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1. Details of datasets
In Table 1, we summarize the number of classes, as well as
the number of samples in each subset of the datasets used in
our experiments. We describe the datasets below.

NTU RGB+D. NTU RGB+D [6, 9] is lab-collected, large-
scale action recognition dataset which has two versions:
NTU-60 (60 classes) and NTU-120 (120 classes.) NTU-
60 contains 57K videos while NTU-120 is an extension of
it that contains 114K videos. The datasets are split in three
ways: X-Sub (for both), X-View (for NTU-60), and X-Set
(for NTU-120), in which human subjects, camera views, and
camera setups are different, respectively. While 3D skeletons
from sensors are provided in this dataset, we extract the 2D
skeletons by applying the three different pose estimators (see
Sec. 2) directly on the RGB videos.

Kinetics400. Kinetics400 [3] is a large scale video-based
action recognition dataset with 400 action classes and 300k
videos. The videos are 10s long extracted from YouTube
which makes the dataset a challenging one due to the diver-
sity in quality of videos, number of people, and background
noise in each video. Furthermore, the dataset is not human-
centric, meaning that in many frames, the human scales
are only partly visible, hard to recognize, or nonexistent.
Therefore, the extracted skeletons are of bad quality due
to the numerous failure cases of the SOTA pose estimators
under these conditions. For this reason, the highest top-1
accuracy achieved on Kinetics400 in skeleton-based action
recognition is still far behind its RGB-based counterpart.

2. Pose Extraction
Pose estimation is a critical step that largely affects the final
recognition accuracy, yet the importance of which is mostly
overlooked in previous literature. Poses retrieved from sen-
sor readings or existing pose estimators are used to train
and test skeletal action recognition models without strong
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Table 1. Action recognition datasets.

Dataset #Classes #Train #Val. Total

NTU60-XSub [9] 60 40K 17K 57K
NTU60-XView [9] 60 38K 19K 57K

NTU120-XSub [6] 120 63K 51K 114K
NTU120-XSet [6] 120 54K 60K 114K

Kinetics400 [3] 400 250K 50K 300K

justification behind the pose extraction method. To the best
of our knowledge, there’s no consensus among the research
community on a fixed set of skeletons to test action recog-
nition performance. Furthermore, due to the large volume
of research, it is not feasible to conduct a comprehensive
study on which models work best on which poses and for
which datasets. We, therefore, argue for the need for skeletal
action recognition models that are generic to the type of
pose estimator. We highlight the importance of reporting the
model performance on poses extracted with multiple pose
estimators instead of only one. To that end, we leverage
three pose estimators of different levels of performance: ViT-
Pose (SOTA) [11] (High Quality, HQ), HRNet [10] (Medium
Quality, MQ), and OpenPifPaf [4] (Low Quality, LQ).

Table 2. Quality of utilized pose estimators based on the AP
score on COCO test-dev set.

Pose Estimator Type AP Pose Quality

ViTPose [11] Top-Down 81.1 HQ
HRNet [10] Top-Down 77.0 MQ
OpenPifPaf [4] Bottom-Up 71.9 LQ

We leverage 2D poses instead of 3D ones because in gen-
eral they are of higher quality [2]. As shown in Table 2, the
selected pose estimators have different types and pose qual-
ities, assigned according to their reported AP score on the
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COCO test-dev [5]. While Top-Down methods outperform
Bottom-Up methods on standard benchmarks, we highlight
the importance of experimenting with both to demonstrate
the generalization of skeletal action recognition. Following
previous literature [2], we store the extracted keypoints in the
17-joint coco format in coordinate triplets (x, y, c), where
(x, y) is the joint coordinates and c is the joint confidence
score. In Table 3, we report some metrics reflecting the
percentage of keypoints and people that were undetected by
each pose estimator. The percentage of missing keypoints is
the number of missed keypoints within the detected poses,
divided by the actual number of joints in these poses. The
percentage of missing people indicate the number of unde-
tected people divided by the total number of people in each
dataset.

Table 3. Assessment of pose estimators in terms of undetected
joints and people.

Pose Estimator NTU60 NTU120
XSub XView XSub XSet

Percentage of missing keypoints

ViTPose [11] 0.0 0.0 0.0 0.0
HRNet [10] 0.0 0.0 0.0 0.0
OpenPifPaf [4] 7.7 6.9 6.5 7.5

Percentage of missing people

ViTPose [11] 1.2 0.01 0.01 0.04
HRNet [10] 0.1 0.1 0.12 0.13
OpenPifPaf [4] 0.53 0.29 5.4 5.8

3. Transformer Backbones
In this section, we briefly summarize the details of the trans-
former backbones utilized in our experiments.

3.1. Vanilla Transformer

We adopt the implementation of the vanilla transformer
in [1], which is originally designed for image classification.
Similar to patching for images, we patchify the input joints
individually using a fixed feature dimension Cf = 512. We
add learnable spatial and temporal encodings before passing
the result to the transformer blocks with depth N = 5. We
also change the hidden dimension of the feed-forward net-
work to 2048. The rest of the network architecture is almost
unchanged compared to the original transformer.

3.2. STTFormer

The spatiotemporal tuples Transformer (STTFormer) [8] is
an extension of the vanilla transformer in which the input
skeleton sequence is partitioned across the temporal dimen-
sion into blocks of fixed size. Then spatiotemporal attention

is employed to capture the correlations between different
joints in consecutive frames. To improve performance on
similar actions, a feature aggregation module is incorporated,
which is a convolution operation on non-adjacent frames af-
ter the transformer encoder blocks. We use the model with
the same hyperparameters, except that we the change the
feature dimension from 256 to 512, and we set the depth to
N = 5.

3.3. DSTFormer

The Dual-stream Spatio-temporal Transformer (DST-
Former) [12] is a transformer-based motion representation
encoder, originally designed for 2D-to-3D pose lifting. DST-
Former consists of two streams of alternating spatial and
temporal Multi-Head Self-Attention (MHSA) blocks that re-
spectively model the spatial and temporal correlations in the
input joints. The two streams are fused together with adap-
tive fusion weights to dynamically combine their learned
information. We apply our framework on top of DSTFormer
without changing any of its hyperparameters.

4. Attention Filters Diagnostics
We analyze the effect of finding the activated joints from
different attention maps across three MHSA depth layers in
the DSTFormer [12] backbone network. Our goal is to find
the most important joints that lead to the action classification.
We follow the black-box insertion/deletion metric proposed
in RISE [7] for empirically evaluating the different attention
maps. For the deletion metric, we incrementally delete the
most important joints, as computed by the attention scores of
a transformer layer, and measure the effect on the accuracy
by computing the Area Under the Curve (AUC). On the other
hand, the insertion metric is a complementary approach in
which the most important joints are gradually introduced.
Our results are shown in Figure 1 for different attention maps
on NTU60-XSub [9]. The best attention map is determined
by a lower deletion AUC score and a higher insertion AUC
score. We find that the attention map from the last MHSA
block N = 5 best reflects the most important joints. The last
layer inherits information from all the preceding layers in
learning attention parameters, and is therefore used in our
approach to determine the most activated joints.

5. Noise visualization and class-wise scores
In Figure 2, we compare visualizations of standard and noisy
skeletons. At noise σ ≤ 0.005, we note that the result-
ing noisy skeletons are virtually indistinguishable from the
original skeletons. Figure 3 shows the class-wise perfor-
mance gained on noisy skeletons (σ = 0.002) from training
DSTFormer [12] with our MaskCLR approach. Particu-
larly in low-motion actions (e.g, drink water, pointing, etc),
MaskCLR obtains considerable performance gains, up to
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Figure 1. Deletion (top) and insertion (bottom) metrics for attention maps of three layers.
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𝜎 = 0.002
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Time

Figure 2. Visualization of standard and noisy versions of action “throw” from NTU60-XSub. Noise is sampled from a Gaussian
Distribution X ∼ N (0, σ2) and introduced on all joints across time. At σ = 0.002, the noisy skeletons are virtually indistinguishable from
the standard ones. The red circles reflect subtle differences in joint positions.

28.4 percentage points for “pointing.” MotionBERT, which
is used with the same DSTFormer backbone, only captures
low-level joint motion patterns, which might be disrupted by
noise. In contrast, MaskCLR encodes the pose information
from the previously unactivated joints, which are important

in differentiating fine-grained actions. Further, the penalty
term ω used in our class contrastive loss Lcc penalizes the
distance between ambiguous actions, which helps mitigate
the confusion in some of the aforementioned fine-grained
actions. The MLCL approach adopted in MaskCLR helps



the model capture the high-level actions semantics instead of
low-level joint variations, boosting the model performance
on standard skeletons and robustness to perturbed ones.

6. Failure Analysis on NTU60-XSub

Table 4. Top 5 confusing pairs of actions in NTU60-XSub.

First Action Second Action SMB ↓ SMCLR ↓

Top 5 confusing pairs for MotionBERT (standard skeletons)

play with phone/tablet read 67 17
play with phone/tablet write 55 40
typing on a keyboard write 54 61
rub two hands together clap 54 31
take a selfie pointing to sth. 56 19

Top 5 confusing pairs for MotionBERT at σ = 0.005

jump up hopping 271 265
shake head nod head/bow 275 251
kicking something hand waving 275 264
wear jacket tear up paper 274 262
pickup drop 274 261

Top 5 confusing pairs for MaskCLR (standard skeletons)

take off glasses wear on glasses 51 50
typing on a keyboard write 54 61
writing reading 45 44
take off a shoe wear a shoe 44 44
take off a hat/cap put on a hat/cap 48 42

Top 5 confusing pairs for MaskCLR at σ = 0.005

wipe face shake head 256 277
touch person’s pocket giving sth. to person 271 271
kick person punching person 265 274
point finger at person pat on back of person 269 266
take off jacket wear jacket 267 266

On standard skeletons, MaskCLR combined with DST-
Former [12] backbone achieves 93.9% on NTU60-XSub [9]
dataset, outperforming previous SOTA methods. Further,
MaskCLR is relatively robust to noisy skeletons, obtain-
ing 93.9% and 92.5% respectively when skeletons are per-
turbed with Gaussian noise N (0, σ2) at σ = 0.002 and
σ = 0.005 across the spatiotemporal dimensions. To un-
derstand the failure cases of our model, we highlight the
five most confusing classes that are incorrectly classified by
MotionBERT [12] and MaskCLR, sharing the same DST-
Former backbone. Following [2], we define the confusion
score S for a pair of classes i and j as S = nij + nij , where
nij is the number of samples of class i that are misclassi-
fied as j. The total number of pairs of classes in a dataset
is (num_classes(num_classes− 1))/2. For NTU60-
XSub with 60 action classes, there’s 1770 pairs of classes.
In Table 4, we report SMB for the top five most confus-
ing pairs for MotionBERT and the corresponding SMCLR

for the same pairs for MaskCLR under standard and noisy
(σ = 0.005) skeletons (with skeletons extracted with HR-
Net [10]). We note that the five most confusing pairs account
for 22.4% and 36.4% of the failure cases of MotionBERT
and MaskCLR respectively on the standard skeletons. No-
tably, MaskCLR achieves smaller confusion scores for most
of the top confusing actions for MotionBERT under both

standard and noisy skeletons (top half of Table 4). On the
more challenging action pairs that are most confusing for
MaskCLR, our framework mispredicts fewer confusing sam-
ples than baseline MotionBERT on the standard and noisy
skeletons of most action classes (bottom half of Table 4).
This suggests that activating more informative joints and
using contrastive losses as an optimization task enhances the
classification performance of the model, particularly on the
fine-grained and confusing actions.

Further, we observe that the most confusing pairs, for
both MotionBERT and MaskCLR, are very similar in action
semantics. For example, “play with phone/tablet” is a very
challenging class because there’s no sufficient joint move-
ments that can form a pattern unique to this action. Addition-
ally, the human pose in this action is virtually not different
from “read” or “write.” This motivates the need for informa-
tion fusion from other modalities such as RGB images. If
the model recognizes a “phone/tablet” from the RGB image,
it can help clear the confusion with other classes. MaskCLR
can be applied on multi-modality fusion in a similar fashion
by masking the most activated regions in an input image and
adopting MLCL on the encoded feature representations. We
leave this for future work.

7. More Experiments
7.1. Spatial Noise

In Figure 4, we experiment with spatial only noise drawn
from a Gaussian distribution X ∼ N (0, σ2), effectively
introducing a random shift in joint positions that is constant
across frames. MotionBERT-R denotes Robust training of
MotionBERT [12] with the same DSTFormer backbone and
15% random joint masking. MaskCLR consistently shows
the strongest robustness even against highly perturbed skele-
tons (σ ≥ 0.005). Our Multi-Level Contrastive Learning
(MLCL) approach boosts the model robustness against varia-
tions by mapping the input skeletons into a disentangled fea-
ture space. Furthermore, the Attention-Guided Probabilistic
Masking (AGPM) strategy expands the set of discriminative
joints, helping the model capture the high-level semantics of
actions instead of low-level variations.

7.2. Shifted Joints

To further evaluate the robustness of our approach, we ran-
domly shift different numbers of joints in the input skeleton
sequence and report the effect on accuracy. More specifically,
we shift 1, 3, 5, and 10 joints (selected randomly) in the input
skeleton sequence to a random position within the skeleton
bounding box. Shifted joints are commonly observed in the
output of pose estimators [4, 10, 11]. As shown in Figure
5, shifted joints cause rapid drop in the accuracy of SOTA
methods. In contrast, MaskCLR exhibits the lowest drop in
accuracy, notably surpassing baselines MotionBERT [12]
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Class-wise Classification Scores of Noisy Skeletons (𝜎=0.002)

MaskCLR MotionBERT
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Figure 3. Class-wise accuracy on NTU60-XSub under Gaussian noise (σ = 0.002). MaskCLR improves the classification performance in
most classes, especially in subtle actions such drink water, reading, writing, etc. Our approach exploits the pose information from previously
unactivated joints to reduce the confusion between low-motion action classes (Best viewed in color.)
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Figure 4. Top 1 accuracy on NTU60-XSub against spatial only
noise. While the performance of current methods drops rapidly
with noise, MaskCLR (with DSTFormer [12] backbone) shows the
lowest drop in accuracy. The two contrastive losses individually
contribute to enhancing the model robustness to noise.

(same backbone) by 18 percentage points when the number
of shifted joints is 10.
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Figure 5. Top-1 accuracy vs the number of shifted joints.
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Figure 6. Deletion score for baseline MotionBERT [12] and
MaskCLR.

7.3. Targeted Masking (TM)

In Figure 6, we compare the deletion AUC, described in sec-
tion 4, for baseline MotionBERT [12] and MaskCLR based



MotionBERT MaskCLR (Ours)

Classification of noisy skeletons at 𝜎 = 0.005

Figure 7. Confusion matrices of noisy skeletons from NTU60-XSub. MaskCLR reduces the ratio of false positives and false negatives by
establishing clearer decision boundaries between representations of different classes in the feature space.

MotionBERT MaskCLR (Ours)

Figure 8. t-SNE visualizations of feature space on NTU60-XSub. The feature representations of our MaskCLR is better clustered and
well-disentangled compared to that of MotionBERT [12]. Our multi-level contrastive learning approach minimizes the distance between
similar input skeletons at both the sample and class levels, boosting the robustness of the model against noisy or incomplete skeletons and
improving the overall classification accuracy. (Best viewed in color.)

on the attention map of the last layer N = 5. We note that
targeted masking is more challenging than random masking
since the occluded joints are the ones that contribute most to
the classification prediction. MaskCLR outperforms Motion-

BERT by 2.7 in deletion AUC. Our targeted masking strategy
helps the model explore a bigger set of discriminative joints,
thus alleviating the dependency on a few number of joints to
recognize actions.
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Figure 9. Visualization of attention scores across time of class “drink water.” Using the same DSTFormer backbone, MaskCLR activates
more discriminative joints over time compared to baseline MotionBERT [12]. (Best viewed in color.)

7.4. Qualitative Results

Confusion Matrix. In Figure 7, we visualize the con-
fusion matrices of MotionBERT [12] and MaskCLR on
NTU60-XSub under spatiotemporal noise σ = 0.005. We
observe that MotionBERT misclassifies most actions into
high-motion classes such as “wear a jacket” and “one foot
jumping.” One possible explanation is that the introduced
noise causes artificial movements in skeleton joints. While
such fluctuations do not change the overall action semantics,
it introduces motion to all joints, which typically happens
in high-motion actions. Hence, the model misclassifies the
sequence into a high-motion action. Focusing on low-level
joint variations leads to the accuracy deterioration of Mo-
tionBERT under noisy skeletons. Instead, MaskCLR aims at
capturing the high-level action semantics by utilizing a larger
number of informative joints, the holistic motion of which
does not change under small amounts of noise. Additionally,
the rich cross-sequence intrinsic information shared between
skeleton sequences of the same class is exploited through
our multi-level contrastive learning approach. Consequently,
MaskCLR is better able to handle perturbed skeleton se-
quences, as reflected in the confusion matrix (Figure 7.)

t-SNE visualization of feature space. Figure 8 shows
the t-SNE visualizations of the feature space of NTU60-
XSub before the final classification layer of MotionBERT
and MaskCLR. We observe the feature space of our method
is better disentangled across most classes, which we attribute
to the added sample- and class-level contrastive losses.

Visualization of attention scores across time. Our
Attention-Guided Probabilistic Masking (AGPM) strategy
is designed to increase the likelihood of masking the most
activated joints. In this way, AGPM encourages the model
to explore the informative joints that were previously unacti-
vated by the backbone network. To validate our approach,
we inspect the visualization of the attention scores from the

final MHSA layer in the DSTFormer [12] network before
and after applying our framework. In Figure 9, we show the
visualization of attention scores for an example sample of
class “drink water.” We observe that MaskCLR achieves a
richer attention map by activating more discriminative joints
across time. Further, the joints that were previously activated
in MotionBERT (DSTFormer backbone) remain activated
in MaskCLR, suggesting that the encoded information from
the model are not lost when applying our appraoch. Addi-
tionally, the unactivated regions from MaskCLR are also
unactivated in MotionBERT. We attribute this to the absence
of sufficient information in such joints to aid in recognizing
the action.
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