
Figure 4. Conceptual Similarity is not the same as shared information. Are these two pictures similar? Not according to Normalized
Compression Distance, which measures their difference at 97.1% (estimated using JPEG XL lossless compression). However, they share
all the structural information — they are the exact same ink print on a piece of paper. The only difference is the randomness of the
paper texture. Most people would not consider it a significant conceptual difference, but since NCD cannot differentiate structure from
randomness, this slight change accounts for 97.1% of the difference. This problem is inherent in high-dimensional data where information
in random variation overshadows structural information. In fact, on the right we plot the NCD distance as we change the resolution of the
image, showing that the distance increases drastically as we increase the dimension of the data.

A. Limitations of Information Theoretic Dis-

tances

In Fig. 4 we show that two images that are conceptually
identical are considered almost completely different by the
Normalized Compression Distance (NCD), an information
theoretic distance. As we now discuss, this is an intrin-
sic problem of information theoretic distance, which cannot
distinguish differences due to structural properties from dif-
ferences due to randomness, the latter becoming dominant
as the number of dimensions grows (Fig. 4, right).

NCD [25] defines the distance between samples in terms
of their common (algorithmic) information. Let x and y

be two samples. We denote with the Kolmogorov com-
plexity K(x) the length of the shortest program that can
output x (equivalently, up to a constant, its best possible
compression cost using commutable function), and with
K(x|y) = K(xy) � K(y) the length of the shortest pro-
gram that can reconstruct x given y as input. If x does not
contain any information that is not already contained in y,
then K(x|y) ⇡ 0 and we can consider x to be similar to y.
Making the role of x and y symmetric, this motivates the
following definition:

NCD(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)}

=
K(xy)�min{K(x),K(y)}

max{K(x),K(y)} .

While this is a theoretically viable definition, in practice the
shortest coding length K(x) cannot be computed explicitly.
However, the distance can be approximated using a strong

compression algorithm Z(x) as follows:

NCDZ(x, y) =
Z(xy)�min{Z(x), Z(y)}

max{Z(x), Z(y)} .

On the surface, this distance is well positioned to capture
shared algorithmic structure, and hence recover meaningful
similarities between the samples. However, this is not the
case when data can be noisy. The following proposition
shows that two pictures that differ only by some slight noise
— for example two consecutive photos differing only by
sensor noise — always have close-to-maximal NCD.

Proposition A.1. Let s be an image of low complexity
K(s). Suppose that two measurements x := s � nx and
y := s � ny are generated by adding Bernoulli noise
nx, ny ⇠ Bern(p) to s, where � denotes the bit-wise XOR.
Denote with H(p) the entropy of the Bernoulli distribution.
Then, in the limit of large dimension D = |s| we have:

NCD(x, y) ⇡ 1� K(s)

DH(p)
D!1����! 1

Proof. If the noise p is small, the optimal way to compress
x — and similarly y — is to simply encode both s and nx

independently:

K(x) ⇡ K(s) +K(nx) = K(s) + |s|H(p).

Similarly, the cost of encoding x and y together is the
cost to encode (once) the shared s and the two noise masks:

K(xy) = K(s) +K(nx) +K(ny) = K(s) + 2|s|H(p).



REPLACE SWAP ADD

Source Model Object Attribute Relation Object Attribute Object Attribute

OpenAI [34] RN50x64 94.5 83.5 70.6 61.8 66.7 83.3 74.0

LAION [36] ViT-bigG-14 96.7 88.1 74.8 62.2 74.9 92.2 84.5
xlm-roberta-large-ViT-H-14 96.9 86.0 72.1 63.8 72.1 93.1 86.1

DataComp [14] xlarge:ViT-L-14 95.5 84.5 67.0 65.0 66.8 91.0 85.0

LLaVA[26]
Cond. Likelihood 78.8 77.7 73.3 77.6 86.0 36.2 76.2
Meanings as Trajectories [28] 90.4 80.6 78.8 69.9 76.6 75.7 82.8
CC:DAE (ours) 91.0 82.1 82.2 73.6 78.8 77.0 86.0

Table 3. Performance on SugarCrepe multi-modal image-caption alignment benchmark. We show that CC:DAE can be extended
to compute similarity between data of different modalities. CC:DAE outperforms or matches all the baseline contrastive-based models
(numbers from [19]) on 4 out of 7 tasks. Compared to methods using our same backbone, we significantly outperform the conditional
likelihood baseline. We also uniformly outperform [28] which uses the same backbones and trajectories as our method.

Putting all together we get:

NCD(x, y) =
|s|H(p)

K(s) + |s|H(p)
=

1

1 + K(s)
|s|H(p)

= 1� K(s)

|s|H(p)
+ o

⇣
K(s)

|s|H(p)

⌘

as we wanted.

To demonstrate this effect empirically, in Fig. 4 we gen-
erate two images x and y using the same basic picture s, but
adding two different noise pattern nx and ny (the different
paper textures). We then compute NCDZ using as compres-
sor Z the recent JPEG XL lossless codec (which gave the
best compression across the tried codecs). Since Z does not
support compression of two images simultaneously, instead
of Z(xy) we use the lower-bound:

Z(xy) � Z(x) + Z(y)� Z(s).

The empirical behavior — even if using a suboptimal com-
pression scheme and using correlated noise — indeed fol-
lows the theoretical prediction.

B. Additional results

Multi-Modal Similarity on SugarCrepe. Our method can
also be used to compute similarity between data in different
modalities, as long as they share the description space H .
To test this, we evaluate our method on SugarCrepe [19],
a vision-language compositionality benchmark framed as a
binary classification task: given an image and a pair of can-
didate captions, the task is to select the right caption for the
image. Negative captions in each pair are generated from
the ground-truth caption as “compositional distractors” via
replacing, swapping, or adding atomic concepts. Since cap-
tion pairs differ only by an atomic concept, effective meth-
ods require capturing compositional structures in both im-
age and text modalities. We use using CC:DAE for classi-
fication by computing the conceptual distance between the

image and each caption, and selecting the caption that yields
the lowest distance.

For our experiments on SugarCrepe, we generate via
multinomial sampling 10 trajectories of maximum 10 to-
kens from each input image or candidate caption as descrip-
tions for our method. For fair comparison, we apply the
same settings for the Meaning as Trajectories baseline.

In Tab. 3, we show that conceptual similarity matches
or outperforms all multi-modal contrastive-based models
(which are trained specifically for this task) on 4 out of
7 tasks. This holds especially for the hardest benchmarks
measured by the poor performance of the paragon con-
trastive models: Replace Relation, Swap Object, Swap At-
tribute, and Add Attribute. Our model also significantly out-
performs the conditional likelihood baseline in most tasks
— which notably performs even worse than random guess-
ing on the Add Object benchmark — and also uniformly
outperforms [28] on all 7 tasks when using the same sam-
pled descriptions for both methods.

Importance of varying C. In Fig. 5 we plot the corre-
lation between human ground-truth and the distance com-
puted by our method for different fixed values of the ca-
pacity C. We see that using a large capacity C, and hence
more descriptive captions, is actually detrimental: when the
capacity C of the description is too high, the correlation
between our distance and human ground-truth significantly
worsens. This is indeed one key motivation, inspired by
Kolmogorov’s framework, for varying C. If the description
is too complex, we can always find a large number of dif-

Figure 5. Performance of CC:DAE distance as C increases.



ferences, even if these distinctions are meaningless. This
is also formalized by the “Ugly duckling theorem” [42]: if
all possible properties are listed, a duckling is as similar to a
swan as two swans are to each other, and is supported by our
analysis in Appendix A and Figure 4, where we prove an-
alytically that a large C leads to degenerate distances even
for two visually indistinguishable images. We also empir-
ically observe that using AUC instead of a single value of
the curve improves performance on 11/16 tasks and gener-
ally makes the results less sensitive to the choice of C.

Using diffusion models to compute CC:DAE. In Section 5
we introduced a method to compute the CC:DAE distance
without requiring access to a generative model, which sim-
plifies the implementation of the method. Similar qualita-
tive results can however be obtained computing p(x|h) di-
rectly using a generative model. In Figure 6 we replot Fig-
ure 1 using Stable Diffusion as the generative model, and
computing the log-likelihood p(x|h) as described in [24].

C. Non-Existence of a Canonical Structure

In this section we want to prove Theorem 4.1:

Theorem (No canonical definitions of structure, informal).
Let H be a class of hypotheses and let p(x|h) be the cor-
responding decoder. If the decoder p(x|h) is expressive
enough to perform perfect test-time optimization, then all
samples have the same structure, and the conceptual dis-
tance between any pair of samples is zero.

We provide a general sketch of proof in the gen-
eral setting, and we refer the reader to [13] for a
more technical proof in the specific case of H =
{computable distributions}. First, we need to introduce
some additional definitions — adapted from [39] — to for-
malize the notion of structure of x as all the non-random
information contained in x. Given an hypothesis class H ,
consider the function:

�x(C) = min
h2H

� log ph(x)� log pcode(h) (9)

s.t. � log pcode(h)  C.

This function closely relates to our optimization problem
Eq. (1), and can be seen as the compression code for x us-
ing a two part code that first specifies a description h 2 H

— with cost `(h) = � log pcode(h) — and then uses it to en-
code x using � log ph(x) bits. As C grows, and we can use
better fitting descriptions, �x(C) decreases until it reaches
a minimum non-zero value, which is the best compression
cost achievable using this class. We call a hypothesis h

sufficient statistic if it witnesses this minimum. A suffi-
cient statistic of x describes all the properties that are com-
pressible under H , however it may also encode random bits
of incompressible (non-structural) information. To prevent

this, we define a minimal sufficient statistic as any sufficient
statistic h which has minimal coding length `(h) (equiva-
lently, h witnesses the first point where �x(C) reaches its
minimum). Intuitively, a minimal sufficient statistic cap-
tures all structural properties and no random properties.
This definition was proposed by Kolmogorov, and further
formalized by [39] to separate structural and random prop-
erties of the data.

We now want to show that, in general, a minimal suffi-
cient statistic will always be trivial if the class H and the
decoder function are expressive enough. Hence, picking
a canonical class of hypotheses/functions (e.g., all possi-
ble functions, all computable functions) always lead to triv-
ial structure and restriction to a smaller non-canonical set
(all linear functions, descriptions that are English sentences,
etc.) is necessary to talk about structural properties.

Proof. Let H be an hypothesis class. Consider the function

�x(C) = min
h2H

� log ph(x)� log pcode(h) (10)

s.t. � log pcode(h)  C,

The best compression we can achieve using H is given by
the minimum over:

min
h2H

� log ph(x)� log pcode(h).

Suppose however that, because the model class is rich
enough, there is an hypothesis hsearch which can compute:

log phsearch(x) = min
h2H

� log ph(x)� log pcode(h).

This can be implemented, for example, by enumerating all
elements of H by their coding length � log pcode(h) and
testing all of them until a minimum is found (only finitely
many have to be tested, since h whose coding length is too
long cannot be minima). Then hsearch would be a minimal
sufficient statistic at the same time for all possible samples,
hence all samples really have the same structure. Moreover,
since all samples would consider hsearch an optimal descrip-
tion, their conceptual distance would be zero.

This results motivate our non-canonical choice of re-
stricting to H = {natural language sentences} in defining a
conceptual distance. We also note that when H is the class
of all possible programs, hsearch may not be computable due
to the halting problem. The sketch of the proof however re-
mains valid for most samples, and in particular all the ones
likely to occur as real-world measurements (see [13] for an
extended discussion).

D. Connection with Liu et al. [28]

Let x1 and x2 be two sentences, and let p(h|xi) be the dis-
tribution over the trajectories h that can extend xi, where



Figure 6. Same plot as Figure 1 but using Stable Diffusion to
compute p(x|h).

p(h|xi) is computed using a large language model. [28]
proposes to measures the similarity between x1 and x2

based on the similarity between the distribution of trajec-
tories they can generate. Specifically,

dtraj(x1, x2) = E
h⇠ 1

2 (p(h|x1)+p(h|x2))

�� log p(h|x1)�log p(h|x2)
��

Interestingly, while this perspective is very different from
our definition of conceptual distance, we note that it can be
derived as a particular case of our method. In particular,
consider using the set H of trajectories as the set of sam-
pled descriptions used to compute the conceptual distance.
When using the encoder-only method to compute our dis-
tance we have:

q
⇤
xi
(h|C) =

1

Z�

pcode(h)
⇣
p(h|xi)

p(h)

⌘�

, (11)

In the case of language, we can assume that the marginal
probability p(h) =

R
p(h|x)p(x)dx of the trajectory h over

all possible prefixes x should be similar to unconditional
likelihood pcode(h) of the text. With this assumption, and in
the particular case of �(C) = 1, the optimal distribution of
descriptions reduces to:

q
⇤
xi
(h|� = 1) = p(h|xi).

Using this distribution to compute the conceptual distance
we have:

dx1,x2(� = 1) =Ep(h|x1)[log p(h|x2)� log p(h|x1)]

+ Ep(h|x2)[log p(h|x1)� log p(h|x2)]

assuming that log p(h|x2) � log p(h|x1) is mostly positive
when h is sampled from p(h|x1) — and vice versa for x2

— we can rewrite this with absolute values as:

dx1,x2(� = 1) = Ep(h|x1)| log p(h|x2)� log p(h|x1)|
+ Ep(h|x2)| log p(h|x1)� log p(h|x2)|

= 2 · E 1
2p(h|x1)+ 1

2p(h|x2)

�� log p(h|x1)� log p(h|x2)
��.

Hence we can see dtraj(x1, x2) as a particular case of our
conceptual distance when using a particular capacity C such
that �(C) = 1, and making a particular choice of using

trajectories as descriptions of the sentences x1 and x2. Our
results in Tabs. 1 and 3 show that using our distance without
these restrictions outperforms [28] when evaluated in the
same setting.

E. Using Only the Encoder Model

As described in Sec. 5, for image experiments we use the
LLaVA image-to-text encoder p(h|x) to evaluate the likeli-
hood p(x|h), through Bayes’ rule:

p(x|h) = p(h|x)
p(h)

p(x).

We now want to show that the term p(x) does not affect the
distance computation, and can be ignored. First note using
the above identity, we have that the reconstruction loss is

`(x|h) = � log
p(h|x)
p(h)

� log p(x) = ¯̀(x|h)� log p(x),

where we defined ¯̀(x|h) = � log p(h|x)
p(h) . Considering the

optimization problem in Eq. (2) to find the optimal descrip-
tion under a capacity constrain:

q
⇤
x
(h|C) = argmin

q(h)2P(H)
Eh⇠q(h)[`(x|h)]

s.t. KL
�
q(h) k p(h)

�
 C,

we see that � log p(x) (which does not depend on h)
only accounts for an additive constant (Eh⇠q(h)[`(x|h)] =
Eh⇠q(h)[� log p(h|x)

p(h) ] + log p(x)). Hence q⇤
x
(h|C) does not

depend on p(x). Using Eq. (5), the distance is:

dx1,x2(C) = Eq1 [`(x1|h)] + Eq2 [`(x2|h)]� Eq\ [`(x1|h) + `(x2|h)]
= Eq1 [¯̀(x1|h)] + log p(x1) + Eq2 [¯̀(x2|h)] + log p(x2)

� Eq\ [¯̀(x1|h) + ¯̀(x2|h)]� (log p(x1) + log p(x2))

= Eq1 [¯̀(x1|h)] + Eq2 [¯̀(x2|h)]� Eq\ [¯̀(x1|h) + ¯̀(x2|h)],

and all quantities in the last expression are independent of
the value of log p(xi).

F. Closed-Form Expressions

We now derive the close form expression for the solution of
Eq. (2):

q
⇤
x
(h|C) = argmin

q(h)2P(H)
Eh⇠q(h)[`(x|h)]

s.t. KL
�
q(h) k pcode(h)

�
 C.

Writing the Lagrangian corresponding to the constrained
optimization problem we have:

L =Eh⇠q(h)[`(x|h)] + �
�
KL

�
q(h) k pcode(h)

�
� C

�

+ ↵
� Z

q(h)dh� 1
�



Setting to zero the derivatives of L with respect to q(h) we
have:

@q(h)L = l(x|h) + �

⇣
log

q(h)

pcode(h)
� 1

⌘
+ ↵ = 0,

from which we get:

q(h) = pcode(h) exp
⇣
� 1

�
l(x|h) + 1� ↵

⌘

=
1

Z
pcode(h) exp

�
� �l(x|h)

�

=
1

Z
pcode(h)p(x|h)�,

where we defined � := 1
�

and Z := exp(↵ � 1), and we
used l(x|h) = � log p(x|h). Enforcing the constraint that
q(h) is a probability distribution and integrates to one (note
that q(h) > 0 is automatically satisfied), we get:

Z = Z� =

Z
pcode(h)p(x|h)�dh.

Enforcing the remaining constraint on � = �(C) allows
finding the optimal distribution for the particular capacity
C. While the solution cannot be written analytically, it can
be found easily by binary search over �. Doing it is however
not necessary for our method: since our method only cares
about the function

�x(C) = Eq⇤(h|C)[`(x|h)]

as C varies, rather than solving the constraint we can simply
trace the curve

�x(�) = Eq⇤(h|�)[`(x|h)]
C(�) = KL

�
q
⇤(h|�) k pcode(h)

�

as � varies in order to reconstruct the function �x(C). In
our experiments, we sample � 2 linspace(0, 100, 200) and
linearly interpolate the results to approximate �x(C).

G. Experimental Details for Qualitative Plots

To improve interpretability of the plot, and aid better under-
standing of the key components of the method, we use the
following setup for our qualitative plots. We use as coding
length `(h) = � log pcode(h) the log-likelihood assigned to
h by a LLaMA language-model. This scales with the com-
plexity and length of the sentence h. In Eq. (2) the com-
plexity C of the hypothesis distribution q(h) is given by
KL

�
q(h) k p(h)

�
which measures closeness of the distribu-

tion to the prior pcode(h). This means that, when C is low,
the method will select all sentences, giving higher probabil-
ity to short ones. Since distribution of sentences are difficult
to visualize, we force q(h) to be a Dirac delta, thus making

it more similar to Eq. (1) and effectively selecting the single
best description with coding length `(h)  C.

To observe the effect of varying C, it is helpful to sample
descriptions that are increasingly longer (larger `(h)) and
more descriptive (smaller `(x|h)), as we expect longer
descriptions to be preferentially picked as C increases.
Unfortunately, directly sampling longer descriptions with
LLaVA does not result in good descriptions, as the model
starts hallucinating information that is irrelevant for the
image and thus does not increase `(x|h). To remedy this,
we use the following beam search method. First, we prompt
the LLaVA model to generate short “atoms” of information
about the image (using the prompt: “Describe in 10
short bullet points what you see in the
image. Do not provide explanations.”).
We compute a total of 40 atoms for each image of the
pair, and combine them in a common dictionary. We
also sample 40 atoms that are good descriptions of both
images at the same time, by sampling tokens from the
ensemble 1

2 log p(ht|h<t, x1) +
1
2 log p(ht|h<t, x2) of the

log-likelihoods conditioned on each image. We then use
a beam search to combine the atoms in the dictionary in
increasingly longer sentences that are optimal description
for each image — i.e., minimize `(x|h). Since evaluating
`(x|h) with LLaVA at each step of the beam search is
expensive, we use the CLIP similarity between h and x as a
proxy score. For Fig. 3, we add to the beam search a penalty
to preferentially avoid sentences that do not relate to the
prompt (“Describe style” or ”Describing content”) by sub-
tracting from the CLIP score the CLIP similarity between
the sentence and the negative prompt. This procedure is
used to sample a qualitatively interesting set H of descrip-
tions which helps providing a better intuitive understanding
of the conceptual distance. The distance computation is
otherwise unaltered. In the quantitative results we instead
simply sample H ⇠ 1

2p(h|x1) +
1
2p(h|x2).
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