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Abstract

Existing text-based person retrieval datasets often have

relatively coarse-grained text annotations. This hinders the

model to comprehend the fine-grained semantics of query

texts in real scenarios. To address this problem, we con-

tribute a new benchmark named UFineBench for text-based

person retrieval with ultra-fine granularity.

Firstly, we construct a new dataset named UFine6926.

We collect a large number of person images and manually

annotate each image with two detailed textual descriptions,

averaging 80.8 words each. The average word count is

three to four times that of the previous datasets. In addition

of standard in-domain evaluation, we also propose a spe-

cial evaluation paradigm more representative of real sce-

narios. It contains a new evaluation set with cross domains,

cross textual granularity and cross textual styles, named

UFine3C, and a new evaluation metric for accurately mea-

suring retrieval ability, named mean Similarity Distribution

(mSD). Moreover, we propose CFAM, a more efficient al-

gorithm especially designed for text-based person retrieval

with ultra fine-grained texts. It achieves fine granularity

mining by adopting a shared cross-modal granularity de-

coder and hard negative match mechanism.

With standard in-domain evaluation, CFAM establishes

competitive performance across various datasets, espe-

cially on our ultra fine-grained UFine6926. Furthermore,

by evaluating on UFine3C, we demonstrate that training on

our UFine6926 significantly improves generalization to real

scenarios compared with other coarse-grained datasets.

The dataset and code will be made publicly available at

https://github.com/Zplusdragon/UFineBench.

1. Introduction

Existing text-based person retrieval benchmarks [6, 17, 54],

even if claimed to be fine-grained, often have coarse-
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grained text annotations in practice. This makes them de-

generated into attribute-based retrieval [5, 8, 31, 40] due

to the provided coarse-grained descriptions to some ex-

tent. Considering this, we propose a benchmark named

UFineBench for text-based person retrieval with ultra-fine

granularity, which is more in line with real scenarios.

Our work is motivated by three main aspects. As the first

aspect, existing datasets [6, 17, 54] suffer from a common

issue that the text is not fine-grained enough to effectively

apply to real scenarios. Specifically, as shown in Figure 1

(a), they almost only briefly describe the common appear-

ance of persons, and lack further specific descriptions of

the unique appearance. This can easily lead to the model

only being able to identify typical attribute characteristics

and cannot understand the fine-grained semantics of com-

plex query texts in real scenarios. Meanwhile, as shown in

Figure 1 (b), they suffer from the ambiguity of one identity-

binding text corresponding to multiple different identities,

hindering the model from accurately understanding how

texts and images match during training. The detailed ex-

planations can be found in Section 3.1.

As the second aspect, existing standard evaluation

sets [6, 17, 54] all have fixed domain, fixed textual gran-

ularity and fixed textual styles. However, in real scenar-

ios, there are usually three common features. 1) Extensive

time and location coverage of surveillance videos, leading

to substantial domain variations within the image gallery; 2)

Inconsistency of granularity within the query texts, result-

ing from the variability in the actual information available

for the person being searched; 3) The language expression

of each describer has an unique style, even when conveying

the same meaning. However, existing evaluation sets with

fixed settings are inadequate for effectively assessing the

model’s performance in real scenarios with these features.

As the third aspect, existing evaluation metrics [12, 17]

are not accurate enough to measure the retrieval ability.

Given a text query, all images in the gallery are ranked ac-

cording to their similarities with the query. The commonly

used rank-k metric is calculated according to whether any

image of the corresponding person is retrieved among the

top k images. However, this calculation method of discretiz-
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Figure 1. Comparisons between our proposed UFine6926 and existing other datasets. (a)-(b) are the examples from CUHK-PEDES [17].

In (a), some fine-grained features not described in the text are highlighted in red boxes. In (b), the text does not provide enough details to

closely match its intended identity but effectively describes the other identity. Meanwhile, two examples from UFine6926 are presented

on the right, with ultra fine-grained texts. As the text details some fine-grained features in the images (highlighted in different colors

correspondingly), it not only provides rich cross-modal information but also effectively distinguishes highly similar image samples.

ing continuous similarity values leads to inaccurate mea-

surement. For example, for the same rank conditions, the

similarity conditions are highly likely to be different, but

the rank-k metric cannot measure such differences.

Considering the above three aspects, this paper makes

the following contributions. The first contribution is the

build of a high quality dataset with ultra-fine granularity for

text-based person retrieval, named UFine6926. It contains

6,926 identities, 26,206 images and 52,412 textual descrip-

tions. A total of 58 annotators participated in crafting the

textual descriptions. Each annotator is required to provide a

description according to the person’s appearance as detailed

as possible. Compared to existing datasets [6, 17, 54], the

UFine6926 dataset has significant superiority in terms of

textual granularity. As shown in Figure 1, the level of detail

in each description has greatly improved. The average word

count is 80.8 and 3 to 4 times that of the previous datasets.

The second contribution is the construction of a spe-

cial evaluation set with cross domains, cross textual gran-

ularity and cross textual styles, named UFine3C, which

is more representative of real scenarios. It is collected

from the test sets of the coarse-grained CUHK-PEDES [17],

the medium-grained ICFG-PEDES [6] and our fine-grained

UFine6926 to contain different domains, textual granularity

and textual styles. Meanwhile, we utilize the large language

models Qwen-14B [1] and Llama2-70B [37] to further en-

rich the variations of textual granularity and styles. It con-

tains 7,446 images to be searched and 37,939 text queries

of 2,250 persons in total.

As the third contribution, a more accurate evaluation

metric is proposed for measuring retrieval ability, named

mean Similarity Distribution (mSD). It is based on the con-

tinuous similarity values rather than the discrete rank con-

ditions [12, 17, 50, 52]. It requires the model to distinguish

as much as possible the similarity differences between text

queries and positive-negative image samples within a more

precise numerical range. For the same rank conditions with

different similarity conditions, it can sensitively measure

the differences among them, while other metrics cannot.

Based on the proposed cross-modal shared granular-

ity decoder and hard negative match mechanism, we also

contribute a novel Cross-modal Fine-grained Aligning and

Matching framework (CFAM). It establishes competitive

performance on various datasets without bells and whistles,

especially on our fine-grained UFine6926.

2. Related Work

CUHK-PEDES [17] is the first benchmark focusing on

text-based person retrieval. It contains 40,206 images and

80,412 texts of 13,003 identities. The average word count

per text is 23.5. To provide a baseline algorithm, the au-

thors propose GNA-RNN which introduces the gated neural

attention mechanism into an recurrent neural network.

However, the texts in CUHK-PEDES contain identity-

irrelevant details. To address this issue, the ICFG-PEDES

benchmark [6] is constructed. There are 54,522 person

images, 54,522 texts of 4,102 identities gathered from

MSMT17 [44]. The average word count per text is is 37.2.

The authors propose SSAN to implement semantically self-

alignment and part-level feature automatic extraction.

Meanwhile, RSTPReid [54] is constructed. It contains

20,505 images and 51,010 textual descriptions of 4,101 per-

sons totally. The average word count per text is is 26.5. As a

baseline algorithm, the authors propose DSSL which takes

surroundings-person separation, fusion mechanism and five

alignment paradigms into a unified framework.
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3. Benchmark

3.1. Granularity Matters

Granularity-related research has become a hot topic in the

computer vision field [11, 14–16, 18, 19, 25, 39, 47].

However, when directing to text-based person retrieval, re-

searchers often confine themselves to a few coarse-grained

benchmarks [6, 17, 54], thereby overlooking the signifi-

cance of granularity in practical applications. We believe

that the coarseness of textual granularity in existing bench-

marks can give rise to the following two issues.

On the one hand, a substantial amount of coarse-grained

descriptions greatly degrade the task into attribute-based re-

trieval [9, 29, 33, 34]. A simple example is illustrated in

Figure 1 (a). Since the text does not describe such fine-

grained features highlighted in red boxes, the model can

not understand what brown boots, white stripes, and so on,

refer to. When facing real scenarios with highly detailed

text queries, the models trained on such coarse-grained data

often prove inadequate. Meanwhile, searching for images

based on coarse-grained attributes is what attribute-based

person retrieval excel at. Therefore, coarse textual granular-

ity makes these two tasks being fundamentally equivalent.

On the other hand, coarse textual granularity introduces

significant ambiguity into the training process and under-

mines the model’s performance. As a standard practice,

the optimization objectives are based on the premise that

each text is only associated with the images of one iden-

tity. However, in the existing benchmarks [6, 17, 54], it is

common that one text can be used to describe the images

from different identities. A simple example is illustrated in

Figure 1 (b). Due to the overly coarseness, the text of each

images cannot be highly correlated to its respective iden-

tity. Instead, it describes the other identity quite well. This

ambiguity significantly hinder the model from accurately

understanding how texts and images match during training.

Consequently, we emphasize that the text granularity

matters and is a non-ignorable factor for text-based person

retrieval. Motivated by this, we propose this benchmark

with ultra-fine granularity in textual descriptions.

3.2. Dataset with Ultra­fine Granularity

We construct the first high quality dataset with ultra-fine

granularity for this task, named UFine6926. It contains

26,206 images and 52,412 descriptions of 6,926 persons to-

tally. The construction process is described as two steps:

First, while the person images in existing datasets are

mostly derived from fixed-scene videos captured by sta-

tionary cameras, our dataset leverages a vast collection of

unrestricted scene videos from the internet to obtain these

images. We utilize the FairMOT algorithm [49] to extract

person tracklets from the scene videos provided by [7]. One

person tracklet is considered as one identity. Then, we uti-

Dataset Maximum Minimum Average Unique

CUHK-PEDES 96 15 23.5 9408

ICFG-PEDES 83 9 37.2 5790

RSTPReid 70 11 26.5 3138

UFine6926 218 30 80.8 8475

Table 1. Some statistics of texts in existing datasets. The text

granularity of ours far exceeds that of others.

lize the noise-filtering strategies proposed in PLIP [55] to

perform preliminary denoising on the obtained images. Fi-

nally, we conduct meticulous manual selection to ensure the

image quality. Through this procedure, we have collected

26,206 high quality images of 6,926 identities in total.

Second, to obtain the ultra fine-grained textual descrip-

tions, we hire 58 unique workers involved in the annotation

task, instructing them to describe all important characteris-

tics in the given images as detailed as possible. There are a

total of 8,475 unique words in our dataset. Each person im-

age is annotated with two textual descriptions. The longest

description has 218 words and the average word count is

80.8, which is significantly larger than the 23.5 words of

CUHK-PEDES [17], 37.2 words of ICFG-PEDES [6] and

26.5 words of RSTPReid [54]. As demonstrated by the ex-

amples in Figure 1 and the specific statistics provided in Ta-

ble 1, our dataset exhibits a significant advantage in terms

of textual granularity when compared to existing datasets.

In conclusion, the properties of our UFine6926 dataset

can be summarized as follows: ultra fine-grained and un-

fixed scene. It can be served as a benchmark to facilitate

further development in this research field.

3.3. Evaluation Set with Cross Settings

To better evaluate the model performance in real scenarios,

we construct a evaluation set named UFine3C with cross

domains, cross textual granularity and cross textual styles

based on two existing datasets [6, 17] and our UFine6926.

This evaluation set is very challenging and the construction

process is described as two steps:

First, we collect the images and textual descrip-

tions of according persons from the test sets of the

coarse-grained “CUHK-PEDES” [17], the medium-grained

“ICFG-PEDES” [6] and our fine-grained “UFine6926”. We

collect 750 persons from each of them to avoid bias and

ensure fairness. After this collection, we obtain a set with

spanning domains, textual granularity and textual styles.

Second, as large language models [2, 4, 22–24, 27, 35,

36, 51] show remarkable ability in natural language pro-

cessing, we utilize Qwen-14B [1] and Llama2-70B [37]

to further enrich the variations of textual granularity and

styles. Given an original description, we ask the models

to response with the prompt instruction: “Please reorganize

the description in a different way. You can write it as long or

as short as you like: [original description]”. Meanwhile, we
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manually revise the responses generated by them to avoid

incorrect answers. Through this approach, we obtain more

textual descriptions with different styles and granularity.

UFine3C contains 7,446 images, 37,939 text queries of

2,250 persons totally. This evaluation set with cross settings

is more consistent with real scenarios and can be served as

a standard evaluation set to facilitate relevant researches.

3.4. A New Evaluation Metric

Current benchmarks [6, 17, 54] typically use the mean aver-

age precision (mAP) to evaluate the overall performance of

person retrieval algorithms. This evaluation metric is based

on discrete rank conditions and cannot sensitively measure

the differences in model performance at a continuous sim-

ilarity level. However, continuous similarity values more

realistically reflect the model’s retrieval ability. As seen in

Figure 2, there is a significant difference in the actual simi-

larity values of these three rank lists. However, the APs of

them both equal to 0.833, which fail to provide a fair com-

parison of the quality between these three rank lists.

0.81 0.79 0.77 0.76 0.75

0.81 0.79 0.77 0.15 0.12

0.81 0.79 0.55 0.15 0.12

rank list 1

rank list 2

rank list 3 SD = 0.697

SD = 0.744 

SD = 0.536 

Figure 2. A toy example of the difference between SD and AP

metrics. Green and red boxes mean true and false matches, re-

spectively. For these three rank lists, the AP remains 0.833. But

SD = 0.536, 0.744 and 0.697, respectively.

For UFine6926 dataset, the fine-grained retrieval ability

is what we especially emphasize and any difference is a re-

flection of it. Therefore, we propose a new metric named

mean similarity distribution (mSD) to evaluate the overall

performance at a continuous similarity level. As shown in

Figure 2, when mSD is used, the differences between these

three rank lists can be well distinguished. The SDs of them

are 0.536, 0.744 and 0.697, respectively.

Given a rank list {si}
n
i=1 with n ranked samples, where

si means the similarity value of the i-th ranked sample,

which is linearly normalized to the range of 0 to 1, and s+

and s− means respective matched and unmatched samples.

The calculation process of this metric is as follows:

First, we calculate the normalized average similarity ra-

tio between matched samples and unmatched samples by:

PNR = 1− e−kx, (1)

where x is the average similarity ratio between matched and

unmatched samples in a list and k is set to 1 as default.

Then, we calculate the average similarity precision by:

ASP =
1

n+

n+∑

k=1

∑jk
i=1 s

+
i∑jk

i=1 si
, (2)

where {jk}
n+
k=1 means the rankings of n+ matched samples.

Then, the similarity distribution (SD) of a rank list can

be measured by the product of PNR and ASP . Finally, the

mean value of SDs of all rank lists, i.e., mSD, is calculated

as our evaluation metric.

3.5. Evaluation Paradigm

During evaluation, all images in the gallery are ranked ac-

cording to their similarities with the text query. We adopt

the traditional rank-k accuracy and mAP, and our newly

proposed mSD to evaluate the retrieval performance.

Standard Evaluation. As a standard in-domain evaluation

paradigm, UFine6926 is divided into two subsets for train-

ing and test. The training set contains 18,577 images and

37,154 texts of 4926 identities. The test set contains 7,629

images and 15,258 text queries of 2,000 identities.

Special Evaluation. As a special evaluation paradigm with

cross settings, UFine3C is utilized as a test set for evaluating

the model performance in real scenarios. The training set is

the same as that of standard paradigm.

4. Method

4.1. Overview

In this section, we introduce a Cross-modal Fine-

grained Aligning and Matching framework (CFAM), which

achieves fine granularity mining in a non trivial way. The

whole framework is shown in Figure 3, given an input

image I and an input text T , the CLIP [26] pre-trained

visual encoder Ev and textual encoder Et are adopted

to extract the visual embeddings V = {v1,v2, . . . ,vni
}

and textual embeddings W = {w1,w2, . . . ,wnt
}, respec-

tively. Specially, we design a cross-modal fine-grained align

and match module to improve the fine-grained retrieval abil-

ity. Through a shared cross-modal granularity decoder and

hard negative match mechanism, the framework achieves

competitive performance on various datasets and settings.

4.2. Cross­modal Fine­grained Aligning

Given the extracted visual and textual embeddings, most ex-

isting methods [12, 55] only calculate global similarities to

achieve cross-modal alignment, which is inclined to over-

looking the fine-grained details in both modalities. There-

fore, we propose to perform more fine-grained alignment

based on the local embeddings. However, the visual embed-

dings V and textual embeddings W usually have different

length. To address this issue, we propose a shared cross-

modal granularity decoder Dg with a fixed set of granularity
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Figure 3. Overview of the proposed CFAM framwork.

queries Q = {q1,q2, . . . ,qK}. These queries can interact

with the embeddings and extract fine-grained information

for cross-modal alignment.

For visual fine-grained information extraction, the gran-

ularity decoder Dg take the queries Q and the visual em-

beddings V as input, and then produce the fine-grained vi-

sual representations as follow,

V = Dg(Q,V), (3)

where V = {v1,v2, . . . ,vK} has the same length as the

granularity queries. Meanwhile, the fine-grained textual

representations W = {w1,w2, . . . ,wK} are produced in

the similar way.

In this decoding procedure, the output representations

corresponding to a certain query contain the relevant fine-

grained information from both modalities and share similar

semantic content. Therefore, the cross-modal similarity for

each query output can be measured to achieve fine-grained

alignment. We use the cosine distance to measure the simi-

larity and the overall similarity of the K query outputs can

be calculated by:

Sim(V,W) =
1

K

K∑

i

v
⊺

i wi

||vi||||wi||
. (4)

Then, given a batch of B image-text pairs, the commonly

used SDM loss [12] will be utilized to calculate the local

alignment loss Lls according to the similarity distribution.

4.3. Cross­modal Hard Negative Matching

To further facilitate the cross-modal alignment, we propose

to perform prediction on whether the granularity represen-

tations of each modality are matched. This task can be

seen as a binary classification problem: the paired image-

text is considered the positive sample, while the unpaired

is considered the negative one. Unlike common random

sampling, we employ the hard negative mining strategy,

which is beneficial to learning more discriminative repre-

sentations.

For each image within a batch |B|, we sample the un-

paired text whose owns the highest similarity with this im-

age as the hard negative. Also, we sample one hard neg-

ative image for each text in the same way. Through this

approach, we obtain |B| positive pairs and 2|B| negative

pairs, denoted as |B| pairs. Then, we pass the fine-grained

representations of these |B| pairs through a binary classifier

named Matcher, to optimize the following objective:

Lm =
1

|B|

∑

(V,W)∈B

(ŷ log p(V,W)+(1−ŷ)(1−log p(V,W))),

(5)

where p is a binary likelihood distribution function, and ŷ is

1 if (V,W) is matched, 0 otherwise.

4.4. Training and Inference Strategy

As complementary to fine-grained alignment, we compute

the global similarity between the global visual embedding

and the global textual embedding, and optimize the global

alignment loss Lgs according to it. Also, we propose to

utilize the cross-modal identity classifying loss Lcid with

hard negative samples to explicitly ensure that the repre-

sentations of the same image/text pair are closely clustered

together. The details of this strategy are shown in the sup-

plement. The overall training objective is the weighted sum

of the above losses:

L = Lgs + λ1Lls + λ2Lm + λ3Lcid, (6)

where λ1, λ2, λ3 are hyper-parameters to adjust the weight

of each loss, which are all set to 1 as the default.

In the inference phase, we will discard all additional

designs and only compare the similarities between the vi-

sual and textual global embeddings. First, all images in

the gallery will be passed to the visual encoder to extract

the according global visual embeddings. Second, for each

text query, we obtain its textual global embedding in a sim-

ilar way and then we compute its similarity with the visual

global embeddings of all images. Finally, we utilize the cal-

culated similarities for ranking the image candidates.

5. Experiments

5.1. Implementation

We conduct text-based person retrieval on our pro-

posed fine-grained UFine6926 datasets and three existing

datasets CUHK-PEDES [17], ICFG-PEDES [6] and RST-

PReid [54]. Meanwhile, we utilize the UFine3C evalua-

tion set as an extra supplement to assess the generaliza-

tion ability of the models in real scenarios. We adopt the
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popular rank-k metric (k=1,5,10), the mean Average Preci-

sion (mAP) and our proposed mean Similarity Distribution

(mSD) as the evaluation metrics. The higher rank-k, mAP

and mSD indicates better performance.

CFAM mainly consists of a pre-trained visual encoder,

i.e., CLIP-ViT-B/16 [26], a pre-trained text encoder, i.e.,

CLIP textual encoder, a random-initialized granularity de-

coder and a matcher. The granularity decoder is shared by

visual and textual modalities, consisting of 2-layer trans-

former blocks [38]. The matcher is consisted of 2-layer

transformer blocks and an MLP with sigmoid activation.

For each layer of the granularity decoder and matcher, the

hidden size and number of heads are set to 512 and 8. The

number of granularity queries is set to 16 and their hidden

dimension is 512. For downstream training, the images are

resized to 384×128 and the maximum length of the textual

tokens is set to 168. The batchsize per GPU is set to 64.

Also, random erasing, horizontally flipping and crop with

padding are employed for image augmentation. Random

masking and replacement is employed for text augmenta-

tion. Our CFAM is trained with Adam [13] for 60 epochs

with an initial learning rate 1e−5. We adopt the linearly

warm-up strategy within the beginning 5 epochs. For the

random-initialized modules, the initial learning rate is set to

5e−5. We adopt the cosine learning rate decay strategy. The

experiments are performed on 1 V100 32GB GPU.

5.2. Importance of Fine Granularity

In this section, we conduct experiments to study the impor-

tance of fine granularity in real-world scenarios. Specifi-

cally, we have trained two baseline models (PLIP [55] and

IRRA [12]) and our CFAM on three coarse-grained existing

datasets and our fine-grained dataset. Then, due to the fact

that generalization ability is indispensable in real-world sce-

narios, we evaluate their performance under a range of cross

settings. Please note that PLIP [55] is a pre-trained model

on a large amount of pedestrian data, giving it a SoTA gen-

eralization capability in the current field. However, com-

pared to PLIP, CFAM still demonstrates competitive perfor-

mance under a range of cross settings.

Fineness Better Generalizes to Real-world Scenarios. In

real-world scenarios, there are many variations in image do-

mains, textual granularity and textual styles. The ability

to effectively address these variations is a necessity for a

high-level model. To study whether training on our pro-

posed fine-grained UFine6926 dataset can lead the model

to better generalize to the real-world scenarios than exist-

ing coarse-grained datasets [6, 17, 54], we conduct exper-

iments by setting the UFine3C evaluation set as the target

set to be transfered. The specific experimental procedure

is described as follows. Firstly, We choose two existing

popular open-source and state-of-the-art methods [12, 55]

and our CFAM as the baseline models. Secondly, we

train the models on each training set of the three coarse-

grained datasets [6, 17, 54] and our fine-grained UFine6926.

Thirdly, we directly evaluate the trained models’ perfor-

mance on the UFine3C evaluation set. By comparing the

performance differences, we can effectively assess the gen-

eralization ability of models trained on various datasets to

real-world scenarios. The experimental results are reported

in Table 2. As we can see, for all the three baseline mod-

els, training on our UFine6926 dataset will significantly

lead to better performance on the UFine3C evaluation set.

Specifically, CFAM achieves 62.84%, 77.82%, 83.23% and

46.04% on rank-1, rank-5, rank-10 and mSD, respectively,

greatly exceeding the results obtained by training on other

coarse-grained datasets. We must note that the training sam-

ples in UFine6926 is much less than that in other datasets,

while still achieves state-of-the-art performance. The re-

sults demonstrate that our fine-grained UFine6926 helps

to learn more discriminative and general representations,

which is beneficial to generalize to the real scenarios.

Generalization between Fineness and Coarseness. We

conduct the experiments under two aspects. As the first as-

pect, we investigate the differences in mutual generaliza-

tion capabilities between coarse-grained and fine-grained

datasets. We train the models on the coarse-grained datasets

and then directly transfer them to our fine-grained dataset,

and vice versa. The experimental results are reported in Ta-

ble 3 (a). As we can see, for all of the three baseline mod-

els, training on the coarse-grained datasets cannot well be

transferred to our fine-grained dataset. For example, when

transferring to UFine6926, PLIP [55] trained on CUHK-

PEDES [17] only achieves 20.52%, 33.74%, 42.69% on

rank-1, rank-5 and rank-10, respectively, which falls far

short of practical application requirements. However, train-

ing on our fine-grained dataset can be transferred to the

coarse-grained datasets to a better extent. This demon-

strate that training on our fine-grained dataset enables gen-

eralization to coarse-grained datasets, while the reverse

is not true. As the second aspect, we demonstrate that

even when transferring to a coarse-grained dataset, train-

ing with our fine-grained dataset is mostly superior to us-

ing other coarse-grained datasets. We choose the coarse-

grained ICFG-PEDES [6] and RSTPReid [54] datasets as

the target datasets. As the results reported in Table 3 (b),

for all of the baselines, even though our dataset contains

very little coarse-grained data, training on our UFine6926

still achieves better or competitive performance on the two

target coarse-grained datasets. All the results demonstrate

that our fine-grained dataset improves general representa-

tion learning for text-based person retrieval.

Qualitative Results. To make a more realistic compar-

ison of the models’ performance in real-world scenarios,

we conduct a straightforward qualitative experiment. We

choose our CFAM trained on the coarse-grained CUHK-
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Training Sets
CFAM IRRA [12] PLIP [55]

R@1 R@5 R@10 mAP mSD R@1 R@5 R@10 mAP mSD R@1 R@5 R@10 mAP mSD

CUHK-PEDES 53.80 71.05 78.25 50.40 38.26 50.06 67.98 75.46 47.57 36.50 40.45 57.51 65.20 38.94 30.82

ICFG-PEDES 36.79 54.64 62.93 34.21 25.47 30.57 47.61 55.87 28.38 21.24 34.32 50.52 57.94 32.59 24.88

RSTPReid 29.85 49.08 58.54 29.66 21.82 21.62 39.53 49.38 21.90 16.09 25.25 40.70 48.30 24.62 18.18

UFine6926 62.84 77.82 83.23 59.31 46.04 56.34 72.17 78.47 54.24 42.92 64.59 80.16 85.63 60.43 47.76

Table 2. Performance comparisons on the UFine3C evaluation dataset. The models are trained on the training sets of CUHK-PEDES,

ICFG-PEDES, RSTPReid and our UFine6926, and then are directly evaluated on the UFine3C dataset. Although the training samples in

UFine6926 is less than that in other datasets, training on it still achieves state-of-the-art performance. The bold results indicate the best.

Domains
CFAM IRRA [12] PLIP [55]

R@1 R@5 R@10 mAP mSD R@1 R@5 R@10 mAP mSD R@1 R@5 R@10 mAP mSD

CUHK→ UFine 42.49 59.47 68.14 45.06 33.74 37.63 54.99 64.46 40.79 30.80 20.52 33.74 42.69 24.17 18.90

ICFG→UFine 20.65 34.66 43.05 23.09 16.65 14.99 26.85 33.92 17.02 12.29 12.13 21.88 28.73 14.98 11.20

RSTP→UFine 20.20 35.31 44.02 23.13 16.73 13.13 25.59 33.81 15.55 11.20 9.75 18.86 25.27 12.32 8.95

UFine→CUHK 48.72 70.21 78.17 44.42 33.23 41.41 62.72 71.85 39.22 29.86 56.53 77.24 84.10 51.60 39.85

UFine→ICFG 40.78 60.90 69.31 22.30 16.28 35.08 55.16 64.02 18.87 13.85 51.52 70.96 78.02 27.67 20.93

UFine→RSTP 45.10 72.35 81.45 35.40 25.40 41.30 64.25 76.00 32.04 22.93 43.85 72.10 80.60 33.88 24.97

(a) Differences in mutual generalization capabilities between coarse-grained and fine-grained datasets.

Domains
CFAM IRRA [12] PLIP [55]

R@1 R@5 R@10 mAP mSD R@1 R@5 R@10 mAP mSD R@1 R@5 R@10 mAP mSD

CUHK → ICFG 46.21 65.18 72.65 24.77 18.00 42.42 62.07 69.64 21.80 15.94 53.81 72.56 79.34 30.20 22.76

RSTP→ICFG 38.55 55.37 63.53 24.66 18.46 32.37 49.71 57.75 20.57 15.44 51.01 69.52 76.71 32.14 23.82

UFine→ICFG 40.78 60.90 69.31 22.30 16.28 35.08 55.16 64.02 18.87 13.85 51.52 70.96 78.02 27.67 20.93

ICFG→CUHK 40.48 63.48 72.68 37.38 27.11 33.45 56.12 66.21 31.39 22.78 56.40 76.98 83.82 51.72 39.12

RSTP→CUHK 40.11 63.55 72.61 37.29 27.04 32.67 55.20 65.34 30.17 21.87 50.15 72.84 81.01 46.84 34.43

UFine→CUHK 48.72 70.21 78.17 44.42 33.23 41.41 62.72 71.85 39.22 29.86 56.53 77.24 84.10 51.60 39.85

(b) Fine-grained dataset can even better be transferred to other coarse-grained datasets than the coarse-grained dataset.

Table 3. Performance comparisons on the generalization performance between our fine-grained UFine6926 and three existing datasets

CUHK-PEDES [17], ICFG-PEDES [6] and RSTPReid [54]. The arrow direction indicates the source dataset and the target dataset.

PEDES [17] and the fine-grained UFine6926 as the base-

line models to be compared. Then, we manually provide

any textual descriptions to search the according persons in

the UFine3C dataset. The rank-10 retrieval results from the

CFAM models trained on CUHK-PEDES and UFine6926

respectively are compared in Figure 4. As it shows, training

on UFine6926 achieves more accurate retrieval results and

can fully perceive fine-grained discriminative clues to dis-

tinguish different persons, while training on CUHK-PEDES

fails to do so. This is illustrated in the orange highlighted

text and image region box in Figure 4.

5.3. Comparison with State­of­the­Art Methods

In this section, we compare the performance of our pro-

posed CFAM framework with state-of-the-art (SoTA) meth-

ods on our fine-grained UFine6926 dataset and three public

coarse-grained datasets [6, 17, 54].

Performance Comparisons on UFine6926. We utilize

two evaluation sets for the performance comparison on

UFine6926. The first is the UFine3C evaluation set. The

second is the UFine6926 test set. We evaluate the per-

formance of existing SoTA methods trained on our new

UFine6926. As the results shown in Table 4, on each eval-

uation set, CFAM outperforms all other SoTA methods.

A man wearing a white

short-sleeved shirt and

black shorts has a black

watch on his wrist.

The woman is wearing a

black clothing and a pair

of black pants, and she

is wearing a pair of

black glasses.

Figure 4. Comparison of rank-10 retrieval results on UFine3C

between CFAM trained on UFine6926 [17] (the first row) and

CUHK-PEDES (the second raw) for each textual description. The

images that fully match the text are marked in green, and the un-

matched ones are marked in red.

Specifically, with CLIP-ViT-L/14 [26] setting, it achieves

62.84% rank-1 accuracy, 59.31% mAP and 46.04% mSD

on UFine3C, respectively. Meanwhile, it achieves 88.51%

rank-1 accuracy, 57.09% mAP and 68.45% mSD on

UFine6926 test set, respectively. These results demonstrate

the superior fine-grained retrieval capability of CFAM.
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Methods
Metrics

R@1 R@5 R@10 mAP mSD

U
F

in
e3

C

NAFS [10] 43.69 61.34 69.72 39.31 30.32

LGUR [30] 51.26 69.67 75.32 49.22 38.13

SSAN [6] 53.67 71.15 77.15 51.40 39.66

IRRA [12] 56.34 72.17 78.47 54.24 42.92

CFAM(B/16) 59.61 75.82 82.90 56.53 45.22

CFAM(L/14) 64.62 79.56 85.13 61.13 48.34

U
F

in
e6

9
2
6

NAFS [10] 64.11 80.32 85.05 63.47 49.61

LGUR [30] 70.69 84.57 89.91 68.93 56.23

SSAN [6] 75.09 88.63 92.84 73.14 59.41

IRRA [12] 83.53 92.94 95.95 82.79 66.35

CFAM(B/16) 86.65 95.71 98.12 85.23 67.49

CFAM(L/14) 89.61 96.78 98.89 88.19 69.45

Table 4. We train some state-of-the-art open-source models on

UFine6926 and evaluate the performance under two evaluation set-

tings. We show the best score in bold .

Method
CUHK-PEDES

R@1 R@5 R@10 mAP mSD

MIA [20] 53.10 75.00 82.90 - -

TIMAM [28] 54.51 77.56 79.27 - -

TDE [21] 55.25 77.46 84.56 - -

NAFS [10] 59.94 79.86 86.70 54.07 -

SSAN [6] 61.37 80.15 86.73 - -

LapsCore [45] 63.40 - 87.80 - -

TIPCB [3] 64.26 83.19 89.10 - -

CAIBC [42] 64.43 82.87 88.37 - -

LGUR [30] 65.25 83.12 89.00 - -

IVT [32] 65.59 83.11 89.21 - -

PLIP [55] 69.23 85.84 91.16 - -

CFine [46] 69.57 85.93 91.15 - -

IRRA [12] 73.38 89.93 93.71 66.13 51.49

CFAM(B/16) 73.67 89.71 93.57 65.94 51.32

CFAM(L/14) 76.71 91.83 95.96 68.47 52.93

Table 5. Comparison with the state-of-the-art methods on CUHK-

PEDES [17]. We show the best score in bold.

Performance Comparisons on Other Datasets. The

experimental results on the CUHK-PEDES [17], ICFG-

PEDES [6] and RSTPReid [54] datasets are reported in Ta-

ble 5, Table 6 and Table 7, respectively. On CUHK-PEDES,

with the CLIP-ViT-B/16 setting, CFAM achieves competi-

tive results to recent state-of-the-art methods without bells

and whistles, achieving 72.87% rank-1 accuracy, 64.92%

mAP and 50.20% mSD, respectively. Meanwhile, with the

CLIP-ViT-L/14 setting, the performance of CFAM can be

further improved, achieving 75.60% rank-1, 67.27% mAP

and 51.83% mSD, respectively. This means that our method

has good scalability. On ICFG-PEDES and RSTPReid, our

CFAM also outperforms all state-of-the-art methods by a

considerable margin. It achieves 65.38% rank-1, 39.42%

mAP and 30.29% mSD on ICFG-PEDES, 62.45% rank-1,

49.50% mAP and 36.92% mSD on RSTPReid, respectively.

The results demonstrate that CFAM helps to learn general

representations on various datasets.

5.4. Ablation Study

To verify the contribution of each component in CFAM,

we conduct an ablation experiment on CUHK-PEDES

dataset [17]. The results are reported in Table 8. No.0 is the

baseline utilizing the original InfoNCE loss in CLIP [26]

Method
ICFG-PEDES

R@1 R@5 R@10 mAP mSD

Dual Path [53] 38.99 59.44 68.41 - -

CMPM/C [48] 43.51 65.44 74.26 - -

ViTAA [41] 50.98 68.79 75.78 - -

SSAN [6] 54.23 72.63 79.53 - -

LGUR [30] 59.02 75.32 81.56 - -

IVT [32] 56.04 73.60 80.22 - -

CFine [46] 60.83 76.55 82.42 - -

IRRA [12] 63.46 80.25 85.82 38.06 29.54

PLIP [55] 64.25 80.88 86.32 - -

CFAM(B/16) 63.57 80.57 86.32 38.34 29.01

CFAM(L/14) 66.58 82.47 87.37 40.46 31.78

Table 6. Comparison with the state-of-the-art methods on ICFG-

PEDES [6]. We show the best score in bold.

Method
RSTPReid

R@1 R@5 R@10 mAP mSD

DSSL [54] 39.05 59.44 68.41 - -

SSAN [6] 43.50 67.80 77.15 - -

LBUL [43] 45.55 68.20 77.85 - -

IVT [32] 46.70 70.00 78.80 - -

CFine [46] 50.55 72.50 81.60 - -

IRRA [12] 60.20 81.30 88.20 47.17 35.22

CFAM(B/16) 60.51 82.85 89.71 47.64 35.67

CFAM(L/14) 63.54 84.75 92.32 50.48 37.96

Table 7. Comparison with the state-of-the-art methods on RST-

PReid [54]. We show the best score in bold.

No.
Components CUHK-PEDES

Lgs Lls Lm Lvap R@1 R@5 R@10 mAP mSD

0 68.45 86.50 91.68 61.28 46.31

1 ✓ 70.42 87.20 92.22 63.00 48.38

2 ✓ ✓ 71.69 87.87 92.37 63.85 49.12

3 ✓ ✓ ✓ 72.42 88.31 92.80 64.81 49.84

4 ✓ ✓ ✓ ✓ 73.67 89.71 93.57 65.94 51.32

Table 8. Ablation study on each component of CFAM.

to align the cross-modal global embeddings. As we can

see, each component facilitates the model’s capability, and

combining all of them leads to the best performance. In

addition, we have conducted further ablation experiments,

which are detailed in the supplement.

6. Conclusion

This paper introduces a new benchmark for text-based per-

son retrieval with ultra-fine granularity. We firstly con-

tribute a manually annotated dataset named UFine6926 with

ultra fine-grained texts. Meanwhile, we propose a special

evaluation paradigm more representative for real scenarios

with a new evaluation set named UFine3C and a new met-

ric named mSD. Then, CFAM is proposed in the attempt

to achieve fine-grained cross-modal representation correla-

tion. Our benchmark will enable research possibilities in

multiple directions, e.g., fine-grained retrieval, real scenario

generalization, multi-granularity adaptation, efficient struc-

ture, etc. We believe this work will shed light on more fu-

ture researches in this community.
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