation but differs in

(1) we do not need multiple samples for mixing, (2) we aim

to flatten the loss landscape between two normalized repre-

sentations, and (3) our results are much higher (Tab. 7).

5.2. Generalization based on loss landscapes

Current works show the relationship between loss land-

scapes and the generalization [8], where a widely adopted

conclusion is that a flat minimum in loss landscapes refers

to a more generalizable model. Most of these works an-

alyze the loss landscapes from the parameter space [18]

to handle the problem such as domain generalization [34]

and catastrophic forgetting [24]. Compared with them, we

are the first to introduce the analysis from the aspect of

representation-space loss landscape into the CDFSL task.

6. Conclusion

We analyze model generalization from representation-space

loss landscapes for CDFSL, and propose to flatten the

long-range loss landscapes by randomly interpolating the

differently normalized representations. Experiments on 8

datasets validate the effectiveness and rationale.
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