
Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic
Treatment based on Multi-Scale Aggregation and Anthropic Prior Knowledge

Bo Zou *
Tsinghua University

Beijing, China
zoub21@mails.tsinghua.edu.cn

Shaofeng Wang *
Capital Medical Universty

Beijing, China
2939108747@ccmu.edu.cn

Hao Liu
Tsinghua University

Beijing, China
liuh22@mails.tsinghua.edu.cn

Gaoyue Sun
Imperial College London

London, England
gaoyue.sun22@imperial.ac.uk

Yajie Wang
Tsinghua University, LargeV .Inc

Beijing, China
yj-wang18@mails.tsinghua.edu.cn

FeiFei Zuo
LargeV .Inc

Beijing, China
zuofeifei@largev.com

Chengbin Quan
Tsinghua University

Beijing, China
quancb@tsinghua.edu.cn

Youjian Zhao †
Tsinghua University, Zhongguancun Laboratory

Beijing, China
zhaoyoujian@tsinghua.edu.cn

Abstract

Teeth localization, segmentation, and labeling in 2D im-
ages have great potential in modern dentistry to enhance
dental diagnostics, treatment planning, and population-
based studies on oral health. However, general instance
segmentation frameworks are incompetent due to 1) the sub-
tle differences between some teeth’ shapes (e.g., maxillary
first premolar and second premolar), 2) the teeth’s position
and shape variation across subjects, and 3) the presence of
abnormalities in the dentition (e.g., caries and edentulism).
To address these problems, we propose a ViT-based frame-
work named TeethSEG, which consists of stacked Multi-
Scale Aggregation (MSA) blocks and an Anthropic Prior
Knowledge (APK) layer. Specifically, to compose the two
modules, we design a unique permutation-based upscaler
to ensure high efficiency while establishing clear segmen-
tation boundaries with multi-head self/cross-gating layers
to emphasize particular semantics meanwhile maintaining
the divergence between token embeddings. Besides, we col-
lect the first open-sourced intraoral image dataset IO150K,
which comprises over 150k intraoral photos, and all photos
are annotated by orthodontists using a human-machine hy-
brid algorithm. Experiments on IO150K demonstrate that
our TeethSEG outperforms the state-of-the-art segmenta-
tion models on dental image segmentation.

∗ Equal contribution, † Corresponding author
Our code and dataset will be available at https://zoubo9034.

github.io/TeethSEG/

1. Introduction

Malocclusion, caries, and periodontal disease are the three
most common oral cavity diseases, especially the global in-
cidence of malocclusion is a staggering 82.2% [8]. Maloc-
clusion is the misalignment between teeth, jaws, and cranio-
facial bones caused by genetic or environmental factors dur-
ing a child’s growth. According to the World Dental Fed-
eration (FDI), approximately 3.5 billion people worldwide
suffer from malocclusion [14], which affects oral health, in-
creasing the risk of caries, periodontal disease, and maxillo-
facial trauma, also affecting chewing, swallowing, breath-
ing, and pronunciation. Orthodontic treatment is the pri-
mary means to cure malocclusion. It utilizes an orthodontic
appliance to exert force on teeth in specific directions so
that teeth can gradually move and finally achieve the goal
of aligning the teeth, reaching the optimal occlusal function,
and improving the appearance of the maxillofacial area.

The use of digital technology in oral orthodontics [15,
18, 24–28, 46] has become a popular trend. One of the
most widely used applications is integrating artificial intel-
ligence technology to segment oral models and recognize
tooth positions automatically. This integration significantly
improves the efficiency of treatment plan design and re-
duces labor costs. Currently, all publicly available intraoral
scan data (e.g., [6, 11]) and most teeth segmentation tech-
niques [2, 12, 13, 29, 39] are in 3D space. Although 3D
data provides more accurate maxillofacial structure record-
ings of patients, collecting 3D data is expensive as it re-
quires costly equipment and trained professionals. Further-
more, processing 3D data is challenging and requires high
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computing resources, making it unsuitable for large-scale
epidemiological screenings and self-inspections. In con-
trast, obtaining 2D data is relatively simple—a DSLR cam-
era combined with a reflector can obtain standard intraoral
dental images. With the improvement in the resolution of
mobile phone cameras, individuals can also take their own
clear intraoral photos. Dental practitioners can use 2D den-
tal images to document various aspects of a patient’s oral
health, such as the alignment, count, color, and general con-
dition of their teeth. By utilizing advanced 2D segmenta-
tion algorithms, these images can be analyzed to evaluate
tooth crowding, occlusion status, anterior overbite/overjet,
and midline alignment of the dental arch.

In recent years, transformer-based models [3–5, 7, 10,
19, 30, 32, 38, 45, 47], have achieved remarkable success
in computer vision, quickly dominating various tasks such
as image classification, object detection, and semantic seg-
mentation, surpassing traditional CNN models since they
can better capture long-range dependencies and unify the
modeling of different modalities. However, the teeth seg-
mentation task is distinct from universal semantic segmen-
tations, challenging the state-of-the-art transformer models.
Firstly, unlike the apparent differences among object classes
in common segmentation tasks, some teeth have similar ap-
pearances, such as maxillary first and second premolar. Ac-
curate distinguishing between them requires a complete in-
traoral assessment. Secondly, due to the varying ages of pa-
tients, their teeth are at different stages of development and
growth, resulting in different shapes and positions across
subjects. Thirdly, caries and tooth loss, common in clinical
orthodontic treatment, cause abnormalities in the dentition,
which requires models to have strong generalization ability.
Finally, to the best of our knowledge, there is no profes-
sional annotated 2D teeth segmentation dataset available to
support training high-performance models.

To address the current situation, we create the first open-
source 2D intraoral scan dataset IO150k, which consists
of (1) Challenge80K, 80K rendered images generated from
1,800 3D scans sourced from 3D Teeth Scan Segmentation
and Labeling Challenge 2023 [6], (2) Plaster70K, 70K im-
ages of 940 oral plaster models made before, during, and
after taking the orthodontic treatment, and (3) RGB0.8K,
0.8K RGB standard intraoral photos taken before orthodon-
tic treatment. This dataset has the following key properties:
(1) Large: We have collected over 150K images (former
dental datasets, e.g., [1, 21, 31, 37], have sizes around 0.1K
to 3K ) that enable well-trained transformers that are usu-
ally more data-hungry than CNN models. (2) Diverse: We
cover a wide range of dental malformations (e.g., crowded
dentition and edentulism) to ensure the ability to generalize
to clinical applications. (3) Professional: The data is anno-
tated by multiple professional orthodontists using a human-
machine hybrid algorithm, ensuring accurate tooth position

recognition in complex instances. Please see Appendix A
for dataset statistics.

Besides, we propose a novel transformer-based architec-
ture designed against high-performance teeth segmentation
named TeethSEG, which has two key components. The
first one is Multi-Scale Aggregation Blocks (MSA) that ef-
fectively aggregate the visual semantics into trainable class
embeddings of each tooth at different scales. The second
one is the Anthropic Prior Knowledge Layer (APK), which
imitates the principle of orthodontists to identify teeth, mak-
ing the segmentation framework more interpretable and per-
form better, especially when tooth loss happens. Both
modules are based on our specially designed multi-head
self/cross-gating layers to emphasize valuable components
in class embeddings while maintaining the divergence be-
tween them. In addition, most dense prediction frameworks
[7, 10, 22, 30, 45] use transposed convolution to generate
final segmentation maps. Some previous works, like [32],
explore transformer-based decoders. However, they have
trouble generating clear edges because the embedding se-
quences’ length is much smaller than the final map size,
resulting in mesh-like errors at the segmentation edges. In
this paper, we explore replacing upsampling by compress-
ing the intermediate feature dimensions to increase the se-
quence length, thereby enabling the encoder to learn to store
rich local information in different parts of the patch embed-
dings. Our contributions are summarized as follows:
• We create IO150k, the largest open-source dataset that

supports 2D dental segmentation. It covers a wide range
of dental malformations and has professional annotations.

• We propose TeethSEG with Multi-Scale Aggregation
(MSA) blocks and the Anthropic Prior Knowledge (APK)
layer, and the multi-head cross-gating mechanism and the
permutation-based upscaler to form MSA and APK.

• Our experiments demonstrate that TeethSEG outperforms
the state-of-the-art general-purpose segmentation models
on dental image segmentation.

2. Related Work
Deep learning in Tooth Understanding. Deep learning
methods are increasingly used for 3D tooth segmentation.
[16, 20, 23, 35, 40, 41, 44]. Mask MCNet [40] combines the
Monte Carlo Convolutional Network (MCCNet) with Mask
R-CNN to locate each tooth object and segment all the tooth
points inside the box. Graph convolutional network-based
frameworks (GCN) [33, 34, 42] improve discriminative ge-
ometric feature learning for 3D dental model segmenta-
tion. TSegNet [13] breaks down dental model segmentation
into robust tooth centroid prediction and accurate individ-
ual tooth segmentation. DArch [29] proposes to estimate
the dental arch and leverage the estimated dental arch to
assist the proposal generation of tooth centroids. In sum-
mary, the previous method focuses on 3D teeth segmen-
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Figure 1. The overview of TeethSEG. We utilize a pretrained encoder to project an intraoral image into a sequence of visual tokens, and
a set of trainable class tokens to predict segmentation masks. The multi-scale aggregation (MSA) blocks efficiently aggregate the visual
information into class tokens, and the anthropic prior knowledge (APK) layer imposes human judgment into the mask prediction.

tation. We study instance segmentation for 2D intra-oral
images, which lowers the data collection and annotation re-
quirement and better supports large-scale epidemiological
screenings and self-inspections.
Transformers in Dense Prediction. In recent years, trans-
formers have dominated various tasks. SETR [45] is the
first work to adopt ViT as the backbone and develop sev-
eral CNN decoders for semantic segmentation. Segmenter
[32] also extends ViT to semantic segmentation but differs
in that it equips a transformer-based decoder. DPT [30]
further applies ViT to the monocular depth estimation task
via a CNN decoder and yields remarkable improvements.
Swin-transformer [22] proposes a shifted-window approach
in computing self-attention. BeiT [5] applies masked image
modeling as the pretraining tasks to strengthen the encoder.
ViT-adapter [10] designs adapter blocks to inject inductive
bias for ViTs to enhance performances in dense prediction.
These works have achieved remarkable results on general
segmentation datasets. However, the teeth segmentation
task is distinct from universal semantic segmentations, chal-
lenging the state-of-the-art transformer models.

3. Methodology

The primary goal of TeethSEG is to better identify the cate-
gories of each individual tooth rather than just distinguish-
ing between tooth areas and background (gingiva) areas.
Meanwhile, we make efforts to capture clear segmentation
edges with a pure transformer architecture. We choose the
multi-model pretrained CLIP encoder as our backbone as its
effectiveness has been demonstrated in many downstream
tasks. Additionally, its ability to align images with text
makes it a strong foundation for expanding TeethSEG into a

multi-modal diagnostic model in the future. In Sec 3.1, we
first introduce how to generate segmentation masks based
on the pretrained encoder. Then, in Sec 3.2 and Sec 3.3, we
introduce the multi-head cross/self-gating mechanism and
the permutation-based upscalers (including a naive upscaler
and a linear upscaler) that make up our Multi-Scale Aggre-
gation Blocks (MSA) and the Anthropic Prior Knowledge
Layer (APK). Finally, in Sec 3.4 and Sec 3.5, we present
the details of MSA and APK that are specifically designed
for teeth segmentation.

3.1. Overall architecture
An image X ∈ RH×W×C is encoded into a sequence of
visual tokens x = [x1, . . . , xN ] ∈ RN×D by a pretrained
encoder, where N = hw = HW/P 2 is the number of vi-
sual tokens, (P, P ) is the patch size, and D is the dimen-
sion of embeddings. Visual tokens x carry rich visual in-
formation in the image. We introduce a set of 18 trainable
class embeddings to gather the features of the foreground
(teeth region), background (gingiva), and each individual
tooth. They are divided into foreground/background tokens
CLSfb ∈ R2×D and tooth ID tokens CLSth ∈ R16×D.
Before the following computations, as shown in Fig 1, we
first add the embedding of the foreground to each tooth ID
token in CLSth since all tooth areas should be included in
the foreground. After that, We use a M -layer transformer
with masked attention to fuse visual tokens and learnable
tokens. As shown at the bottom of Fig 1, we apply the
attention mask within learnable tokens and only allow vi-
sual tokens x to update each token in CLSfb and CLSth

at this stage because we want to maximize the dissimilar-
ity within tooth ID tokens CLSth. In this way, we can
mitigate the difficulties in distinguishing similar tooth cat-
egories. To better merge multi-scale visual semantics into
learnable tokens, we utilize MSA blocks in Sec 3.4, which
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takes shallow fused x, CLSfb, and CLSth as input to per-
form deeper feature interaction under different receptive
fields. Then, we up-sample the intermediate visual tokens
x′ to x′ ∈ R(H×W )×D that match the size of the input im-
age X by the permutation-based upscaler in Sec 3.3. Fi-
nally, we enable the interactions within learnable tokens un-
der the instruction of human prior knowledge by the APK
layer in Sec 3.5. The class masks of each tooth are gen-
erated by computing the softmax of the scalar product be-
tween x′ and tooth ID tokens CLSth as follows:

scoreth = softmax

(
x′CLST

th√
D

)
, (1)

where scoreth ∈ R(H×W )×16 is the pixel-wise class score.
The

√
D in the denominator prevents numerical overflow

and stabilizes the training. Similarly, the class masks of the
foreground and the background are formulated as follows:

scorefb = softmax

(
x′CLST

fb√
D

)
. (2)

Our model is trained end-to-end with a per-pixel cross-
entropy loss consisting of two parts:

Lth = − 1

HW

HW∑
i=1

yi log(score
th
i ), (3)

Lfb = − 1

HW

HW∑
i=1

yi log(score
fb
i ), (4)

where yi is the label of the i-th pixel.

3.2. Multi-Head Cross/Self-Gating Mechanism

We introduce a reusable unit termed cross(self)-gating
mechanism for MSA and APK, which takes two arbitrary
sub-sequences V ∈ RK×D and T ∈ RL×D as input and
performs more efficient feature interactions than commonly
used cross-attention after the earlier fusions in the trans-
former, by exciting or depressing the components of T ac-
cording to their similarities with V . For a better understand-
ing of the cross-gating Mechanism, we illustrate it and the
cross-attention in Fig 2.

There are two key operations of our cross-gating. (1)
When K, the length of V , is larger than 1, we sum the sim-
ilarity matrix S ∈ RL×K over K to form a vector I ∈ RL

of importance for token embeddings in T . K functions like
the number of multi-heads in the attention mechanism, and
every token embedding in V will partially dictate the impor-
tance of each token embedding in T . (2) We expand the im-
portance vector I (repeat D times) to match the shape of T .
Then, we apply the element-wise product rather than the dot
product on the importance matrix and the linear-projected T
(Keys).The whole process is formulated as follows:

Keys = Wk (V ) , Querys = Wq (T ) , V alues = Wv (T ) (5)

I = repeat

(
sum

(
Querys ·Keys

∥Querys∥ × ∥Keys∥

))
, (6)

Figure 2. Illustrations of Cross-Attention and our Cross-Gating
mechanisms

Output = I ⊙ V alues, (7)

where ⊙ denotes element-wise production. In practice, we
perform a standard multi-head attention setting [36] on Wk,
Wq, Wv, and concatenate outputs of each head.

The most significant characteristic of cross-gating is it
can better maintain local diversity within T . In Fig 2 (a),
cross-attention’s output displays rows in mixed colors, rep-
resenting the weighted sum of token embeddings. Conse-
quently, it demonstrates a more global attribute. By con-
trast, we maintain the uniqueness of colors for cross-gating
in Fig 2 (b) because each token embedding is only multi-
plied by their importance, which is a scalar. This feature is
crucial for TeethSEG because the divergence in tooth ID to-
kens allows us to better distinguish between tooth categories
with high similarity. Besides, the interactions brought by
commonly used cross-attention (updating embeddings by
the weighted sum) can be covered in the previous M -layers
transformer when it is applied in MSA and APK since T
and V are coming from the same output sequence.

3.3. Permutation-based Upscaler

We upscale the intermediate visual token sequence x′ ∈
R(h×w)×D to x′ ∈ R(2h×2w)×(D/4) by equally dividing ev-
ery token embedding with the dimension of RD in x′ into
a sequence with the shape of R4×(D/4) and permute them.
We name this process as naive upscaler (on the top of Fig
1) since it simply increases the spatial dimensions by com-
pressing the dimension of feature embedding.
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However, this naive upscaler performs significantly bet-
ter than the bilinear interpolation. Applying bilinear inter-
polation on x′ as done in previous techniques [32] does not
generate clear segmentation edges. This is because the local
information of the interpolated feature map is highly simi-
lar, which causes mesh-like errors at the segmentation edge.
Besides, the naive upscaler can impose the image encoder
to maintain rich local information in its visual tokens.

3.4. Multi-Scale Aggregation Block

The NMSA stacked multi-scale aggregation blocks (MSA)
are designed to take in shallow fused x, CLSfb, and CLSth

and perform deeper feature interaction under different re-
ceptive fields. As shown on the top of Fig 1, each MSA
block first uses a cross-gating layer to enhance important
semantics in CLSth and CLSfb according to the interme-
diate visual tokens x′ ∈ R(h′×w′×D), where h′ = 2k × h,
w′ = 2k × w, and k ∈ [0, NMSA]. (In Fig 2, V stands for
visual tokens x′, T stands for CLSfb and CLSth). Then, it
upsamples x′ by what we call linear upscaler (on the left
of Fig 1), a combination of a linear projection layer WU and
our naive upscaler, where WU ∈ R(D/4×D) is used to main-
tain the embedding dimension D. By stacking NMAS MSA
blocks, we can refine the class token embeddings according
to multi-scale visual semantics. Additionally, we apply skip
connections between each MSA block. The skip connection
utilizes the bilinear interpolation to upsample x.

3.5. Anthropic Prior Knowledge Layer

We propose a scalable modular APK to introduce human
prior knowledge into the segmentation process. In this pa-
per, we summarize three prior rules based on the annotation
experience of orthodontists in complex situations such as
tooth loss or abnormal tooth counts in the dental arch. The
first rule states that the region requiring tooth ID labeling
should not be in the background area, such as the gingiva.
The second rule emphasizes the importance of considering
the morphological structure of the adjacent teeth on the left
and right of each tooth. Finally, the third rule suggests in-
vestigating the morphological structure of the contralateral
teeth of each tooth based on the symmetry of tooth growth.

To comply with these rules, APK first utilizes a cross-
gating layer, which takes CLSfb and CLSth as input (In
Fig 2, V represents CLSfb and T represents CLSth), to
emphasize the knowledge of foreground in tooth ID tokens.
Then, it sends only the processed tooth ID tokens CLSth

into a masked self-gating layer, which means V and T in
Equation 5 are the same sequence. This layer has an atten-
tion mask on the important matrix I in Equation 6, which
only enables interaction between adjacent and contralateral
teeth, to meet the second and third rules’ requirements. The
attention mask is visualized in Appendix B.

4. Experiments

4.1. Dataset annotation and processing.

The data annotation, i.e., teeth segmentation and labeling,
was performed in collaboration with 4 orthodontists with
over 6 years of clinical training experience. The orthodon-
tists were trained in the FDI tooth notation method [17], as
well as how to use the annotation software and adhere to the
annotation standard. The annotation standard requires each
orthodontist to independently annotate all visible deciduous
and permanent teeth in each type of intraoral (3D scans of
plaster models and 2D RGB photos) data within 7 days. Af-
ter three weeks, they review all annotations to correct any
errors and missed tooth labels. Note, for 2D intra-oral pho-
tos, the annotations include teeth with exposed coronal parts
or visible residual crowns and roots in the photos but ex-
clude teeth reflected in the reflector for intraoral photogra-
phy. The detailed process is depicted in Fig 3.

Our approach to reducing labor costs involves a combi-
nation of human and machine annotations. To achieve this,
we use FusionAnalyser [43], a dental model analysis tool,
for 3D scans (on the bottom of Fig 3). In this process, or-
thodontists draw the boundary line and identify the corre-
sponding tooth ID for each tooth region. The software then
automatically generates 3D segmentation for each tooth.
For 2D photos (on the top of Fig 3), we first ask orthodon-
tists to label the central point of each tooth class. We then
use SAM [19], an open-source image segmentation frame-
work, to generate segmentation masks based on the human-
labeled tooth centers. Finally, we ask orthodontists to verify
all auto-generated segmentations for both data types. This
process ensures the accuracy of the final segmentation. Fi-
nally, we rotate the 3D models and project them onto 2D
images with labels in various angles. Our method signif-
icantly increases the dataset’s sample richness while min-
imizing sample collection costs and annotation costs. Be-
sides, training on a multi-angle plaster cast also helps to im-
prove the model’s tolerance for low-quality intra-oral shots
(camera angle skew).

4.2. Experimental Setup

Competing Methods. We compare our approach with
the state-of-the-art methods (i.e., DeepLabV3 [9], Seg-
menter [32], Segformer [38], Swin-transformer [22], BeiT
[5], and ViT-adapter [10]) of 2D instance segmentation.
DeepLabV3 is a powerful DilatedFCN-based model with
atrous spatial pyramid pooling introducing rich multi-scale
information. Segmenter, which uses a masked transformer
to generate segmentation masks, is an earlier attempt that
brings the vision transformer (ViT) into the field of semantic
segmentation. Segmentor comes up with using overlapped
image patches to increase local continuity for ViT-based
models and uses deep-wise convolutions to replace the po-
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Figure 3. Illustration of our human-machine hybrid data annotation process.

Method Epoch T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 mIoU

DeepLab-v3 30 0.85 0.85 0.85 0.89 0.91 0.96 0.87 NaN 0.85 0.83 0.89 0.91 0.83 0.85 0.82 NaN 0.87
Segformer 30 0.86 0.85 0.84 0.86 0.91 0.93 0.87 NaN 0.87 0.84 0.88 0.91 0.77 0.77 0.72 NaN 0.85
Segmenter 30 0.78 0.77 0.74 0.68 0.64 0.77 0.75 NaN 0.78 0.76 0.81 0.86 0.71 0.75 0.69 NaN 0.75
Swin-L 30 0.81 0.79 0.77 0.78 0.82 0.89 0.85 NaN 0.82 0.80 0.83 0.87 0.74 0.75 0.70 NaN 0.80
SwinV2-G 30 0.81 0.79 0.77 0.84 0.84 0.90 0.85 NaN 0.81 0.79 0.83 0.87 0.74 0.76 0.71 NaN 0.80
BeiT-B 30 0.79 0.76 0.76 0.78 0.84 0.90 0.84 NaN 0.80 0.77 0.81 0.85 0.77 0.80 0.74 NaN 0.80
ViT-Adapter-L 30 0.87 0.87 0.84 0.86 0.90 0.93 0.87 NaN 0.88 0.87 0.89 0.87 0.82 0.87 0.82 NaN 0.87

TeethSEG 5 0.92 0.92 0.84 0.89 0.94 0.96 0.89 NaN 0.92 0.92 0.93 0.95 x0.85 0.87 0.82 NaN 0.91

Table 1. Results (mIoU) compared with SOTA methods on the IO150K independent and identically distributed (i.i.d.) test splits

sitional embedding. Swin-transformer proposes a shifted-
window approach in computing self-attention, increasing
token embeddings’ scale while reducing overhead. BeiT
applies masked image modeling (MIM), a token-level au-
toregression, as the pretraining tasks to strengthen the en-
coder. ViT-adapter designs adapter block to inject inductive
bias for ViTs to enhance performances in dense prediction.

Implementation Details. Our IO150K contains three parts:
(1) Challenge80K, 80K rendered images from 3D scans
provided by 3D Teeth Scan Segmentation and Labeling
Challenge 2023 [6], (2) Plaster70K, 70K images of oral
plaster models, and (3) RGB0.8K, 0.8K RGB standard
intra-oral photos. Each part has been individually divided
into training, validation, and testing splits (please see Ap-
pendix A for details). Although all three parts of IO150K
support separate training and testing for future studies, in
this paper, we first pretrain models on the training split of
Challenge80K and test on Challenge80K and Plaster70K
testing splits (denoted as i.i.d. test (independent and identi-
cally distributed), o.o.d. test (out of the distribution)). then
finetune and test models on RGB0.8K (denoted as RGB
test). This is because the data in Challenge80K is general
tooth data that matches the real-world distribution, while the
Plaster80K and RGB0.8K we collected are from patients
who accept the orthodontic examination. Compared with
Challenge80K, their samples have more abnormalities and

higher complexity. We hope the model trained on general
data can adapt to the needs of orthodontic diagnosis (o.o.d.
test), and the models trained on a large number of 3D model
projections can be transferred to the use of analyzing RGB
intra-oral photos for early screening (RGB test).

We report the results of TeethSEG with pretrained CLIP-
L/14@336 as the encoder. The embedding dim D = 768,
the number of layers in the masked transformer M = 3, the
number of stacked MSA blocks NMSA = 3, and the number
of stacked naive upscalers Nup = 2.

4.3. Comparison with Competing Methods

I.I.D. Test Results. The overall detection and segmenta-
tion results are presented in Table 1, and we compare these
competing methods in the Intersection over Union (IoU) of
each tooth class (denoted as T1 to T16. The pre-defined or-
der of classes is shown on the top of Fig 1. NaN means the
corresponding class is not shown in our test split.) and the
average over all classes (mIoU). The table shows that our
TeehSEG achieves the best segmentation performance in
each tooth class and improves overall segmentation perfor-
mance by 4% compared with the state-of-the-art methods.
From the table, we can see that for the i.i.d. test, competing
methods have similar performance on teeth with a large area
(i.e., T6, T7, T14, T15) and have significant performance
differences on smaller teeth (i.e., T1, T2, T9, T10). In par-
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Method Epoch mIoU
o.o.d. RGB

DeepLab-v3 30 0.80 0.80
Segformer 30 0.81 0.69
Segmenter 30 0.68 0.55
Swin-L 30 0.64 0.48
SwinV2-G 30 0.60 0.46
BeiT-B 30 0.78 0.47
ViT-Adapter-L 30 0.79 0.85

TeethSEG 5 0.84 0.91

Table 2. Tooth segmentation results (mIoU) on the IO150K out-
of-the-distribution (o.o.d.) test splits and RGB test split. Please
see the Appendix for the IoU of each tooth ID.

ticular, methods targeting capturing multi-scale objects (i.e.,
DeepLab-v3, Segformer, ViT-Adapter) have better perfor-
mances on smaller teeth. Our TeethSEG uses MSA Blocks
to capture multi-scale information and improves 4% to 5%
IoU performance on T1, T2, T9, and T10.
O.O.D. Test Results. We compare the o.o.d. performance
of TeethSEG with competing methods in Table 2 and find
that our method outperforms the state-of-the-art methods
with 3% mIoU, which shows TeethSEG’s generalize abil-
ity on data ad-hoc to orthodontic treatment. We also visu-
alize randomly picked 4 segmentation predictions of some
methods and highlight the incorrect parts in Table 3. From
this table, we can find competing methods have different
degrees of errors in dealing with complex situations such as
missing teeth or irregular tooth arrangements. Interestingly,
the methods that perform well in the i.i.d. test still obtain
clear tooth segmentation boundaries in this test (i.e., cor-
rectly distinguishing between tooth areas and background
areas). However, they all have the problem of incorrectly
categorizing some teeth as belonging to other tooth cate-
gories (in the ground truth, we assigned a unique color to
each tooth ID). By contrast, our framework can better iden-
tify tooth IDs by incorporating relevant dental arch informa-
tion, with the help of human prior knowledge via the APK
layer in TeethSEG. Please see Appendix C for the full visu-
alization.

Figure 4. Examples of TeethSEG’s segmentation results on
IO150K RGB test split.

RGB Test Results. We finetune the models on our
RGB0.8K to show the pretrained knowledge on plaster
models can be transferred into the RGB domain. Table 2 re-
ports the performances of TeethSEG with competing meth-
ods. It shows that TeethSEG brings 6% performance boost,
which demonstrates the generalization ability of our frame-

Figure 5. The trend of mIoU changes during the training process.

work. Fig 4 visualizes several randomly picked prediction
results of TeethSEG on intra-oral photos from patients be-
fore receiving orthodontic treatment. We find that even in
cases of obvious dental arch abnormalities, TeethSEG can
still accurately segment the tooth area and identify the cor-
rect tooth ID. Please see Appendix C for the visual compar-
ison with other methods.
Comparison on Training Speed. Due to the specialized
design introduced by TeethSEG for tooth segmentation, its
training speed is higher than competing methods. In Fig 5,
we visualize the change of mIoU on Challenge80K during
the pretraining for all methods.

4.4. Ablation

Figure 6. Comparison of Bilinear Interpolation to Permutation-
based Upscaler. (left) Ground Truth, (middle) Bilinear Interpola-
tion, (right) Permutation-based Upscaler.

Permutation-based Upscaler vs. Bilinear Interpolation.
Previous transformer-only decoders used bilinear interpo-
lation for scaling the intermediate feature map to match the
size of the output, causing errors at segmentation edges. Be-
sides, the interpolated enlarged image does not introduce
new information to local areas, which prohibits the model
from learning multi-scale semantics during training. In Fig
6, we visualize the background segmentation result gener-
ated by using CLSfb in Sec. 3.1 and compare it with the
result from a variant of replacing all linear upscalers and
naive upscalers with bilinear interpolation. We also quanti-
tate the performance difference in Table 4.
Effectiveness of each component. To verify the effec-
tiveness of our permutation-based upscalers, cross-gating
mechanism, MSA blocks, and the APK layer, we design six
variants and report their performances in Table 4. (a) We re-
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DeepLab-v3 BeiT-B SwinV2-G ViT-Adapter-L TeethSEG (Ours) Ground Truth

Table 3. The visual comparison of segmentation results (o.o.d test), as well as the corresponding ground truth.

Method Module i.i.d. test o.o.d. test
Permute-UP Bilinear-UP Cross-Gate Cross-ATT MSA APK

(a) ✗ ✓ ✓ ✗ ✓ ✓ 0.72 0.67
(b) ✓ ✗ ✗ ✓ ✓ ✓ 0.89 0.80
(c) ✓ ✗ ✓ ✗ ✗ ✓ 0.87 0.73
(d) ✓ ✗ ✓ ✗ ✓ ✗ 0.89 0.76
(e) ✓ ✓ - - ✗ ✗ 0.79 0.70
(f) ✓ ✗ ✓ ✗ ✓ ✓ 0.91 0.84

Table 4. Analysis of the effectiveness of each module.

place all linear upscalers and naive upscalers with bilinear
interpolation. (b) We replace our proposed cross/self-gating
with the standard cross/self-attention in the MSA blocks
and the APK layer. In (c), (d), and (e), we explore the in-
fluence of removing the MSA bocks or the APK layer, as
well as removing them all. (f) is our best variant with all
specially designed modules.
More Ablations. We validate the influence of the scale of
the image encoder, the resolution of the input images, and
the reasonable choice of hyper-parameters in Appendix D.

5. Conclusion

In this paper, we study the 2D image segmentation. To ad-
dress the gap in research in this field, we create an open-
source dataset called IO150k, which covers a wide range
of dental malformations and is intended to serve as a re-
source for future research. Furthermore, starting from the
particularity of the dental segmentation, we design Teeth-
SEG, which surpasses the performance of the state-of-the-
art segmentation models. This model includes two modules:
Multi-Scale Aggregation (MSA) block and Anthropic Prior

Knowledge (APK) layer. The former effectively aggre-
gates the visual semantics into class embeddings at different
scales, and the latter imitates the principle of orthodontists
to identify teeth. To realize MSA and APK, we developed a
cross/self-gating mechanism for efficient deep feature inter-
action, as well as a permutation-based upscaler to generate
clear segmentation edges and maintain local information in
image patch embeddings. Experiments conducted in this
paper demonstrate the effectiveness of our model and in-
dicate that pretraining on plaster models can facilitate the
segmentation of intra-oral images, which has the potential
to assist large-scale epidemiological screenings and self-
inspections.
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