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Abstract

Point cloud filtering is a fundamental 3D vision task,
which aims to remove noise while recovering the underly-
ing clean surfaces. State-of-the-art methods remove noise
by moving noisy points along stochastic trajectories to the
clean surfaces. These methods often require regularization
within the training objective and/or during post-processing,
to ensure fidelity. In this paper, we introduce StraightPCF,
a new deep learning based method for point cloud filtering.
It works by moving noisy points along straight paths, thus
reducing discretization errors while ensuring faster conver-
gence to the clean surfaces. We model noisy patches as
intermediate states between high noise patch variants and
their clean counterparts, and design the VelocityModule to
infer a constant flow velocity from the former to the lat-
ter. This constant flow leads to straight filtering trajec-
tories. In addition, we introduce a DistanceModule that
scales the straight trajectory using an estimated distance
scalar to attain convergence near the clean surface. Our
network is lightweight and only has ∼ 530K parameters,
being 17% of IterativePFN (a most recent point cloud fil-
tering network). Extensive experiments on both synthetic
and real-world data show our method achieves state-of-
the-art results. Our method also demonstrates nice distri-
butions of filtered points without the need for regulariza-
tion. The implementation code can be found at: https:
//github.com/ddsediri/StraightPCF.

1. Introduction

In recent years, point clouds have become increasingly pop-
ular as the representation-of-choice for storing and manip-
ulating 3D data, with numerous applications in both com-
puter vision [12, 20, 25, 38] and geometry modelling [16,
25, 40]. Point clouds are unordered sets of 3D coordinates
which typically represent object surfaces and are captured
using 3D sensors such as depth and Lidar devices. However,
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Figure 1. Filtered trajectories for the Isocahedron shape at 50K
resolution and noise scale σ = 3%. Our StraightPCF filters points
along much straighter paths, compared to ScoreDenoise [28].

noisy artifacts may appear in point clouds as a result of sen-
sor limitations and environmental factors. Removing this
noise, known as filtering or denoising, is a fundamental 3D
vision task. Filtering methods are broadly categorized into
two groups: 1) conventional methods involving traditional
optimization and 2) deep learning based methods. Conven-
tional methods can further be subdivided into normal based
methods which require surface normal information to reli-
ably filter point clouds [2, 10, 13, 24, 30] and point based
methods which directly filter point clouds [15, 21, 32].
While normal based methods are limited by the accuracy
of normals, point based methods suffer from a loss of geo-
metric details and still exhibit sensitivity to noise. Recently,
many deep learning approaches have been proposed to over-
come these shortcomings.

Deep learning methods can be divided into 1) resam-
pling, 2) displacement and 3) probability based meth-
ods. Resampling-based methods [26] show the least fidelity
when recovering the underlying noise-free surfaces as their
downsampling procedure results in the loss of crucial geo-
metric information. By contrast, displacement and proba-
bility based methods show greater promise as they model
the filtering objective as a reverse Markov process, which
can be iteratively applied on the input to progressively re-
move noise. Early displacement based methods, such as
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PointCleanNet [7, 35, 45], employ large networks (>1M
parameters) that consume a large patch of points to filter a
single, central point. This is time-consuming and resource
intensive. More recently, IterativePFN [8] models the it-
erative filtering process internally using multiple Iteration-
Modules and filters all patch points simultaneously. How-
ever, incorporating multiple IterationModules results in a
large network (>3.2M parameters) which requires a large
amount of GPU memory to process. Probabilistic score
based methods such as ScoreDenoise [6, 28] offer a more
lightweight network but require a high number of iterations
to recover the clean surface. At higher noise levels, they
converge to surfaces that retain noticeable amounts of noise.
DeepPSR [6] utilizes the score module of [28] but performs
an additional Graph Laplacian Regularization [14] step on
intermediate point clouds to obtain a better point distribu-
tion. More importantly, the iterative filtering objectives of
current displacement and probabilistic methods move noisy
points to the clean surface via stochastic trajectories and are
error prone as incorrectly inferred displacements may result
in significant changes to the distribution of filtered points.

We propose StraightPCF, which moves noisy points
along straight filtering trajectories towards the clean sur-
faces, as illustrated in Fig. 1. StraightPCF, illustrated in
Fig. 2, is a lightweight network (∼ 530K parameters, 17%
of IterativePFN [8]) which filters all patch points simulta-
neously. Our technical contributions are as follows.
• We introduce the patch-wise VelocityModule that infers

constant, straight flows to filter point cloud patches. The
VelocityModule elegantly recovers the underlying clean
surfaces with nice point distributions.

• To improve straightness of flows, we propose a novel
straightening mechanism consisting of coupled Veloci-
tyModules. This coupled VelocityModule stack infers
straighter filtering trajectories, leading to better results.

• Constant flows may lead to filtered points overshooting
the clean surface. Therefore, we design the Distance-
Module to infer a distance scalar that provides a magni-
tude to scale the flow velocity. Our architecture is the first
to decompose filtering into a dual objective of inferring a
vector field of flow velocities and a distance scalar.

2. Related Work
Conventional filtering. Early conventional methods were
inspired by the Moving Least Squares (MLS) method of
Levin [17] and require normal information for filtering.
Notably, Alexa et al. [2] employed MLS optimization in
recovering denoised surfaces from noisy point sets. The
Implicit MLS (IMLS) method of Adamson and Alexa [1]
further extended this approach to point-sampled cell com-
plexes which allow for a well defined local geometry. The
Algebraic Point Set Surface (APSS) method of Guennebaud
and Gross [13] applied MLS optimization for the purpose of

fitting algebraic spheres to recover surfaces while being ro-
bust to point set density and underlying curvature. Further-
more, Digne proposed filtering the height map associated to
a point set by considering handcrafted features that encode
height variations around each point [9]. Digne and de Fran-
chis designed a weighted projection scheme, that moves
points to their filtered positions [10], based on the mesh
bilateral filtering method of Fleishman, Drori and Cohen-
Or [11]. Other normal based methods include the Mov-
ing Robust Principal Component Analysis (MRPCA) [30]
of Mattei and Castrodad, the Graph Laplacian Regulariza-
tion (GLR) [14] technique of Hu et al. and the Low Rank
Matrix Approximation [24] of Lu et al. The main drawback
of such methods is susceptibility to noise, during both the
normal estimation and filtering steps.

By contrast, point based methods employ only point in-
formation for filtering. Cazals and Pouget [4] proposed a
N -dimensional polynomial surface fitting method that can
be used to filter points. Meanwhile, the Locally Optimal
Projection (LOP) [21] method of Lipman et al. downsam-
pled and regularized noisy point clouds. It was extended by
Huang et al. and Preiner et al. who developed Weighted-
LOP (WLOP) [15] and Continuous-LOP (CLOP) [32], re-
spectively. However, these methods do not effectively re-
cover geometric details due to their downsampling step.
Deep learning based filtering. While conventional meth-
ods rely on handcrafted features, convolutional neural net-
work architectures have provided great improvements to
feature generation. PointProNets [37] by Roveri et al. and
Deep Feature Preserving (DFP) [23] by Lu et al. projected
points onto 2D height maps before processing them using
CNNs. PointNet [33], introduced by Qi et al., set the prece-
dent for direct point set convolution and was later improved
by PointNet++ [34]. Meanwhile, DGCNN [42] of Wang
et al. reformulated point set convolution as a graph con-
volution task. PointCleanNet (PCN) [35] was one of the
first methods to adopt the PointNet architecture and inferred
the filtered displacement of a single central point by consid-
ering its neighborhood patch. Pointfilter [45] of Zhang et
al. furthered this line of research using a bilateral filtering-
inspired loss.

Pistilli et al. introduced the first graph convolution-based
mechanism, named GPDNet [31], while Luo and Hu pro-
posed the DGCNN based DMRDenoise [26]. DMRDenoise
filtered points by downsampling noisy inputs and upsam-
pling these less noisy surfaces. Luo and Hu also proposed
ScoreDenoise [28] where they formally expressed the filter-
ing objective as the backward Langevin equation that itera-
tively removes noise using the inferred gradient-log of the
probability distribution, i.e., the score, for point positions
xxx. This was extended by Chen et al. in their DeepPSR [6]
which employs an additional graph laplacian regularization
post-processing step. Mao et al. introduced the normalizing
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Figure 2. Our StraightPCF network. It involves a coupled VelocityModule stack that infers a constant flow velocity vvvkθ for patch states
X̃XX(t̂+k)/T . To ensure filtered points converge to the surface, the DistanceModule infers a distance scalar dϕ that scales the velocity.

flows based filtering method PDFlow [29] that disentangles
noise from the underlying clean representation at higher di-
mensions. The RePCDNet [5] method of Chen et al. sought
to model iterative filtering via a recurrent neural network.
By contrast, de Silva Edirimuni et al. proposed the graph
convolution based IterativePFN [8] that models iterative fil-
tering using individual IterationModules. The joint filter-
ing and normal estimation method CFilter [7], developed
by de Silva Edirimuni et al., exploited normals to improve
filtered point positions. Ma et al. introduced learning im-
plicit signed distance functions, by displacing noisy query
points back to the surface along normals where the surface
corresponds to the zero-level set of the function [3]. This
has been exploited for normal estimation [18, 19].

Score and displacement based methods are inspired by
diffusive processes [27, 39] and their filtering objectives re-
sult in stochastic trajectories. Recent work by Liu, Gong
and Liu focuses on Reflow [22], which explored the op-
timal transport problem of identifying straight paths given
two samples from different distributions. The work of Wu et
al. further extended this Reflow mechanism to point cloud
generation, which attempts to generate point cloud shapes
given initial samples from the normal distribution [43].

3. Problem Statement and Motivation
Resampling methods demonstrate an inability to recover
clean surfaces with high accuracy, unlike probabilistic and
displacement based methods. A probabilistic score based
method such as ScoreDenoise [28] and a displacement
based method such as IterativePFN [8] share similar filter-
ing objectives that may be expressed by,

x̃xxi
t = x̃xxi

t−1 + Fθ(x̃xx
i
t−1), t = 1, . . . , T (1)

where x̃xxi
t is the i-th filtered point at time t and Fθ repre-

sents the network with parameters θ. The main difference
between ScoreDenoise and IterativePFN lies in their train-
ing objectives, LS and LI , respectively. For a noisy point
xxxi ∈XXX where XXX is the initial noisy patch, we have:

Li
S = Exxx∼kNN(xxxi,XXX)

[∥∥s(xxx)− Si(xxx)
∥∥2
2

]
, (2)

Li
I =

T∑
t=0

∥∥dddit − (
NN(xxxi

t−1,YYY t)− xxxi
t−1

)∥∥2
2
. (3)

ScoreDenoise is trained to predict a score Si(xxx) =
Score(xxx − xxxi|hhhi) for xxx sampled from the k-nearest neigh-
bors of xxxi. It is conditioned on the latent feature hhhi of xxxi

and corresponds to the gradient-log of the noise-convolved
probability distribution for point position xxx. The ground
truth target s(xxx) = NN(xxx,YYY ) − xxx, where YYY is the clean
patch. Ergo, s(xxx) is the displacement from xxx to its near-
est neighbor in YYY . Once this training objective has been
optimized, score based methods infer aggregate scores, at
each iteration t, such that Fθ(xxx

i
t−1) = αE i(xxxi

t−1) =
(α/K)

∑
xxxj
t−1∈kNN(xxxi

t−1)
Sj(xxxi

t−1) where α is the step dis-
cretization parameter. This score shifts points towards the
clean surface along a stochastic filtered trajectory that is
sensitive to the choice of α, which must be kept relatively
small (∼ 0.2). By contrast, IterativePFN internally mod-
els the iterative filtering objective and incorporates it within
their training objective. They directly infer displacements
Fθ(x̃xx

i
t−1) = dddit as the output of each IterationModule that

models an iteration t. From Eq. (3) we identify that the
overall filtered trajectories inferred by IterativePFN will
also be stochastic in nature as it uses an Adaptive Ground
Truth (AGT), YYY t = YYY + σtξ ∧ ξ ∼ N (0, I), within the
training objective. Modelling the iterative filtering process
internally results in a large network (>3.2M parameters).
The AGT, while recovering the surface, causes clustering
along the surface and fails to respect the original point dis-
tribution. This is illustrated in Fig. 3.

Inspired by Reflow which focuses on optimal transport
between samples of different distributions [22, 43], we pose
filtering as an optimal transport problem between point
cloud patches. These patches of n points are sampled from
1) the clean surface (i.e., clean patch XXX1 ∼ π1) and 2) a
high noise variant of the clean surface (i.e., high noise patch
XXX0 ∼ π0). The goal is to determine a transport plan (cou-
pling) such that XXX1 = V (XXX0) where V : Rn×3 → Rn×3.
The approximated flow velocity, vvvθ : Rn×3 → Rn×3 sat-
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Figure 3. Our StraightPCF is able to recover a better distribution
of filtered points, even at very high noise scales (σ = 3% and 50K
resolution) unseen during network training.

isfies this transport mapping and (X̃XX0, X̃XX1) form a valid
coupling. Consequently, the filtered trajectories are straight
(see Fig. 4), unlike ScoreDenoise and IterativePFN. More-
over, our method recovers the underlying point distribution
of the surface without clustering artifacts or distortion.

4. Method
Previous methods such as ScoreDenoise [28] and Itera-
tivePFN [8] focus on filtering as a reverse Markov pro-
cess where the forward process would correspond to adding
noise. We formulate filtering as an optimal transport plan
that moves noisy points back to the clean surface along the
shortest (straight) path. We model noisy input patches as
intermediate states between high noise variants and their
corresponding clean counterparts. We design a graph-
convolution based VelocityModule that infers a constant
flow velocity for each intermediate state. This encourages
noisy points to move along straight filtering trajectories as
shown in Fig. 4. We further improve the straightness of
these trajectories via VelocityModule coupling. Finally, as
the flow is constant, it may result in filtered points over-
shooting the clean surface. Therefore, we design a Dis-
tanceModule that scales the flow velocity appropriately and
ensures convergence near the surface. The overall Straight-
PCF architecture is illustrated in Fig. 2, which demonstrates
the filtering process that utilizes both the coupled Velocity-
Module and DistanceModule sub-networks to move points
along straightened paths. The supplementary document
provides additional methodology details.

4.1. Filtering via straight flows

In this section, we introduce the VelocityModule (VM)
that moves noisy points along constant, straight flows to-

Figure 4. StraightPCF models initial noisy patches (light blue)
as being intermediate states of a linear interpolation between high
noise variants (red) and the clean surfaces (dark blue) and encour-
ages straight filtering trajectories.

wards the clean surface. Given a noisy patch XXX =
{xxxi|xxxi ∈ kNN(xxxr,PXXX , k)} centered around a reference
point xxxr in the noisy point cloud PXXX , the filtering objec-
tive aims to move xxxi towards the underlying clean patch
YYY = {yyyi|yyyi ∈ PYYY }. For the filtering task, learning based
methods are typically trained on noisy point clouds with
Gaussian noise [6, 28, 29, 35, 45]. Iterative filtering de-
pends on the ability of the method to filter patches from a
higher noise level to a lower noise level, with the end result
converging to the clean surface. Given the highest noise
setting σH , intermediate noise scales at a time t ∈ [0, 1]
can be expressed as σ = (1 − t)σH . Therefore, we model
noisy patches XXX = YYY + σξ ∧ ξ ∼ N (0, I) as interme-
diate states XXXt, of the filtering objective that moves points
from a high noise variant, XXX0 = YYY + σHξ ∧ ξ ∼ N (0, I)
to the clean counterpart XXX1 = YYY . Here, σH = 2% of the
point cloud’s bounding sphere radius and corresponds to the
highest noise setting of our training set. We observe that in-
termediate statesXXXt can be defined as a linear interpolation
of XXX0 and XXX1, that is, a straight path, such that,

XXXt = (1− t)XXX0 + tXXX1 (4)

Therefore, we intuit that the filtering objective can be
reformulated as an optimal transport process that moves
points from XXX0 to XXX1. The flow of XXXt at time t can be
expressed via the ordinary differential equation (ODE):

dXXXt = vvv(XXXt)dt, (5)

where vvv(XXXt) is the velocity field at XXXt. For this ODE pro-
cess, the linear interpolation of Eq. (4) can be used in the
least squares optimization to determine the flow,

min
v

∫ 1

0

Et∼U(0,1)

[
∥vvv(XXXt)− (XXX1 −XXX0)∥22

]
dt, (6)

where times t are sampled uniformly along [0, 1]. How-
ever, the velocity field at an intermediate state XXXt cannot
be causally determined as both XXX0 and XXX1 are unknown,
during filtering. To address this, our idea is to approximate
the velocity field for each XXXt by a neural network.

Training objective for single VM. We use a DGCNN
based graph neural network to model a VelocityModule vvvθ,
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with parameters θ to approximate the flow velocity. To train
this VelocityModule, we define the following training ob-
jective.

LA = Et∼U(0,1)

[
∥vvvθ(XXXt)− δδδ(XXX1,XXX0)∥22

]
, (7)

where δδδ(XXX1,XXX0) =XXX1−XXX0. Hence, at each intermediate
state, the corresponding flow velocity is ideally a constant
vector that leads to a straight path from XXX0 to XXX1.

Filtering objective for single VM. During inference,
given a straight flow velocity vvvθ, we can move points from
XXX t̂/N to XXX(t̂+1)/N using the Euler method ODE solver:

X̃XX(t̂+1)/N = X̃XX t̂/N +
1

N
vvvθ(X̃XX t̂/N ), (8)

where N denotes the total number of filtering steps, t̂ ∈
[0, . . . ,M, . . . , N−1] is an integer time step and X̃XX0 =XXX0.
In practice, filtering starts at an unknown time step t̂ = M .
We do not know the noise scale of the input patch and need
to model it as an intermediate state X̃XXM/N of a higher noise
variant XXX0. The full position update takes the form,

X̃XX1 = X̃XXM/N +
1

N

N−1∑
t̂=M

vvvθ(X̃XX t̂/N ), (9)

Eq. (9) poses two challenges:
1. The straightness of paths is crucial to reducing the num-

ber of total steps and improving efficiency. If paths are
not sufficiently straight (i.e., they are curved), we need a
higher number of steps to filter points effectively.

2. The starting time t = M/N is unknown. Applying the
Euler method for too many steps, N , may lead to points
not converging at the surface.

4.2. Straighter flows via VelocityModule coupling

Given noisy initial data, the trajectories of points tend to
be curved, with limited straightness. One way to improve
straightness is to finetune the velocity network on the cou-
pling (X̃XX0, X̃XX1) to satisfy X̃XX1 = V (X̃XX0). For filtering, we
aim to recover surfaces while preserving local geometric
details [35]. Applying such finetuning requires the pre-
computation of X̃XX1 for all possible surface patches and is
infeasible due to the large number of patches in the training
set. We propose a simple mechanism to straighten paths by
coupling K VelocityModules together.

Training objective for coupled VMs. Given a noisy
patch XXXt, we partition the trajectory from XXXt to XXX1 into
K segments and obtain the velocity flow vvvkθ(X̃XXtk) at times
tk = (t(K − k) + k)/K where k ∈ {0, 1, . . . ,K − 1}.
Intermediate positions at times tk+1 are given by X̃XXtk+1

=

X̃XXtk + (1/K) vvvkθ(X̃XXtk). We empirically find that two Ve-
locityModules, i.e., K = 2, provide the best balance be-
tween accuracy and efficiency. The VelocityModules are

pretrained using the training objective of Eq. (7) and the
coupled VMs are finetuned with the introduced objective,

LB = Et∼U(0,1)

[
K−1∑
k=0

∥∥∥vvvkθ(X̃XXtk)− δδδ(XXX1,XXX0)
∥∥∥2
2

+λ1

K−2∑
k=0

∥∥∥δδδ(X̃XXtk+1
,XXXtk+1

)
∥∥∥2
2

]
,

(10)

for K ≥ 2, λ1 = 10 and X̃XXt0 = XXXt0 = XXXt. The first term
of LB encourages coupled VelocityModules to infer a con-
stant velocity at times tk, while the second encourages fil-
tered points X̃XXtk to move closer to interpolated points XXXtk .

Filtering objective for coupled VMs. At inference, we
apply a modified form of the Euler method to filter points,
similar to Eq. (8). We apply K coupled VelocityModules
N times, resulting in T = K · N total filtering steps. We
adjust our earlier notation of integer time steps such that
t̂ ∈ {0,K, . . . M̂ , . . . ,K(N − 1)} where M̂ is divisible by
K and X̃XX0 =XXX0. The sequential position update becomes,

X̃XX(t̂+k+1)/T = X̃XX(t̂+k)/T +
1

T
vvvkθ(X̃XX(t̂+k)/T ). (11)

The corresponding full position update across time steps
S = {M̂, M̂ +K, . . . , N(K − 1)} is,

X̃XX1 = X̃XXM̂/T +
1

T

∑
t̂∈S

K−1∑
k=0

vvvkθ(X̃XX(t̂+k)/T ). (12)

4.3. Distance estimation to the clean surface

We now address the second challenge related to Eq. (9)
and introduce the DistanceModule that scales the over-
all straight trajectory. This leads to better convergence
near the surface. The DistanceModule estimates a distance
scalar, corresponding to the standard deviation of initial
noisy points from the clean surface. More specifically, the
DistanceModule Dϕ(·) is used to approximate a mapping
dϕ : Rn×3 → R, such that,

dϕ(X̃XXt0) = Sigmoid(Max(Dϕ(X̃XXt0))). (13)

The distance dϕ is then used to scale the output of Veloci-
tyModules, as illustrated in Fig. 5. The DistanceModule is
embedded within the StraightPCF architecture (see Fig. 2).
We keep the weights of the finetuned coupled VelocityMod-
ules fixed when training the DistanceModule. The respec-
tive training objective for optimizing the parameters ϕ is,

LC = Et∼U(0,1)

[(
dϕ(X̃XXt0)−

∥δδδ(XXX1,XXXt0)∥2
∥δδδ(XXX1,XXX0)∥2

)2

+ λ2

∥∥∥δδδ(X̃XX1,XXX1)
∥∥∥2
2

]
,

(14)
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Resolution 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%

Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU
N

et
da

ta
se

t[
44

] PCN [35] 3.515 1.148 7.467 3.965 13.067 8.737 1.049 0.346 1.447 0.608 2.289 1.285
PointFilter [45] 2.461 0.443 3.534 0.862 5.089 1.849 0.758 0.182 0.907 0.251 1.599 0.710
Score [28] 2.521 0.463 3.686 1.074 4.708 1.942 0.716 0.150 1.288 0.566 1.928 1.041
PDFlow [29] 2.126 0.381 3.246 1.010 4.447 1.999 0.651 0.164 1.173 0.581 1.914 1.210
DeepPSR [6] 2.353 0.306 3.350 0.734 4.075 1.242 0.649 0.076 0.997 0.296 1.344 0.531
IterativePFN [8] 2.056 0.218 3.043 0.555 4.241 1.376 0.605 0.059 0.803 0.182 1.971 1.012
Ours 1.870 0.239 2.644 0.604 3.287 1.126 0.562 0.111 0.765 0.266 1.307 0.648

PC
N

et
da

ta
se

t[
35

] PCN [35] 3.847 1.221 8.752 3.043 14.525 5.873 1.293 0.289 1.913 0.505 3.249 1.076
Score [28] 3.369 0.830 5.132 1.195 6.776 1.941 1.066 0.177 1.659 0.354 2.494 0.657
PointFilter [45] 3.019 0.886 4.885 1.275 7.062 2.032 1.053 0.186 1.349 0.257 2.225 0.491
PDFlow [29] 3.243 0.606 4.545 0.966 5.934 1.441 0.969 0.152 1.646 0.424 2.450 0.569
DeepPSR [6] 2.873 0.783 4.757 1.118 6.031 1.619 1.010 0.146 1.515 0.340 2.093 0.573
IterativePFN [8] 2.621 0.698 4.439 1.011 6.026 1.560 0.913 0.139 1.251 0.238 2.529 0.716
Ours 2.747 0.536 4.046 0.788 4.921 1.093 0.877 0.144 1.173 0.259 1.816 0.445

Table 1. Quantitative filtering results of recent state-of-the-art methods and our method on the synthetic PUNet and PCNet datasets. Note
that our network is lightweight, with just ∼ 530K parameters (17% of IterativePFN). CD and P2M values are multiplied by 104.

Figure 5. Left: Filtering by coupled VelocityModules only. Right:
Coupled VelocityModules and DistanceModule. Scaled trajecto-
ries (green lines) lead to better convergence at the surface.

where t0 = t and X̃XXt0 = XXXt0 = XXXt. The first term of
LC encourages the DistanceModule to infer the relative dis-
tance of XXXt0 from the clean surface, as compared to XXX0.
The last term encourages points to return to the clean sur-
face. We set λ2 = 2 × 102 to ensure the loss contribution
of the last term is of the same order as that of the first one.
Consequently, Eq. (11) becomes,

X̃XX(t̂+k+1)/T = X̃XX(t̂+k)/T +
dϕ(X̃XXM̂/T )

T
vvvkθ(X̃XX(t̂+k)/T ).

(15)

5. Experiments
Next, we provide results on synthetic data under Gaus-
sian noise and real-world Kinect [41] and Paris-Rue-
Madame [38] data. The supplementary document contains
additional results of both conventional and learning based
methods on synthetic and real-world scanned data, as well
as a comparison of testing times.

5.1. Training and evaluation details

We follow the training procedure of ScoreDenoise [28], and
train our model on the PUNet dataset [44] consisting of 40
point clouds for training and 20 point clouds for testing. To
ensure consistency with ScoreDenoise’s training settings,
we add Gaussian noise sampled with standard deviation
σH = 2% of the bounding sphere radius to each clean point
cloud. Our training procedure only requires the high noise
variants and the clean ground truth targets. All intermedi-
ate states at noise scales σ = (1 − t)σH , with t ∼ U(0, 1),
are created as linear interpolations between these two, ini-
tial and final states, as per Eq. (4). For testing, we also
consider 10 test point clouds from the PCNet dataset [35]
provided by ScoreDenoise. These synthetic point clouds
contain Gaussian noise at scales of 1%, 2% and 3% of the
point cloud’s bounding sphere radius. We use two differ-
ent sampling densities of 10K and 50K points to evaluate
filtering ability across different sparsity settings. Moreover,
to assess filtering results on real-world noisy point clouds,
we compare methods on the Kinect v1 dataset that com-
prises of 71 point clouds [41] and 4 scenes extracted from
the Paris-Rue-Madame dataset [38]. Finally, we provide a
comparison on 4 scenes of the Kitti-360 dataset [20], in the
supplementary document. Following [8, 28], all methods
are only trained on PUNet with Gaussian noise.

Implementation. We train and test StraightPCF on a
NVIDIA GeForce RTX 3090 GPU using PyTorch. We use
the Adam optimizer with a learning rate of 1× 10−4. Sim-
ilar to [8, 28], we use PyTorch3D [36] to compute Chamfer
Distance (CD) and Point2Mesh (P2M) metric values.
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Figure 6. Visual filtering results for 50K resolution shapes (σ = 2%) within the PUNet and PCNet datasets. The darker (i.e., more blueish)
the better. We achieve both strong point-wise P2M results while also ensuring well distributed points (illustrated by close-ups) unlike
DeepPSR or IterativePFN which have holes indicating clustering.

5.2. Performance on synthetic data

Table 1 and Fig. 6 illustrate filtering results on the syn-
thetic PUNet and PCNet datasets. Our method has a clear
edge over others in recovering the underlying clean point
distribution demonstrated by superior CD results across all
noise settings. We also achieve strong P2M results on the
PUNet dataset. While IterativePFN [8] has marginally bet-
ter P2M results on the PUNet data, this does not ensure a
good distribution of points as evidenced by visual results
in Fig. 6. Here, for noisy point clouds at 50K resolution
and 2% noise, IterativePFN exhibits small holes, indicating
clustering. Moreover, our network consists of only 530K
parameters and is roughly 83% smaller than that of Itera-
tivePFN, given the latter’s 3.2M parameters. DeepPSR [6],
despite using a post-processing regularization step, also suf-
fers from holes and poor point distributions. We also note
that IterativePFN generalizes poorly to higher noise scales
outside the training noise scales (where maximum noise is
σ = 2%). The ability of our method to generalize well
across different data is demonstrated by the superior perfor-
mance on the PCNet dataset. The PCNet shapes are unseen
during training. Our method obtains both superior CD and
P2M results over all other methods. At 10K resolution and
σ = 3% noise, our method offers a 17.1% reduction in CD
error and 24.1% reduction in P2M error. Our method also
yields state-of-the-art results at 50K resolution where, for
σ = 3%, the CD error improvement is 13.2% and P2M error

improvement is 9.4%. Visual filtering results in Fig. 6 indi-
cate that our method outperforms others in recovering com-
plex details such as the legs of the Camel which are closely
situated. By contrast, methods such as Pointfilter [45] and
PDFlow [29] flatten points between these close surfaces
while IterativePFN does not recover the body well. Fur-
thermore, on a complex shape as Netsuke, we outperform
other methods which either cause clustering (e.g., PDFlow,
IterativePFN) at this high noise scale or leave behind noise
due to limited filtering ability (e.g., ScoreDenoise).

5.3. Performance on real-world scanned data

Next we consider filtering results on scanned data. Table 2
provides quantitative results on the Kinect dataset and Fig. 7
illustrates visual results on the Paris-Rue-Madame dataset.
Our method performs favorably on the Kinect data, obtain-
ing a 1.82% reduction on CD errors, as compared to It-
erativePFN [8]. As this data is very sparse, our P2M re-
sult is marginally higher than Pointfilter [45] and Score-
Denoise [28]. These methods focus on returning points
to the surface yet succumb to clustering artifacts whereas
our method both recovers surfaces while retaining good
point distributions. The Paris-Rue-Madame dataset con-
tains high noise scans due to outdoor environmental factors.
In Fig. 7, we visualize filtering results for several most re-
cent, state-of-the-art methods. In general, methods such as
PDFlow [29] and DeepPSR [6] perform poorly in remov-
ing noisy artifacts while IterativePFN [8] causes points to
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Figure 7. Visual filtering results on two scenes of the RueMadame dataset. We show results for the most recent state-of-the-art methods.

Method Kinect
CD P2M

ScoreDenoise 1.322 0.652
Pointfilter 1.377 0.644
PDFlow 1.334 0.699
DeepPSR 1.431 0.715
IterativePFN 1.320 0.685
Ours 1.296 0.664

Table 2. Quantitative results on Kinect data. Our network is
lightweight, with just ∼ 530K parameters (17% of IterativePFN).
CD and P2M values are multiplied by 104.

cluster near the original scan lines. Our method, however,
recovers the underlying clean surface and ensures a much
better point distribution, as evidenced by the close-ups in
Scene 1. In Scene 2, PDFlow and IterativePFN are not
able to clean the surface of the parked vehicle whereas our
method recovers the underlying shape with fewer noisy ar-
tifacts.

6. Ablation Study and Discussion

We train and test several variant architectures in order to
ascertain the impact of the proposed VelocityModule (VM)
and DistanceModule (DM). The results are given in Table 3.
Our coupled VM + DM architecture (V5) increases the pa-
rameter number to ∼ 530K. Therefore, we train another
Large VM with ∼ 530K parameters (V3). We find that di-
rectly increasing the parameter number (V3) leads to very
limited performance gain while V5 exhibits far superior per-
formance. Furthermore, the coupled VM + DM architecture
(V5) significantly outperforms the single VM (V1 and V2)
architectures. Finally, there is a noticeable difference in per-
formance with and without a DM as evidenced by the dis-

Ablation
10K points

1% noise 2% noise 3% noise
CD P2M CD P2M CD P2M

V1) VM w/o DM 2.16 0.42 3.06 0.92 3.73 1.42
V2) VM w/ DM 2.00 0.32 3.06 0.96 3.81 1.55
V3) Large VM 2.17 0.41 2.99 0.84 3.54 1.29
V4) CVM w/o DM 1.97 0.32 3.01 0.92 3.71 1.45
V5) CVM w/ DM 1.87 0.24 2.64 0.60 3.29 1.13

Table 3. Ablation results for different VelocityModule (VM) and
DistanceModule (DM) configurations.

parity between V4 and V5. We provide further ablations,
including higher VM couplings, in the supplementary doc-
ument.

Limitation. While our StraightPCF yields state-of-the-
art results across multiple datasets, we observe relatively
low performance on low density or high sparsity data, which
is similar to current methods. We provide the visual results
in the supplementary document due to space limit.

7. Conclusion

Recent deep learning based filtering methods focus on mov-
ing noisy points along stochastic paths to remove noise
from input point clouds. We propose the first study to con-
sider filtering points along straight paths, leading to smaller
discretization errors and fewer filtering iterations. This
lightweight method, while being parameter efficient, deliv-
ers filtered point distributions closer to that of the ground
truth distributions without requiring any regularization in
loss function or post-processing. Our method achieves
state-of-the-art performance on multiple synthetic and real-
world datasets across standard filtering metrics, showcasing
its superiority and effectiveness.
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