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Figure 1. Top-Left Previous works [12, 29] use RNN architectures with convolutional or attention mechanisms to train models that have
superior performance on downstream tasks. However, the use of RNNs leads to slower training and the learned weights only generalize
well to data deployed at the same frequency as that used at training time. Bottom-Left We solve this problem by utilizing SSMs for
temporal aggregation, which enables faster training by either utilizing the S4 model [16] or S5 [36] parallel scans. By their nature, these
models allow deployment at different frequencies than those used at training time since they have a learnable timescale parameter. Right
Our SSM-based models achieve an average performance drop between training and testing frequencies of 3.31 mAP averaged on both
Gen1 [7] and 1 Mpx [29] datasets, while RVT [12] and GET [28] have a drop of 21.25 and 24.53 mAP, respectively.

Abstract
Today, state-of-the-art deep neural networks that process

event-camera data first convert a temporal window of events
into dense, grid-like input representations. As such, they
exhibit poor generalizability when deployed at higher in-
ference frequencies (i.e., smaller temporal windows) than
the ones they were trained on. We address this challenge
by introducing state-space models (SSMs) with learnable
timescale parameters to event-based vision. This design
adapts to varying frequencies without the need to retrain
the network at different frequencies. Additionally, we in-
vestigate two strategies to counteract aliasing effects when
deploying the model at higher frequencies. We compre-
hensively evaluate our approach against existing methods
based on RNN and Transformer architectures across vari-
ous benchmarks, including Gen1 and 1 Mpx event camera
datasets. Our results demonstrate that SSM-based mod-
els train 33% faster and also exhibit minimal performance
degradation when tested at higher frequencies than the

training input. Traditional RNN and Transformer models
exhibit performance drops of more than 20 mAP, with SSMs
having a drop of 3.31 mAP, highlighting the effectiveness of
SSMs in event-based vision tasks.

1. Introduction

Event cameras emerged as a class of sensor technolo-
gies that noticeably deviate from the operational mechan-
ics of conventional frame-based cameras [9]. While stan-
dard frame-based cameras [42] capture full-frame lumi-
nance levels at fixed intervals, event cameras record per-
pixel relative brightness changes in a scene at the time they
occur. The output is, therefore, an asynchronous stream of
events in a four-dimensional spatio-temporal space. Each
event is represented by its spatial coordinates on the pixel
array, the temporal instance of the occurrence, and its po-
larity, which denotes the direction of the brightness change
and encapsulates the increase or decrease in luminance. The
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power of event cameras primarily lies in their ability to
capture dynamic scenes with unparalleled temporal reso-
lution (microseconds). This property becomes invaluable
in rapidly changing environments or applications requiring
very fast response times [8, 39]. However, the richness of
the spatio-temporal data they generate introduces complex-
ities in data interpretation and processing. Sophisticated al-
gorithms are required to efficiently parse and make sense
of the high-dimensional data space. As such, while event
cameras represent a promising frontier in visual sensor tech-
nologies, their pervasive utilization depends upon solving
these inherent computational challenges.

Current methodologies for addressing problems with
event cameras fall predominantly into two categories. The
first involves converting the raw stream of spatio-temporal
events into dense representations akin to multi-channel im-
ages [12, 22, 40, 43]. This transformation allows leverag-
ing conventional computer vision techniques designed for
frame-based data. The second category employs sparse
computational paradigms, often utilizing spiking neural
networks or graph-based architectures [4, 11]. While
promising, these methods are not without limitations; they
frequently encounter hardware incompatibility issues and
compromised accuracy. In this work, we utilize dense repre-
sentations for their advantages in computational efficiency.

Despite the advances in both paradigms, models trained
on event representations at a specific frequency exhibit poor
generalizability when deployed in settings with higher fre-
quencies which is crucial for high-speed, dynamical visual
scenarios. Additionally, to achieve high performance, it is
necessary to include recurrent memory, thereby sacrificing
computational efficiency during the training phase. An ideal
model would seamlessly merge the training speed of con-
volutional architectures with the temporal sensitivity and
memory benefits inherent to recurrent models.

While recent advancements have introduced efficient re-
current vision transformer architectures [12, 24] to achieve
better performance, they face several limitations. Specifi-
cally, these architectures suffer from longer training cycles
due to their reliance on conventional recurrent mechanisms.

The issue of slow training and generalization at higher
event representation frequency than the lower one we
trained on remains unresolved as conventional recurrent
training methodologies are predominantly utilized in event-
based vision. These methods do not incorporate learnable
timescale parameters, thus inhibiting the model’s capacity
to generalize across varying inference frequencies.

In this work, we address this limitation by introducing
structured variations of state-space models [16, 36] as layers
within our neural network framework.

State-space models [14] function as CNN during train-
ing and are converted to an efficient RNN at test time. To
achieve this, S4 [16] employs a technique where the SSM,

which is not practical for training on modern hardware due
to its sequential nature, is transformed into a CNN by un-
rolling. S5 [36] uses parallel scans during training, and
is employed as RNN during inference. State-space mod-
els [14] can be deployed at different frequencies at infer-
ence time because they are Linear Time-Invariant (LTI)
continuous-time systems that can be transformed into a
discrete-time system with an arbitrary step size. This fea-
ture permits inference at arbitrary frequencies by globally
adjusting the timescale parameter based on the ratio be-
tween the new and old frequency sampling rates. Conse-
quently, we tackle the longstanding issue in event-based vi-
sion, which requires multiple training cycles with different
frequencies to adapt the neural network for various frequen-
cies during inference.

For the task of object detection, we find that incorpo-
rating state-space layers accelerates the training by up to
33% relative to existing recurrent vision transformer ap-
proaches [12, 24]. This is achieved while maintaining per-
formance comparable to existing methods. Notably, our ap-
proach demonstrates superior generalization to higher tem-
poral frequencies with a drop of only 3.31 mAP, while pre-
vious methods experience a drop of 21.25 mAP or more.
Also, we achieve comparable performance to RVT although
we use a linear state-space model rather than a non-linear
LSTM model. This also shows that the complexity of the
LSTM might not be needed. For this to work, we intro-
duce two strategies (frequency-selective masking and H2

norm) to counteract the aliasing effect encountered with in-
creased temporal frequencies in event cameras. First one is
a low-pass bandlimiting modification to SSM that encour-
ages the learned convolutional kernels to be smooth. Sec-
ond one mitigates the aliasing problem by attenuating the
frequency response after a chosen frequency. We argue that
state-space modeling offers a significant new direction for
research in event-based vision, offering promising solutions
to the challenges inherent in processing event-based data ef-
fectively and efficiently.

Our contributions are concisely outlined as follows:

• We introduce state-space models for event cameras to ad-
dress two key challenges in event-based vision: (i) model
performance degradation when operating event cameras
at temporal frequencies different from their training con-
ditions and (ii) training efficiency.

• Our experimental results outperform existing methods at
higher frequencies by 20 mAP on average and show 33%
increase in the training speed.

• We introduce two strategies (bandlimiting & H2 norm)
designed to alleviate aliasing issues.
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2. Related Work

2.1. Object detection with Event Cameras

Approaches in event camera literature, thus in object de-
tection, can be broadly classified into two branches.

The first research branch investigates dense feed-forward
methods. Early attempts in this direction relied on a con-
strained temporal window for generating event representa-
tions [3, 17, 19]. The resultant models were deficient in
tracking slow-moving or stationary objects, as they failed
to incorporate data beyond this limited time-frame. To
mitigate these drawbacks, later studies introduced recur-
rent neural network (RNN) layers [29] into the architec-
ture. The RNN component enhanced the model’s capac-
ity for temporal understanding, thereby improving its ob-
ject detection capabilities. The work of Zubic et al. [43]
takes this a step further by optimizing event representations
and incorporating cutting-edge swin transformer architec-
ture. Nonetheless, their approach was limited in its abil-
ity to re-detect slowly moving objects following extended
periods of absence. Subsequent research [12, 24], merged
the transformer and RNN architectures, pushing the perfor-
mance further. However, this significantly increased com-
putational demands during the training phase. Importantly,
all methodologies examined to date suffer from an inability
to adapt when deployed at variable frequencies.

The second research branch investigates the use of
Graph Neural Networks (GNNs) or Spiking Neural Net-
works (SNNs). GNNs dynamically construct a spatio-
temporal graph where new nodes and edges are instanti-
ated by selectively sub-sampling events and identifying pre-
existing nodes that are proximate in the space-time contin-
uum [11, 18, 38]. A pivotal challenge lies in architecting the
network such that information can disseminate effectively
across extensive regions of the space-time volume. This be-
comes particularly important when dealing with large ob-
jects that exhibit slow relative motion to the camera. More-
over, while aggressive sub-sampling is often necessary to
achieve low-latency inference, it introduces the risk of omit-
ting important information from the event stream. On the
other hand, SNNs [1, 6, 34] transmit information sparsely
within the system. Unlike RNNs, SNNs emit spikes only
when a threshold is met, making them hard to optimize
due to the non-differentiable spike mechanism. Some so-
lutions [27] bypass the threshold, but this sacrifices sparsity
in deeper layers. Overall, SNNs remain a challenging area
needing more foundational research for optimized perfor-
mance.

2.2. Continuous-time Models

Gu et al. [16] introduced the S4 model as an alterna-
tive to CNNs and Transformers for capturing long-range
dependencies through LTI systems. This was followed by

the S4D model [15], designed for easier understanding and
implementation, offering similar performance to S4. The
S5 model [36] improved efficiency by avoiding frequency
domain computations and utilizing time-domain parallel
scans. However, these models have not been thoroughly
evaluated on complex, high-dimensional visual data with
significant temporal resolution.

In our study, we empirically show that S4, S4D and S5
models achieve results on-par with state-of-the-art when
combined with attention mechanisms on complex data. We
also identify and address aliasing issues in these models,
proposing two corrective strategies. Our work extends the
range and robustness of continuous-time models for com-
plex sequence modeling tasks such as object detection for
event cameras.

3. Method
In this section, we firstly formalize the operating mech-

anism of event cameras and provide a notation used for de-
scribing state-space models in the preliminaries (Sec. 3.1).
Secondly, we describe our approach of incorporating vari-
ants of state-space models as layers within our block
(Sec. 3.2). This innovative design solves the problems asso-
ciated with slow training and the variable frequency infer-
ence for event cameras.

3.1. Preliminaries

Event cameras. Event cameras are bio-inspired vision
sensors that capture changes in log intensity per pixel asyn-
chronously, rather than capturing entire frames at fixed in-
tervals. Formally, let I(x, y, t) denote the log intensity at
pixel coordinates (x, y) and time t. An event e is generated
at (x, y, t) whenever the change in log intensity ∆I exceeds
a certain threshold C:

∆I(x, y, t) = I(x, y, t)− I(x, y, t−∆t) ≥ C (1)

Each event e is a tuple (x, y, t, p), where (x, y) are the pixel
coordinates, t is the timestamp, and p = {−1, 1} is the
polarity of the event, indicating the direction of the intensity
change.

State-Space Models (SSMs). Linear State-Space Mod-
els (SSMs) form the crucial part of the backbone in our ar-
chitecture, where we compare S4 [16], S4D [15] and S5
[36] layer variants. Given an input vector u(t) ∈ RU ,
a latent state vector x(t) ∈ RP , and an output vector
y(t) ∈ RM , the governing equations of a continuous-time
linear SSM can be mathematically represented as:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (2)

The model is parameterized by a state transition matrix A ∈
RP×P , an input matrix B ∈ RP×U , an output matrix C ∈
RM×P , and a direct transmission matrix D ∈ RM×U .
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Given a fixed step size ∆, this continuous-time model
can be discretized into a linear recurrence using various
methods such as Euler, bilinear, or zero-order hold (ZOH):

xk = Axk−1 +Buk, yk = Cxk +Duk, (3)

The parameters in the discrete-time model are functions of
the continuous-time parameters, defined by the chosen dis-
cretization method. Details on SSMs are available in the
appendix.
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Figure 2. SSM-ViT block structure

3.2. SSM-ViT block

In this section, we introduce the SSM-ViT block, a novel
block depicted in Figure 2, which showcases the structured
flow of the proposed block structure, designed for efficient
event-based information processing.

We build a 4-stage hierarchical backbone like in [12]
where in each stage we utilize our proposed SSM-ViT
block. Events are processed into a tensor representation
like in [12] before they are used as input to the first stage.
Each stage takes the previous features as input and reuses
the SSM state from the last timestep to compute features
for the next stage. By saving SSM states, each stage retains
temporal information for the whole feature map, while also
being able to generalize to different frequencies since we
use SSM instead of RNN that is used in [12].

Regarding the block structure, initially, the input under-
goes convolution with a defined kernel of size k × k with
a stride s. This operation effectively captures the essen-
tial spatial features of the input. Following the convolu-
tion operation, the structure introduces a ’Block-SA’ mod-
ule. This module is pivotal in implementing self-attention
mechanisms, but it does so specifically within local win-
dows. The localized nature of the attention in this block
ensures a focus on immediate spatial relations, allowing for
a detailed representation of close-proximity features.

Subsequent to ’Block-SA’, the ’Grid-SA’ module comes
into play. In contrast to the localized approach of the previ-
ous block, ’Grid-SA’ employs dilated attention, ensuring a
global perspective. This module, by considering a broader
scope, encapsulates a more comprehensive understanding
of the spatial relations and the overall structure of the input.

The final and crucial component of the block structure
is the State-Space Model (SSM) block, that is designed to

compute both the output and the state in parallel, either by
using S4 [16], S4D [15] or S5 [36] model variant. This
ensures temporal consistency and a seamless transition of
information between consecutive time steps. Efficient com-
putation is crucial since it allows for the faster training than
RNN, and timescale parameter on temporal aggregation is
important since we can rescale it during inference and de-
ploy at any frequency we want.

3.3. Low-pass bandlimiting

However, the capability to deploy state space models
at resolutions higher than those encountered during train-
ing is not without its drawbacks. It gives rise to the well-
documented issue of aliasing [32, 33], which occurs when
the kernel bandwidth surpasses the Nyquist frequency. We
adress this challenge in following two subsections - 3.3.1 &
3.3.2.

3.3.1 Output Masking

In the realm of signal processing, frequency content be-
yond the Nyquist rate can lead to aliasing, adversely affect-
ing model performance. To address this, we integrate a
frequency-selective masking strategy into the training and
inference processes. This bandlimiting method has been
empirically validated to be crucial for generalizing across
different frequencies [32, 33], with ablation studies indicat-
ing a decrease in accuracy by as much as 20% in its absence.

Let the SSM be governed by a matrix A, with its diag-
onal elements an influencing the temporal evolution of the
system states. The kernel’s basis function for the n-th state
is given by Kn(t) = etanBn, where the frequency charac-
teristics are primarily dictated by the imaginary part of an -
ℑ(an) and Bn represents the B matrix.

To modulate the frequency spectrum of the model, we
define a hyperparameter α, which is used for masking of
the computed effective frequency fn for each state:

fn =
∆t

r
· |ℑ(an)|

2π
, (4)

where ∆t denotes the discrete time-step, and r is the rate at
which we train the model, by default it is 1, rate gets halved
when deploying at twice the trained frequency etc.

The bandlimiting mask is then applied as follows:

Cn =

{
Cn if fn ≤ α

2 ,
0 otherwise, (5)

where Cn represents the coefficients in the state representa-
tion. The selection of α is critical, with α = 1.0 represent-
ing the Nyquist limit under idealized conditions. However,
practical considerations and model constraints typically ne-
cessitate a lower empirical threshold. Our findings suggest
that setting α = 0.5 yields optimal outcomes for systems
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with diagonal state matrices, such as in S4D and S5 config-
urations.

This frequency-selective masking is proven to be a cor-
nerstone for the adaptability of our SSMs, significantly con-
tributing to their generalization across differing frequencies.

3.3.2 H2 Norm

This section introduces another strategy to mitigate the
aliasing problem by suppressing the frequency response of
the continuous-time state-space model beyond a selected
frequency ωmin.

This approach makes use of the H2 norm of a
continuous-time linear system which measures the power
(or steady-state covariance) of the output response to unit
white-noise input.

Given a continuous-time system described by matrices
A,B, and C, the transfer function G(s) from the Laplace
transform can be defined in the frequency domain as:

G(jω) = C(jωI−A)−1B, (6)

where ω denotes the frequency, and I is the identity ma-
trix. The H2 norm is computed as the integral of the squared
magnitude of the frequency response over the range of in-
terest, typically the entire frequency spectrum. However, in
our case, we would like to suppress the frequency response
of the system to frequencies beyond ωmin which can be done
by minimizing the following:

∥G∥H2(ωmin,∞) =

√
1

π

∫ ∞

ωmin

∥G(jωk)∥2F dω, (7)

as part of the loss function, where ∥·∥F is the Frobenius
norm. In practice, to numerically estimate this integral, we
choose a maximum frequency ωmax and discretize the fre-
quency range [ωmin, ωmax] into N points and apply numer-
ical integration methods to the squared Frobenius norm of
G(jω). This yields an approximate H2 norm of the system
in the desired frequency range.

4. Experiments
We perform ablation studies and systematic evaluations

of our proposed models utilizing both the Gen1 [7] and
1 Mpx [29] event-based camera datasets. We assess the
model’s proficiency in adapting to unseen inference fre-
quencies during training time on both datasets. We em-
ployed two variants for training across both datasets: the
base model ViT-SSM-B, alongside its scaled-down deriva-
tive ViT-SSM-S (small). Additionally, to study the robust-
ness and generalization capabilities of our architecture, we
subject it to empirical testing on the DSEC dataset [13],
which was not part of the original training corpus and the
visual results are provided in the appendix.

4.1. Setup

Implementation details. Our models are trained using
32-bit precision arithmetic across 400k iterations, making
use of the ADAM optimizer [20] and a OneCycle learn-
ing rate schedule [37] that decays linearly from its highest
value. We adopt a mixed batching technique that applies
standard Backpropagation Through Time (BPTT) to half
of the batch samples and Truncated BPTT (TBPTT) to the
other half. This technique was introduced in the RVT [12]
and ablated in their supplementary material. We found it to
be equally effective also for SSMs. For the S4(D) method,
details can be found in [15, 16]. As for S5 [36], we utilize an
efficient implementation from scratch in PyTorch; original
public version of S5 is available in JAX. Data augmentation
is carried out through random horizontal flips and zooming
operations, both inward and outward. Event representations
are formed based on 50 ms time windows that correspond
to 20 Hz sampling frequency, divided into T = 10 discrete
bins. We incorporate a YOLOX detection head [10] that in-
tegrates IOU, class, and regression losses, averaged across
both batch and sequence lengths during each optimization
phase. Bandlimiting is implemented during training and in-
ference of the SSM model by masking the output matrix C
as explained in 3.3.1. In case of H2 norm, we add it as term
to the loss function of the model. We conduct training on
the GEN1 dataset using A100 GPU, employing a batch size
of 8 and a sequence length of 21. We use a global learning
rate of 2e-4, which is propagated to the SSM components.
For the 1 Mpx dataset, we train with a batch size of 12 and a
sequence length of 10, using a learning rate of 3.5e-4 across
two A100 GPUs.

Datasets. The Gen1 Automotive Detection dataset [7]
comprises 39 hours of event camera footage with a resolu-
tion of 304 × 240 pixels. It includes 228k bounding boxes
for cars and 28k for pedestrians. Using original evaluation
criteria [7], we discard bounding boxes having a side length
shorter than 10 pixels or a diagonal less than 30 pixels.

The 1 Mpx dataset [29] similarly focuses on driving en-
vironments but offers recordings at a higher resolution of
720 × 1280 pixels, captured over multiple months during
both day-time and night-time. It contains roughly 15 hours
of event data and accumulates around 25 million bounding
box labels, spread across three classes: cars, pedestrians,
and two-wheelers. Following original evaluation criteria,
we eliminate bounding boxes with a side length under 20
pixels and a diagonal less than 60 pixels, while also reduc-
ing the input resolution to 640 × 360 pixels.

4.2. Benchmark comparisons

In this section, we present a detailed comparison of
our proposed methods, S4D-ViT-B and S5-ViT-B, with the
SotA approaches in the domain of event-based vision for
object detection, which can be seen in Table 1. The evalua-
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Gen1 1 Mpx

Method Backbone Detection Head mAP Time (ms) mAP Time (ms) Params (M)

Asynet [27] Sparse CNN YOLOv1 [31] 14.5 - - - 11.4
AEGNN [35] GNN YOLOv1 16.3 - - - 20.0
Spiking DenseNet [5] SNN SSD [23] 18.9 - - - 8.2
Inception + SSD [17] CNN SSD 30.1 19.4 34.0 45.2 > 60*
RRC-Events [3] CNN YOLOv3 [30] 30.7 21.5 34.3 46.4 > 100*
MatrixLSTM [2] RNN + CNN YOLOv3 31.0 - - - 61.5
YOLOv3 Events [19] CNN YOLOv3 31.2 22.3 34.6 49.4 > 60*
RED [29] CNN + RNN SSD 40.0 16.7 43.0 39.3 24.1
ERGO-12 [43] Transformer YOLOv6 [21] 50.4 69.9 40.6 100.0 59.6
RVT-B [12] Transformer + RNN YOLOX [10] 47.2 10.2 47.4 11.9 18.5
Swin-T v2 [25] Transformer + RNN YOLOX 45.5 26.6 46.4 34.5 21.1
Nested-T [28, 41] Transformer + RNN YOLOX 46.3 25.9 46.0 33.5 22.2
GET-T [28] Transformer + RNN YOLOX 47.9 16.8 48.4 18.2 21.9

S4D-ViT-B (ours) Transformer + SSM YOLOX 46.2 9.40 46.8 10.9 16.5
S5-ViT-B (ours) Transformer + SSM YOLOX 47.4 8.16 47.2 9.57 18.2

Table 1. Comparisons on test sets of Gen1 and 1 Mpx datasets (20 Hz). Best results in bold and second best underlined. A star ∗

suggests that this information was not directly available and estimated based on the publications. Runtime is measured in milliseconds for
a batch size of 1. We used a T4 GPU for SSM-ViT to compare against indicated timings in prior work [29] on comparable GPUs (Titan
Xp). Ours achieves comparable results with other SotA approaches and generalizes well to other frequencies where others fail.

tion is conducted on two distinct datasets: Gen1 and 1 Mpx,
to assess the performance and robustness of these methods
under varying conditions.

The comparative analysis, as summarized in Table 1, en-
compasses different backbones and detection heads. These
include Sparse CNNs, GNNs, SNNs, RNNs, and various
implementations of Transformers.

Our S4D-ViT-B and S5-ViT-B models, which integrate
SSMs with Attention (3.2), demonstrate competitive per-
formance across both datasets. Specifically, on the 1 Mpx
dataset, our models achieve mAP scores of 46.8 and 47.2,
respectively, which are competitive with the leading scores
in this benchmark. While our models do not outperform the
top-performing ERGO-12 [43] and GET-T [28] in terms of
mAP, they exhibit a notable balance between accuracy and
model complexity, as indicated by their parameter counts of
16.5M and 17.5M, respectively.

Notably, our models perform consistently well across
different frequencies as it can be seen in Table 2, highlight-
ing their robustness and generalizability in comparison to
RVT and GET-T, which tend to exhibit large performance
drops. We achieve an average performance drop between
training and testing frequencies of 3.31 mAP averaged on
both Gen1 [7] and 1 Mpx [29] datasets, while RVT [12] and
GET [28] have a drop of 21.25 and 24.53 mAP, respectively.

In summary, our proposed S4D-ViT-B and S5-ViT-B
models establish themselves as effective and efficient con-
tenders in the field of event-based vision for object detec-

tion. Their competitive performance metrics, coupled with
their generalization capabilities across various inference
frequencies, make them valuable contributions to event-
based vision community.

Model Dataset
Frequency Evaluation (Hz)

Perf. Drop
20 Hz 40 Hz 80 Hz 100 Hz 200 Hz

RVT
Gen1 47.16 35.13 21.98 18.61 8.35 26.14
1Mpx 47.40 42.51 33.20 30.29 18.15 16.36

S5
Gen1 47.40 46.44 45.08 42.49 39.84 3.94
1Mpx 47.20 46.49 46.11 45.80 39.70 2.68

GET
Gen1 47.90 34.15 19.97 15.13 5.35 29.25
1Mpx 48.40 40.51 30.30 28.11 15.44 19.81

Table 2. Evaluation of RVT [12], S5 [36], and GET [28] across
different frequencies on test datasets

4.3. Ablation study

In this section we investigate different SSMs and their
initializations with and without bandlimiting parameter for
event-based vision to address the problem of inference at
different frequencies (4.3.1). After that, we study the im-
portance of SSM layers in various stages during training of
the model (4.3.2). Finally, we evaluate models on differing
frequencies with two proposed strategies (4.3.3).

4.3.1 SSMs: initializations & bandlimiting

This section presents an ablation study focusing on the
performance impact of various SSM variants and their ini-
tialization strategies in conjunction with the bandlimiting
parameter α. The SSM variants under consideration are S4
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Model Mean Average Precision - mAPval

α = 0 α = 0.5 α = 1 Average
S4-legS 46.66 - - 46.66
S4D-legS 46.93 47.33 46.50 46.92
S4D-inv 46.15 46.23 46.11 46.16
S4D-lin 44.82 46.02 45.04 45.29
S5-legS 48.33 48.48 48.00 48.27
S5-inv 47.26 47.43 46.98 47.22
S5-lin 46.12 46.40 45.59 46.04

Table 3. Performance comparison between the S4 [16], S4D [15]
and S5 [36] models for different values of α and initializations on
Gen1 [7] validation dataset.

[16], S4D [15], and the more recent S5 [36]. The analysis
is conducted on the Gen1 [7] validation dataset, with the
mean Average Precision (mAP) serving as the performance
metric. Table 3 provides a comprehensive view of how dif-
ferent initialization strategies (legS, inv, lin) introduced in
[15] and values of α ∈ {0, 0.5, 1} influence model perfor-
mance. The S4-legS model, not equipped for bandlimiting
in non-diagonal matrix scenarios, achieves a baseline mAP
of 46.66 at α = 0. The S4D variants demonstrate a di-
verse performance spectrum. The S4D-legS variant, par-
ticularly at α = 0.5, achieves the highest mAP of 47.33
among the S4D models, also maintaining the best average
mAP of 46.92. The S4D-inv and S4D-lin variants show less
favorable outcomes, with mAPs peaking at 46.23 and 46.02,
respectively, for α = 0.5.

Notably, the S5 model variants exhibit an improvement
over their predecessors. The S5-legS variant achieves the
highest mAP of 48.48 at α = 0.5, and also records the best
average mAP of 48.27. This result is not only the best in
its category but also the best overall. The S5-inv and S5-lin
models also demonstrate comparable performance, with the
former reaching its peak mAP of 47.43 at α = 0.5.

This study emphasizes the critical role of initialization
strategies and bandlimiting in optimizing SSM-based neural
networks for event-based vision tasks. The distinct perfor-
mance variations across different models and configurations
underscore the importance of selecting appropriate initial-
izations and α values, as these choices impact the efficacy
of the models in handling the dynamic and complex nature
of event-based vision data. Higher values of parameter α
encourage SSM to learn smoother kernels and discard more
complex and higher-frequency convolution kernels.

4.3.2 SSM Utilization Analysis

In this ablation study, we examine the impact of employ-
ing temporal recurrence exclusively in a subset of network
stages, or not using it at all. Our methodology involves ma-
nipulating the SSMs within the network by resetting their

states at predetermined stages during each timestep. This
approach enables us to isolate and evaluate the impact of
SSM layers’ presence or absence while maintaining a con-
sistent parameter count across different model configura-
tions.

S1 S2 S3 S4 mAPRV T mAPS4D.5
mAPS5.5

33.90 39.99 43.67
✓ 41.68 43.11 46.10

✓ ✓ 46.10 45.33 47.52
✓ ✓ ✓ 48.82 47.02 48.41

✓ ✓ ✓ ✓ 49.52 47.33 48.48

Table 4. SSM contribution in various stages on the Gen1 dataset.

Table 4 shows the outcomes of these manipulations on
the Gen1 validation dataset. S4D.5 represents S4D model,
and S5.5 is S5 model with α = 0.5. The data clearly
indicate that the complete removal of SSMs from the net-
work leads to a highest decrease in detection performance.
This underscores the pivotal role of SSMs in enhancing the
model’s capability. On the other hand, initiating the use of
SSMs from the fourth stage onwards consistently enhances
performance, suggesting a critical threshold for the impact
of temporal information processing in the later stages of the
network. Another intriguing observation is the performance
boost obtained by incorporating an SSM at the very initial
stage. This suggests that the early integration of tempo-
ral information is also beneficial for the overall detection
performance. As a result of these findings, our preferred
configuration includes the SSM component right from the
initial stage, thereby leveraging the advantages of tempo-
ral information processing throughout the entire network.
Noteworthy is the observation that the performance drop
when employing SSMs is less pronounced than with RVT,
suggesting our approach’s superior robustness to temporal
aggregation from certain stages compared to RVT.

4.3.3 Evaluation at different frequencies
In this section, we delve into the comparative perfor-

mance analysis of three models: RVT [12], S4D [15], and
S5 [36], across various frequency ranges. This evaluation
is crucial in determining the robustness and adaptability of
these models under diverse inference frequencies, specifi-
cally at 20 Hz, 40 Hz, 80 Hz, 100 Hz, and 200 Hz. Our
model is trained with event representations formed based
on 50 ms time windows that correspond to 20 Hz sampling
frequency. Evaluation is done at this frequency, and others
above mentioned. With RVT, there are no changes when
evaluating at different frequencies, while with SSMs rate r
is halved for the double the inference frequency etc.

Each model in Table 5 is assessed across datasets
and model sizes, including Gen1Base, Gen1Small, and 1
MpxBase. Base and Small represent two variants of mod-
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Model Dataset/Size Strategy Frequency Evaluation (Hz) Performance Drop20 Hz 40 Hz 80 Hz 100 Hz 200 Hz

RVT [12]
Gen1Base - 49.52 37.16 23.25 19.36 7.83 27.62
Gen1Small - 48.68 35.28 19.95 16.05 5.75 29.42
1MpxBase - 45.95 40.93 31.70 29.00 18.16 16.00

S4D [15]

Gen1Base
H2 norm 46.83 45.98 43.91 40.10 36.11 5.31
α = 0.5 47.33 46.36 44.51 40.02 35.98 5.61

Gen1Small
H2 norm 45.88 45.11 41.05 38.00 34.05 6.33
α = 0.5 46.30 45.21 42.11 38.61 33.00 6.57

1MpxBase
H2 norm 46.66 45.85 43.33 41.80 37.01 4.66
α = 0.5 47.93 46.78 44.56 41.11 36.18 5.77

S5 [36]

Gen1Base
H2 norm 48.60 47.11 46.06 43.80 40.51 4.23
α = 0.5 48.48 47.34 46.11 43.23 40.03 4.30

Gen1Small
H2 norm 47.33 46.32 44.03 41.12 38.98 4.72
α = 0.5 47.83 46.58 44.46 41.11 38.95 5.06

1MpxBase
H2 norm 48.65 47.53 47.11 46.63 40.91 3.11
α = 0.5 48.35 47.60 47.21 46.50 40.80 2.82

Table 5. Evaluation of RVT, S4D, and S5 across different frequencies on validation datasets

els on the Gen1 and 1 Mpx datasets, the base one being
the larger one with 16.5M parameters for the S4D model
and 18.2M parameters for the S5 model (as presented in
Table 1 parameters’ column), and small one with 8.8M pa-
rameters for S4D and 9.7M parameters for S5 model. The
focal point of this analysis is the performance drop, calcu-
lated as the average difference between the original perfor-
mance at 20 Hz and performances at higher frequencies. A
notable aspect of this study is the inherent advantage of the
S4D and S5 models due to their incorporation of a learn-
able timescale parameter. This significantly enhances their
adaptability, allowing them to dynamically adjust to vary-
ing frequencies. This feature is particularly salient in the
S4D and S5 models, which are further analyzed based on
different operational strategies: the H2 norm and bandlim-
iting with α = 0.5. The inclusion of the learnable timescale
parameter in these models underscores their capability to
maintain performance across a wide range of frequencies.

The analysis reveals that both the H2 norm and bandlim-
iting strategies with α = 0.5 offer comparable performance
across the assessed frequency ranges. However, a slight
edge is observed with the H2 norm, particularly at very high
frequencies. This marginal superiority can be attributed to
the fact that H2 norm approach does not explicitly mask
output’s (C) matrix columns.

In the Appendix, we study pure-SSM and SSM models
in combination with ConvNext [26].

5. Conclusion

In this paper, we presented a novel approach for enhanc-
ing the adaptability and training efficiency of models de-
signed for event-based vision, particularly in object detec-

tion tasks. Our methodology leverages the integration of
SSMs with a Vision Transformer (ViT) architecture, creat-
ing a hybrid SSM-ViT model. This integration not only ad-
dresses the long-standing challenge of performance degra-
dation at varying temporal frequencies but also significantly
accelerates the training process.

The key innovation of our work lies in the use of learn-
able timescale parameters within the SSMs, enabling the
model to adapt dynamically to different inference frequen-
cies without necessitating multiple training cycles. This
feature represents a substantial advancement over existing
methods, which require retraining for different frequencies.

The SSM-ViT model outperforms existing methods by
20 mAP at higher frequencies and exhibits a 33% increase
in training speed. Furthermore, our introduction of two
novel strategies to counteract the aliasing effect (a cru-
cial consideration in high-frequency deployment) further
reinforces the model’s suitability for real-world applica-
tions. These strategies, involving frequency-selective mask-
ing and H2 norm adjustments, effectively mitigate the ad-
verse effects of aliasing, ensuring the model’s reliability
across a spectrum of temporal resolutions. We believe that
our approach opens new avenues for research and applica-
tion in high-speed, dynamic visual environments, setting a
new benchmark in the domain of event-based vision.
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