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This supplementary material presents further details on
the proposed approach, datasets, and results. To ensure
the reproducibility of our results, we share the code on
our project page - https://val.cds.iisc.ac.in/
VL2V-ADiP/. The supplementary material is structured
as follows:

¢ Section 1: Training Algorithm
¢ Section 2: Details on Datasets

¢ Section 3: Additional Results
— Section 3.1: Variance re-runs

— Section 3.2: Comparison with Additional Baselines
— Section 3.3: Distillation using diverse VLMs
— Section 3.4: Domain-wise Results

* Section 4: Analysis on Loss Weighting

1. Training Algorithm

The detailed training algorithm of the proposed approach
VL2V-ADiP is presented in Algorithm-1. We additionally
incorporate SWAD [1] during training, which detects the
onset of the optimal basin and performs weight-averaging
across several model snapshots in the basin. To enable a
fair comparison, we present results across all baselines as
well using SWAD, denoted using “(S)” in Tables- 2, 3, and
4 of the main paper.

2. Details on Datasets

We evaluate the proposed approaches VL2V-SD and VL2V-
ADiP on five Domain Generalization datasets that are
widely used in literature and recommended on the Do-
mainBed benchmark [6]. The details of these five datasets
are presented in Table-1. This includes diverse datasets with
several unique aspects such as - less training data [4, 11, 19]
and a larger amount of training data [15], small domain-
shifts [4] and larger domain shifts [15], lesser number of
classes [4, 11] and a higher number of classes [15, 19]. We
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Algorithm 1 VL2V - Align, Distill, Predict (ADiP)

1: Input: Let D, = {D;, Vi =1,2,...d— 1} be the data
from d — 1 source domains, (z;,y;) ~ D be an image-
label pair from source domains, z;""#" be a test image
from the target domain, f4** and f%mg be the text and
image encoders of the VLM Teacher respectively, f ge
and f5"* be the feature extractor and linear projection
layer of the student vision model respectively, hyr be
the zero-shot classifier of the VLM teacher, and C be
the set of all class names in dataset D,. For the data
sample (z;,y;), let IY. and T, be the image and text
embeddings from the VLM teacher respectively, and
PF; be the projected features from the student.

2: P, =“Aphotoofac” VceC
3 T, = fl**(P,) Yee C

Stage 1 - Align > Projection layer trained

for iter < MaxlIters do:
Sample batch (z;,y;) from D,V 0 <i <n
Lo« f7"(x:),V0<i<n
PF; « [ (fi(x:),V 0<i<n
L=—%{cos(PF; ,T,,) + cos(PF; I )}
eproj — eproj - VQPTVUJ-E

10: end for

R A

Stage 2 - Distill > Feature extractor trained

11: for iter < MaxlIters do:

12: Sample batch (z;,y;) from D,V 0 <i <n

13: I« f7"9(x;),Y 0<i<n

4 PFY « fE9(f1%(x)),V 0<i<n

15: L=—3L5{cos(PF; T,,)+ cos(PF; I, )}
16: Gfe — Qfe — ngeﬁ

17: end for

Stage 3 - Predict
18: hyim(x) := [ cos(x, T.), Ve € C]
19: PFS targer < fE77 (f4°(2778Y))
20: s — argmax, lypm (PF;:Mget)
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Table 1. Domain Generalization Datasets: Details of the five DG datasets recommended by the DomainBed benchmark [6]

Dataset No. of No. (,)f ,NO' of Domains Domain shift
classes domains images
Office-Home (OH) 65 4 15,588 Art, Clipart, Product, Real Style
Terra-Incognita (TT) 10 4 24,788 L100, L38, L43, L46 Camera location
VLCS 5 4 10,729 Caltech101, LabelMe, SUN09, VOC2007 Photography
PACS 7 4 9,991 Art, Cartoons, Photos, Sketches Style
DomainNet (DN) 345 6 586,575 Clipart, Infograph, Painting, Quickdraw, Real, Sketch  Style

Table 2. Variance across re-runs: Mean and standard deviation of the OOD accuracy (%) of our proposed approach VL2V-ADiP when
compared to the ERM and KD [7] baselines across the five DG datasets. All results are presented with SWAD (S) [1].

Method Office-Home Terra-Incognita VLCS PACS DomainNet Avg-O0D
ERM-FFT (S) 82.33 +0.87 48.87 +£0.74 80.12 +0.30 90.15 £ 0.51 56.09 + 0.09 71.51 £0.50
KD (S) 81.90 +0.78 48.90 +1.32 79.95 +0.49 90.70 + 0.67 56.01 £0.10 71.49 +0.67
VL2V-ADiP (Ours) 85.82 +0.27 55.32 +0.74 82.31 +£0.37 94.32 +0.56 59.29 +0.11 75.41 +0.41

compare against several baselines on each of these in-
dividual datasets and also report the average performance
across all datasets as is the standard practice [6].

3. Additional Results

3.1. Variance re-runs

The results in Tables - 2, 3, 4, and 5 of the main paper
are reported with a fixed seed of 0, in order to ensure re-
producibility of results. In Table-2, we report the mean
and standard deviation of the proposed method VL2V-ADiP
across 3 re-runs with different random seeds. We addition-
ally present standard deviation for the two standard base-
lines - ERM Fine-tuned (S) and KD (S) [7], for reference.
We note that the standard deviation of the proposed method
is comparable to the baselines on the respective datasets.

3.2. Comparison with Additional Baselines

We present additional baseline results corresponding to Ta-
bles - 2, 3, and 4 of the main paper in Tables-3, 4 and 5 re-
spectively, for the sake of completeness. In Tables-3 and 4,
we additionally present the respective baseline results with-
out including SWAD [1] during training. In Table-5, we
compare the performance of the proposed approach VL2V-
ADiP on the OfficeHome dataset, with all the baselines con-
sidered in Table-2 of the main paper, on student models
with different architectures. The proposed approaches show
gains across baselines in all the tables.

3.3. Distillation using diverse VLMs

We demonstrate the compatibility of the proposed method
VL2V-ADIiP with diverse VLM teacher models in Table-
6. Specifically, we show results by distilling from FLAVA
[18], BLIP [12], and the data-efficient versions [13] of CLIP
and FILIP [22]. We observe that our method achieves the

Table 3. SOTA comparison with CLIP initialization (extended
comparisons to show results without integrating the baselines
with SWAD): Performance (%) of the proposed self-distillation
approach VLV2-SD, compared to the SOTA DG methods. ViT-
B/16 architecture is used with CLIP initialization. (S) denotes
SWAD [1]

Method | OH TI VLCS PACS DN |AvgID Avg-OOD
Zero-shot [16] | 82.40 34.10 8230 9650 57.70 | - 70.60
SWAD [1] 81.01 4292 79.13 9135 57.92| 89.05 7047
MIRO [2] 83.36 5430 81.32 9560 54.00| 89.32 7632
DART [9] 7735 4641 7704 9145 5653 | 8865  69.76
SAGM [20] 8111 5429 8LII 9061 5359 | 89.56 724l
LP-FT [10] 69.72 3604 77.10 8628 49.00 | 8472  67.14
FLYP [5] 7525 4022 7589 9297 4890 | 84.66  69.65
CLIPood [17] 6751 3568 7832 79.61 47.72| 8252  65.23
RISE [8] 70.28 40.15 8118 91.65 5081 | 8521  66.81

VL2V-SD (Ours) | 85.44 41.18 82.67 95.67 58.71 | 89.50 72.73

Combined with SWAD (S) [1]

MIRO (S) [2] 84.80 59.30 8230 96.44 6047 | 91.00 76.66
DART (S) [9] 80.93 5124 80.38 93.43 59.32 | 89.25 73.06
SAGM (S) [20] 83.40 58.64 82.05 9431 59.05| 89.74 75.49
LP-FT (S) [10] 81.17 4726 80.88 9292 57.04 | 88.97 71.85
FLYP (S) [5] 82.76 3325 66.64 7853 57.41 | 7894 63.72
CLIPood (S) [17] | 83.31 46.28 77.19 93.16 57.78 | 69.90 71.55
RISE (S) [8] 7839 49.61 80.62 9325 5537 | 8791 71.45

VL2V-SD (Ours) | 87.38 5854 83.25 96.68 62.79 | 89.99 71.73

highest gains over the KD baseline [7] with CLIP, where
the teacher VLM has been trained with a large pre-training
dataset. However, our method achieves significant gains
even with VLMs pre-trained on smaller datasets.

3.4. Domain-wise Results

We present the results of the proposed approaches VL2V-
SD and VL2V-ADIiP on each of the individual domains in
Table-7a and Table-7b. The domain in the column heading
indicates the unseen test domain, where the training was
done on the remaining d — 1 domains mentioned in Table-1.
We note that the proposed methods VL2V-SD and VL2V-
ADiP outperform existing methods across several datasets
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Figure 1. OOD and ID accuracy (%) of the proposed approach VL2V-ADiP across variation in loss weight A for 4 Domain Generalization
datasets. Cosine similarity of the student’s projected features w.r.t. the text embeddings of the VLM teacher is given a weight of (1 — X),
while that w.r.t. the image embeddings of the VLM is given a weight of A.

Table 4. SOTA comparison with ImageNet-1K initialization
(extended comparisons to show results without integrating the
baselines with SWAD): Performance (%) of the proposed ap-
proach VLV2-ADiP, compared to the SOTA DG methods. ViT-
B/16 architecture is used with ImageNet-1K initialization. (S) de-
notes SWAD [1]

Table 5. Distillation to lower capacity student models:
Performance (%) of the proposed approach VL2V-ADiP when
compared to existing SOTA DG methods (rows), with different ar-
chitectures of the student model (columns) on OfficeHome dataset.
The teacher architecture is ViT-B/16. (S) denotes SWAD.

Method | VIT-B/16 ViT-S/16 DeiT-S/16 ResNet-50 | Avg.
Method | OH TI VLCS PACS DN |AwgID Avg-0OD ERM.LP (S) 71438 6847 7412 68.46  70.63
ERM-LP 7145 31.80 7777 67.52 36.66 | 74.25 57.04 ERM-FFT (S) 83.22 78.58 74.95 70.85 76.90
ERM FFT 78.03 4253 78.13 85.32 50.84 86.90 66.97
LP-FT [10] 75.23  44.05 76.51 85.08 51.10 87.59 66.40 L_P-FT (S) [10] 81.55 78.77 74.41 70.39 76.28
SimKD [3] 76.89 2632 80.16 85.66 4845 | 6831 64.30 SimKD (S) [3] 66.76 54.18 58.75 60.88 |60.14
KD [7] 77.62 38.66 79.73 84.87 50.73 | 87.04 66.32 KD (S) [7] 82.73 78.14 74.65 70.67 76.55
DART [ 25 5070 1070 8976 043 | 8% 7177 MIRO(S) ) 005 G4 B8 R4 BT
SAGM [20] 80.87 5238 79.53 8729 54.04 88.88 73.83 DART (S) [)7] 83.75 79.67 75.85 71.90 77.79
Text2Concept [14] 70.57 26.86 79.03 66.10 23.29 53.22 53.17 SAGM (S) [20] 8222 77.00 73.94 70.10 75.81
RISE [8] 80.34 44.64 8415 90.99 5329 | 87.42 7347 Text2Concept (S) [14]| 70.24 63.30 66.27 61.89 6542
VL2V-ADiP (Ours) | 8456 49.99 8153 9341 56.82 | 88.74 73.26 RISE (S) [8] 83.48 80.47 76.09 7240 |78.11
Combined with SWAD (S) [1] VL2V-ADiP (Ours) 85.74 81.22 77.63 74.42 79.75
ERM-LP (S) 7148 3135 7752  67.02 36.65 73.99 56.81
ERM FFT (S) 83.22 50.05 80.33 90.28 56.10 89.31 72.00 oty O : : .
LPFT (8 [10] elss 3161 8017 9120 3603 | 9003 i Table 6. Distillation using varloqs VLMs: Performance (%) of
SimKD (S) [3] 6676 81.01 8392 2824 4942 | 6824 61.87 the proposed approach VL2V-ADiP (denoted as Ours) on 4 DG
ﬁ?lz(cs))([s?[v] 2(2)(7)3 ‘5‘33‘9’ :‘1“1‘(8) z;‘s‘g 2‘5’;; izg(l’ ;:;“5‘ datasets, when distilling from FLAVA [18], BLIP [12], CLIP [16]
DART (S) [9] 8375 4968 7729 9055 5805 | 88.54 71.86 and the data-efficient versions [13] of CLIP and FILIP [22]. The
SAGM (S) [20] 8222 5324 79.60 90.02 55.66 89.22 72.15 student architecture is ViT-B/16 in all cases.
Text2Concept (S) [14] | 70.24 2646 6477 79.03 23.26 53.15 52.82
RISE (S) [8] 8348 5255 8370 93.54 56.58 88.91 73.97
VL2V-ADIP (Ours) | 8574 5543 8190 9494 5938 | 8902  75.48 Teacher Dataset Method | OH VLCS PACS TI | Avg-0OD
Zero-shot | 69.99 79.21 9134 28.85 67.35
\EI{?;;‘; 1;1(\)41\]2 KD(S) | 8250 8041 9071 50.86 | 76.12
and domains. Ours 84.16 8294 9322 5456 | 78.72
VL2V-ADiP achieves the highest gains in cases where BLIP  CapFile ZCro-shot | 8483 - 71.60 9223 29.75 | 69.60
. cp - . . . . . KD (S) 82.45 8031 87.73 48.03 74.63
domain shift is large, highlighting the benefit of using the VITB/I6  129M 0 8586 8160 9410 5207 | 7841
supervision from CLIP in improving OOD generalization Zeroshot | 8157 8255 9599 3115 | 7281
on downstream tasks. The domains with the highest gains Vi%;fl 6 fobl; KD(S) | 8273 8048 9149 4833 | 7576
include ClipArt (OH), Location-38 (TI), Location-46 (TD), Ours 8574 8189 9413 5543 | 79.30
Cartoon (PACS), Infograph (DN), and Painting (OH). The DeCLIP  YECC i‘]’;"(s*;l"‘ g'gj ;3;2 gggz igzg ;2;?
domains with the least gains include Product (OH), Real- VIiT-B/32 15M Ours 82:85 81:46 92:16 50:50 76:73
World (OH), Art (PACS), Photo (PACS), Quickdraw (DN), DeFILIp  yroe  Zeroshot | 4697 7408 8202 1634 | 5485
. . . . o c
and all domains in VLCS. It is intuitive to see that most ViLB32  1sm KD | 8214 7953  90.68 5096 | 75.83
. . . Ours 83.11 8143 92.03 51.69 77.06
of the domains with the least gains are the cases where the

target distribution is similar to at least one of the source dis-
tributions, making them less challenging to evaluate OOD
robustness. For example, there is no real domain shift in

VLCS, apart from the fact that each split is obtained from
a different dataset, with a possible domain shift due to



Table 7. Domain-wise performance (%) of the proposed approaches VL2V-SD and VL2V-ADiP when compared to the respective base-
lines, on individual domains of all Domain Generalization datasets on the DomainBed benchmark [6].

(a) Domain-wise OOD accuracy for the approach VL2V-SD compared to
the baselines combined with SWAD (S) [1] for the white box setting.

(b) Domain-wise OOD accuracy for the approach VL2V-ADiP compared
to the baselines combined with SWAD (S) [1] for the black box setting.

Method / Dataset Domains Method / Dataset Domains
OfficeHome Art  Clipart  Product  Real  Avg. OfficeHome Art  Clipart  Product  Real — Avg.
ERM Full Fine-Tuning (S) 80.12 70.25 86.18 87.49  81.01 ERM Full Fine-Tuning (S) 8224 7219 88.43 90.02 83.22
MIRO (S) [2] 83.57 75.72 89.70  90.22 84.80 LP-FT (S) [10] 81.67 65.64 89.22 89.67 81.55
DART (S) [9] 78.79 72.71 86.04 86.17  80.93 KD (S) [7] 80.79 70.76 89.08 90.30 82.73
SAGM (S) [20] 82.60 7294 88.94 89.13  83.40 MIRO (S) [2] 78.89 64.15 87.70 89.62  80.09
LP-FT (S) [10] 80.18 71.94 86.35 86.23 81.17 DART (S) [9] 81.72 73.17 89.64 9048 83.75
CLIPood (S) [17] 84.86 70.93 88.09 89.39 8331 SAGM (S) [20] 80.23 70.16 88.46  90.02 8222
RISE (S) [8] 75.08 69.16 84.35 84.97 78.39 Text2Concept (S) [14] 71.06 4897 77.48 8345 70.24
WiSE-FT [21] 85.15 76.17 9290 91.04 86.32 RISE (S) [8] 81.87 72.42 89.27 90.33  83.48
VL2V-SD (Ours) 87.33 78.55 91.98 91.65 87.38 VL2V-ADiP (Ours) 84.81 75.92 90.65 91.60 85.74
Terralncognita L100 L38 L43 L46  Avg. Terralncognita L100 L38 L43 146  Avg.
ERM Full Fine-Tuning (S) 38.94 38.03 54.03 40.68  42.92 ERM Full Fine-Tuning (S) 58.98 37.76 58.31 45.15  50.05
MIRO (S) [2] 67.15 50.75 66.63 5271 59.30 LP-FT (S) [10] 58.29 41.08 63.22 4383 51.61
DART (S) [9] 61.09 39.48 58.97 4542 5124 KD (S) [7] 61.09 33.21 57.84  41.17 4833
SAGM (S) [20] 72.21 50.10 62.50  49.73  58.64 MIRO (S) [2] 61.27 38.14 57.68  44.08 50.29
LP-FT (S) [10] 54.23 38.09 56.52 4020 47.26 DART (S) [9] 56.82 37.34 62.31 4226  49.68
CLIPood (S) [17] 47.32 38.12 55.73 43.94  46.28 SAGM (S) [20] 64.17  44.42 59.64 4474 5324
RISE (S) [8] 60.30 3743 56.77 4394 4961 Text2Concept (S) [14] 43.55 2.04 31.83 2843  26.46
WiSE-FT [21] 56.75 51.93 61.71 47.62 5450 RISE (S) [8] 59.77 43.79 59.45 47.19 5255
VL2V-SD (Ours) 69.10  48.40 63.10 5356 58.54 VL2V-ADiP (Ours) 62.93 44.83 60.71 5326 5543
VLCS Caltech  LabelMe  Pascal Sun  Avg. VLCS Caltech  LabelMe  Pascal Sun  Avg.
ERM Full Fine-Tuning (S) 99.12 63.31 79.01 75.08  79.13 ERM Full Fine-Tuning (S) 98.49 64.05 82.60  76.17 80.33
MIRO (S) [2] 97.53 66.59 81.57 83.53 8230 LP-FT (S) [10] 96.97 63.58 82.02  78.13 80.17
DART (S) [9] 99.12 65.73 81.07 75.63  80.38 KD (S) [7] 98.87 65.32 81.33 76.39  80.48
SAGM (S) [20] 97.73 65.86 83.77 80.85 82.05 MIRO (S) [2] 99.75 64.79 82.66 7720 81.10
LP-FT (S) [10] 98.24 65.66 81.23 78.40  80.88 DART (S) [9] 94.08 63.11 76.12  75.86 77.29
CLIPood (S) [17] 82.22 66.47 84.19 7590 77.19 SAGM (S) [20] 98.49 64.92 7932 75.68  79.60
RISE (S) [8] 99.50  67.27 81.44 7427 80.62 Text2Concept (S) [20] 98.36  68.08 77.21 7247  79.03
WiSE-FT [21] 98.99 66.04 83.47 83.01 82.88 RISE (S) [8] 100.00  69.15 84.03  81.61 83.70
VL2V-SD (Ours) 99.24 67.81 86.89  79.05 83.25 VL2V-ADiP (Ours) 99.62  66.60 82.87 7846 81.89
PACS Art  Cartoon  Photo  Sketch Avg. PACS Art  Cartoon  Photo  Sketch Avg.
ERM Full Fine-Tuning (S) 91.34 89.07 97.53 8747 91.35 ERM Full Fine-Tuning (S) 93.78 86.25 99.18 81.93  90.28
MIRO (S) [2] 98.05 97.50 99.78 90.46  96.44 LP-FT (S) [10] 94.27 86.83 99.48 8422  91.20
DART (S) [9] 94.45 92.27 98.80 8820 9343 KD (S) [7] 94.20 86.35 99.25 86.04 91.46
SAGM (S) [20] 95.18 93.60 99.03 89.41 9431 MIRO (S) [2] 94.69 85.98 99.63 7770  89.50
LP-FT (S) [10] 91.46 92.59 99.10 88.52  92.92 DART (S) [9] 94.45 86.67 99.55 81.52  90.55
CLIPood (S) [17] 92.68 91.05 98.95 89.98 93.16 SAGM (S) [20] 93.72 86.57 99.18 80.63  90.02
RISE (S) [8] 92.25 93.82 98.65 88.26 93.25 Text2Concept (S) [14] 80.17 66.47 96.63 15.81  64.77
WiSE-FT [21] 98.29 98.50 100.00  92.36 97.29 RISE (S) [8] 9372 93.23 99.55 87.66 93.54
VL2V-SD (Ours) 98.05 98.19 99.93 90.55  96.68 VL2V-ADiP (Ours) 95.61 92.38 99.85  88.68 94.13
DomainNet clp inf pnt qkdr real skt Avg. DomainNet clp inf pnt qkdr real skt Avg.
ERM Full Fine-Tuning (S)  77.10  38.32 66.13 25.02 7519 6576 57.92 ERM Full Fine-Tuning (S) 76.34 3092  64.76 2130  77.70  65.60 56.10
MIRO (S) [2] 79.70 4350  67.36 24.62  79.22 6842 6047 LP-FT (S) [10] 76.49  30.75 65.30 20.82  77.83 6498 56.03
DART (S) [9] 78.51 39.99 66.89 2585 7637 6829 5932 KD (S) [7] 76.56 31.29 64.55 2144 77.62 6523 56.11
SAGM (S) [20] 78.78 40.21 67.31 24.18 76.29 67.54 59.05 MIRO (S) [2] 7632 3096  64.52 20.18 7788 64.63 5575
LP-FT (S) [10] 77.37 33.88 65.27 24.82 7460 6632 57.04 DART (S) [9] 77.62 3414  67.64 21.05 80.73 67.11 58.05
CLIPood (S) [17] 76.28 38.46 66.98 21.76 7579 6743 5778 SAGM (S) [20] 76.67 29.85 64.42 20.68 7758 6458 55.63
RISE (S) [8] 77.80 31.32 57.64 2460 7396 6690 55.37 Text2Concept (S) [14] 2241 10.14 35.26 0.47 56.55 14.61 23.26
WiSE-FT [21] 72.74 46.36 64.05 16.79  82.82 6529 58.01 RISE (S) [8] 7787 3271 61.03 2120 7990 66.77 56.58
VL2V-SD (Ours) 79.96 49.00  71.05 23.34 82.05 7136 62.79 VL2V-ADiP (Ours) 78.80 36.86  69.21 2132 8133 68.79 59.38

photography differences, which can be considered minor.
Hence, taking the supervision of a CLIP model is the least
beneficial here.

4. Analysis on Loss Weighting

The training loss of the proposed approach VL2V-ADiP
presented in Eq. 6 of the main paper, and in L8 and L15
of Algorithm-1, considers equal weights on both loss terms
- cosine similarity of the image embeddings PF, w.r.t. text
and image embeddings of the VLM teacher respectively. In
this section, we explore the impact of varying these weights
as a convex interpolation between the cosine similarity w.r.t.
text embeddings (weighted by 1—)\) and image embeddings

(weighted by \) respectively as shown below:

1 n
L=—r- > {(1-X)-cos(PF;, T,,)+A-cos(PF; T, ) }
1=1

ey

We note from the plots in Fig.1 that while the best
OOD accuracy could be achieved at a different A value, a
setting of 0.5 works reasonably well, since the proposed
approach is not too sensitive to variations in A in most
cases. Moreover, a value of 0.5 assigns equal weigh-
tage to losses w.r.t. both image and text embeddings
(since they are of the same scale), which is the best
setting to consider in the absence of hyperparameter tuning.
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