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Figure S1. Appearance Editing. 3D Gaussians offer an explicit representation, thereby facilitating convenient post-generation editing. In
this example, we demonstrate swapping the clothing of two generated identities. Please refer to Appendix C.3 for further details.
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A. Further Analysis

A.1. Types of Gaussian Anchors.

GSM anchors the 3D Gaussians on shell meshes. We eval-
uated multiple alternative ways to anchor the Gaussians,



Figure S2. Visualization. 3D humans rendered in different poses using our GSM method.
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testing the following three methods at 1282 resolution after
training with 1.6k Kimgs: (i) in bounding box: The Gaus-
sians are uniformly sampled within the bounding box of the
3D human mesh, with Gaussian features interpolated from
axis-aligned triplane features. This variant differs from our
proposed GSM as it does not utilize the shell map to learn
features in texture space. Instead, 3D Gaussian features
are learned in world space, requiring the generator to also
model the distribution of diverse human body poses. With
this variant, we demonstrate the importance of using the
shell map. (ii) on a single shell with learned offset: This
variant samples only on the base mesh, the SMPL mesh,
but allows deviations from the mesh template by applying
a learned offset per Gaussian, predicted by the generator as
part of the feature textures. This approach emulates the typ-
ical pipeline of existing 3D human GANs, where clothing
and hair are captured by offsetting the template unclothed
mesh. (iii) in tets: The Gaussians are sampled not only
on the shell meshes but also in between them in tetrahe-
dra, constructed by connecting mesh vertices. This vari-
ant is more akin to the original Shell Map proposed by Po-
rumbescu et al. As shown in Table S1, the bounding box
variant underperforms, as the generator struggles to han-
dle deformation jointly with appearance. Learning offsets
to model surface details different from the template mesh
yields subpar quality. This suggests that varying the Gaus-
sians’ positions complicates the already non-convex opti-
mization problem, as the positions are highly correlated
with the rest of the Gaussian properties. Finally, sampling
in tets shows slow convergence and does not improve the
FID. Additionally, this model exhibits a slower rendering
speed (speed for deformation and rasterization for a gener-
ated identity) of 20 ms/img versus 9 ms/img.

Table S1. Anchoring types. Ablation on the anchoring type per-
formed on 1282 resolution trained for 1.6k KImgs on SHHQ.

Anchoring bbox tets
learned
offset

triangles
(proposed)

FID ↓ 63.90 24.66 29.30 20.63

A.2. Sampling Densities

We evaluate the effect of the number of Gaussians on the
generation quality. For this study, we train on 5122 reso-
lution and evaluate the FID score after training with 10k
KImgs. Since the sampling density will affect the Gaus-
sian scale, we adjust the scaling regularization and initial-
ization accordingly. As shown in Table S2, using 100K
Gaussians yields empirically the best result in terms of FID
for the SHHQ dataset. Using 50k Gaussian samples yields
the highest FID, suggesting that Gaussians are likely too
few to fully model the appearance complexity exhibited in

the dataset. On the other hand, using too many Gaussians,
e.g. 200k, can harm the FID. We observe that this drop
under a high sampling density scenario is due to the ten-
dency of Gaussians to learn small scales while modeling
high-frequency details. This adds complexity to the already
challenging task of optimizing opacity and scaling. As a re-
sult, we might notice unwanted dotted patterns, especially
in cloth areas. The FID score easily detects such an unnat-
ural appearance.

Table S2. Ablation: Number of Gaussians. Ablation on the
number of Gaussians performed on 5122 resolution trained for
10K KImgs on SHHQ dataset.

Number 50k 100k 200k

FID ↓ 23.83 13.30 19.96

A.3. Relation and Comparison with LSV-GAN

Concurrent work, LSV-GAN [8], also employs shell meshes
and rasterization to efficiently model diverse human shapes
and appearances. Our approach, however, distinguishes it-
self from LSV-GAN by populating the shell meshes with
3D Gaussians and employing differentiable Gaussian Splat-
ting for rendering [3]. The spatial span of these Gaussians
fills the space between shells with continuous functions. As
illustrated in Figure S6 and Figure S3, LSV-GAN often ex-
hibits artifacts at silhouette boundaries due to its discontinu-
ous representation of shell volume. In contrast, our method
yields smoother and more natural boundaries. Moreover,
the utilization of 3D Gaussians allows us to define RGB
and alpha values beyond the boundary shell, effectively ex-
panding our capability to model deviations from the tem-
plate mesh. This leads to more varied geometry and ap-
pearances of the human body, including loose clothing and
accessories, as seen in Figure 1 of the main manuscript and
Figure S2 in this document. To further substantiate this, we
conducted a new user study (see Figure S5), wherein 138
participants from Amazon Mechanical Turk assessed 46 im-
ages generated by both methods under identical conditions.
A significant majority (78.26%) favored our method, citing
improved realism in faces (79 users), clothing (44 users),
hands (32 users), and feet (27 users) as key factors. We
believe the gap between FID and human evaluation shows
that FID neglects geometric distortion and non-local arti-
facts. We would also like to point out that LSV generates
separated fingers. It is a result of the naive workaround to
address the difficulty of modeling more complicated con-
cave geometry using discrete offsetted SMPL meshes. As
written in their paper, they opt for a single layer for the
fingers, leading to all generated results having unnaturally
separated fingers that deviate from the data distribution (see
Figure S4).
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Figure S3. LSV Comparison. LSV-GAN vs. Ours (without curation)

Figure S4. LSV Comparison - Hands. Our hands align better with the dataset. LSV-GAN produces artifacts.
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Figure S5. User Study. User preference comparing against LSV
(left) and TADA (right)

B. Comparison to Diffusion Models

While diffusion-based zero-shot synthesis approaches are
very popular [4, 5], the GANs-based methods, such as ours,
have their undisputed advantages, including much higher
generation speed (28ms with GSM vs several hours using
TADA) and, more importantly, significantly more realis-
tic appearance and pose accuracy (see Figure S5 and Fig-
ure S7).

C. Additional Qualitative Results

In this section, we present further qualitative results. All vi-
sual examples have been sampled using the truncation tech-
nique detailed in EG3D [1]. Additional animated results
can be found in the supplementary HTML webpage.

C.1. Random Samples

To showcase the quality and diversity of our GSM method,
we display randomly sampled results under identical poses
in Figure S8. For both the DeepFashion [6] and SHHQ [2]
datasets, our method successfully generates a variety of
body shapes, accessories like hats, loose clothing, and in-
tricate details on clothes.

C.2. Articulation and Novel View Rendering

In the accompanying HTML webpage, we present videos
demonstrating articulation and novel view rendering results.
The articulation sequences are provided by the AMASS [7]
dataset. Notably, our method avoids the temporal flickering
artifacts common in other models, as it directly renders at
the target resolution. This efficiency is due to our use of
rasterization instead of the more costly volumetric render-
ing approach.

C.3. Appearance Editing

A significant advantage of explicit representations like 3D
Gaussians, especially when compared to implicit represen-
tations such as radiance fields, is their enhanced editability.
In Figure S1, we illustrate this benefit through a redress-
ing application, where we interchange the upper and lower
body appearances between multiple generated instances.
This editing process involves selecting Gaussians within a
specific region (e.g., lower or upper body) and then swap-
ping their properties with those from another instance. This
method is feasible because the Gaussian positions are an-
chored on the shell meshes and remain consistent across in-
stances, with the appearance being defined solely by their
properties.
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Figure S6. LSV comparison. LSV-GAN [8] suffers from discontinuities and facial artifacts in DeepFashion and background bleeding into
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Figure S7. Results comparing TADA, DreamHuman, and ours.
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Figure S8. Random Samples. Randomly generated samples of 3D humans under same pose using or GSM method trained on DeepFash-
ion [6] and SHHQ [2] datasets, without truncation.
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