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This supplementary material presents further details on
the proposed approach, datasets, and results. To ensure
the reproducibility of our results, we share the code on
our project page - https://val.cds.iisc.ac.in/
VL2V-ADiP/. The supplementary material is structured
as follows:
• Section 1: Training Algorithm

• Section 2: Details on Datasets

• Section 3: Additional Results
– Section 3.1: Variance re-runs

– Section 3.2: Comparison with Additional Baselines

– Section 3.3: Distillation using diverse VLMs

– Section 3.4: Domain-wise Results

• Section 4: Analysis on Loss Weighting

1. Training Algorithm
The detailed training algorithm of the proposed approach
VL2V-ADiP is presented in Algorithm-1. We additionally
incorporate SWAD [1] during training, which detects the
onset of the optimal basin and performs weight-averaging
across several model snapshots in the basin. To enable a
fair comparison, we present results across all baselines as
well using SWAD, denoted using “(S)” in Tables- 2, 3, and
4 of the main paper.

2. Details on Datasets
We evaluate the proposed approaches VL2V-SD and VL2V-
ADiP on five Domain Generalization datasets that are
widely used in literature and recommended on the Do-
mainBed benchmark [6]. The details of these five datasets
are presented in Table-1. This includes diverse datasets with
several unique aspects such as - less training data [4, 11, 19]
and a larger amount of training data [15], small domain-
shifts [4] and larger domain shifts [15], lesser number of
classes [4, 11] and a higher number of classes [15, 19]. We
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Algorithm 1 VL2V - Align, Distill, Predict (ADiP)

1: Input: LetDs = {Di, ∀i = 1, 2, . . . d−1} be the data
from d−1 source domains, (xi, yi) ∼ Ds be an image-
label pair from source domains, xtarget

i be a test image
from the target domain, f text

T and f img
T be the text and

image encoders of the VLM Teacher respectively, ffe
S

and fproj
S be the feature extractor and linear projection

layer of the student vision model respectively, hVLM be
the zero-shot classifier of the VLM teacher, and C be
the set of all class names in dataset Ds. For the data
sample (xi, yi), let Itxi

and Tyi
be the image and text

embeddings from the VLM teacher respectively, and
PFs

xi
be the projected features from the student.

2: Pc = “A photo of a c” ∀ c ∈ C
3: Tc = f text

T (Pc) ∀ c ∈ C

Stage 1 - Align ▷ Projection layer trained

4: for iter < MaxIters do:
5: Sample batch (xi, yi) from Ds, ∀ 0 ≤ i < n
6: Itxi

← f img
T (xi), ∀ 0 ≤ i < n

7: PFs
xi
← fproj

S (ffe
S (xi)), ∀ 0 ≤ i < n

8: L = − 1
2n

∑
i

{
cos(PFs

xi
,Tyi) + cos(PFs

xi
, Itxi

)
}

9: θproj ← θproj −∇θprojL
10: end for

Stage 2 - Distill ▷ Feature extractor trained

11: for iter < MaxIters do:
12: Sample batch (xi, yi) from Ds, ∀ 0 ≤ i < n
13: Itxi

← f img
T (xi),∀ 0 ≤ i < n

14: PFS
xi
← fproj

S (ffe
S (xi)),∀ 0 ≤ i < n

15: L = − 1
2n

∑
i

{
cos(PFs

xi
,Tyi) + cos(PFs

xi
, Itxi

)
}

16: θfe ← θfe −∇θfe
L

17: end for

Stage 3 - Predict
18: hVLM(x) := [ cos(x,Tc), ∀ c ∈ C ]

19: PFs
xtarget
i

← fproj
S (ffe

S (xtarget
i ))

20: ŷi = argmaxc hVLM(PFs
xtarget
i

)
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Table 1. Domain Generalization Datasets: Details of the five DG datasets recommended by the DomainBed benchmark [6]

Dataset No. of
classes

No. of
domains

No. of
images

Domains Domain shift

Office-Home (OH) 65 4 15,588 Art, Clipart, Product, Real Style
Terra-Incognita (TI) 10 4 24,788 L100, L38, L43, L46 Camera location
VLCS 5 4 10,729 Caltech101, LabelMe, SUN09, VOC2007 Photography
PACS 7 4 9,991 Art, Cartoons, Photos, Sketches Style
DomainNet (DN) 345 6 586,575 Clipart, Infograph, Painting, Quickdraw, Real, Sketch Style

Table 2. Variance across re-runs: Mean and standard deviation of the OOD accuracy (%) of our proposed approach VL2V-ADiP when
compared to the ERM and KD [7] baselines across the five DG datasets. All results are presented with SWAD (S) [1].

Method Office-Home Terra-Incognita VLCS PACS DomainNet Avg-OOD

ERM-FFT (S) 82.33 ± 0.87 48.87 ± 0.74 80.12 ± 0.30 90.15 ± 0.51 56.09 ± 0.09 71.51 ± 0.50
KD (S) 81.90 ± 0.78 48.90 ± 1.32 79.95 ± 0.49 90.70 ± 0.67 56.01 ± 0.10 71.49 ± 0.67
VL2V-ADiP (Ours) 85.82 ± 0.27 55.32 ± 0.74 82.31 ± 0.37 94.32 ± 0.56 59.29 ± 0.11 75.41 ± 0.41

compare against several baselines on each of these in-
dividual datasets and also report the average performance
across all datasets as is the standard practice [6].

3. Additional Results
3.1. Variance re-runs

The results in Tables - 2, 3, 4, and 5 of the main paper
are reported with a fixed seed of 0, in order to ensure re-
producibility of results. In Table-2, we report the mean
and standard deviation of the proposed method VL2V-ADiP
across 3 re-runs with different random seeds. We addition-
ally present standard deviation for the two standard base-
lines - ERM Fine-tuned (S) and KD (S) [7], for reference.
We note that the standard deviation of the proposed method
is comparable to the baselines on the respective datasets.

3.2. Comparison with Additional Baselines

We present additional baseline results corresponding to Ta-
bles - 2, 3, and 4 of the main paper in Tables-3, 4 and 5 re-
spectively, for the sake of completeness. In Tables-3 and 4,
we additionally present the respective baseline results with-
out including SWAD [1] during training. In Table-5, we
compare the performance of the proposed approach VL2V-
ADiP on the OfficeHome dataset, with all the baselines con-
sidered in Table-2 of the main paper, on student models
with different architectures. The proposed approaches show
gains across baselines in all the tables.

3.3. Distillation using diverse VLMs

We demonstrate the compatibility of the proposed method
VL2V-ADiP with diverse VLM teacher models in Table-
6. Specifically, we show results by distilling from FLAVA
[18], BLIP [12], and the data-efficient versions [13] of CLIP
and FILIP [22]. We observe that our method achieves the

Table 3. SOTA comparison with CLIP initialization (extended
comparisons to show results without integrating the baselines
with SWAD): Performance (%) of the proposed self-distillation
approach VLV2-SD, compared to the SOTA DG methods. ViT-
B/16 architecture is used with CLIP initialization. (S) denotes
SWAD [1]

Method OH TI VLCS PACS DN Avg-ID Avg-OOD

Zero-shot [16] 82.40 34.10 82.30 96.50 57.70 - 70.60
SWAD [1] 81.01 42.92 79.13 91.35 57.92 89.05 70.47
MIRO [2] 83.36 54.30 81.32 95.60 54.00 89.32 76.32
DART [9] 77.35 46.41 77.04 91.45 56.53 88.65 69.76
SAGM [20] 81.11 54.29 81.11 90.61 53.59 89.56 72.41
LP-FT [10] 69.72 36.04 77.10 86.28 49.00 84.72 67.14
FLYP [5] 75.25 40.22 75.89 92.97 48.90 84.66 69.65
CLIPood [17] 67.51 35.68 78.32 79.61 47.72 82.52 65.23
RISE [8] 70.28 40.15 81.18 91.65 50.81 85.21 66.81
VL2V-SD (Ours) 85.44 41.18 82.67 95.67 58.71 89.50 72.73

Combined with SWAD (S) [1]

MIRO (S) [2] 84.80 59.30 82.30 96.44 60.47 91.00 76.66
DART (S) [9] 80.93 51.24 80.38 93.43 59.32 89.25 73.06
SAGM (S) [20] 83.40 58.64 82.05 94.31 59.05 89.74 75.49
LP-FT (S) [10] 81.17 47.26 80.88 92.92 57.04 88.97 71.85
FLYP (S) [5] 82.76 33.25 66.64 78.53 57.41 78.94 63.72
CLIPood (S) [17] 83.31 46.28 77.19 93.16 57.78 69.90 71.55
RISE (S) [8] 78.39 49.61 80.62 93.25 55.37 87.91 71.45
VL2V-SD (Ours) 87.38 58.54 83.25 96.68 62.79 89.99 77.73

highest gains over the KD baseline [7] with CLIP, where
the teacher VLM has been trained with a large pre-training
dataset. However, our method achieves significant gains
even with VLMs pre-trained on smaller datasets.

3.4. Domain-wise Results

We present the results of the proposed approaches VL2V-
SD and VL2V-ADiP on each of the individual domains in
Table-7a and Table-7b. The domain in the column heading
indicates the unseen test domain, where the training was
done on the remaining d−1 domains mentioned in Table-1.
We note that the proposed methods VL2V-SD and VL2V-
ADiP outperform existing methods across several datasets
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Figure 1. OOD and ID accuracy (%) of the proposed approach VL2V-ADiP across variation in loss weight λ for 4 Domain Generalization
datasets. Cosine similarity of the student’s projected features w.r.t. the text embeddings of the VLM teacher is given a weight of (1− λ),
while that w.r.t. the image embeddings of the VLM is given a weight of λ.

Table 4. SOTA comparison with ImageNet-1K initialization
(extended comparisons to show results without integrating the
baselines with SWAD): Performance (%) of the proposed ap-
proach VLV2-ADiP, compared to the SOTA DG methods. ViT-
B/16 architecture is used with ImageNet-1K initialization. (S) de-
notes SWAD [1]

Method OH TI VLCS PACS DN Avg-ID Avg-OOD

ERM-LP 71.45 31.80 77.77 67.52 36.66 74.25 57.04
ERM FFT 78.03 42.53 78.13 85.32 50.84 86.90 66.97
LP-FT [10] 75.23 44.05 76.51 85.08 51.10 87.59 66.40
SimKD [3] 76.89 26.32 80.16 85.66 48.45 68.31 64.30
KD [7] 77.62 38.66 79.73 84.87 50.73 87.04 66.32
MIRO [2] 74.88 44.52 80.39 81.53 49.95 86.56 66.25
DART [9] 82.56 50.70 79.70 89.76 56.13 89.99 71.77
SAGM [20] 80.87 52.38 79.53 87.29 54.04 88.88 73.83
Text2Concept [14] 70.57 26.86 79.03 66.10 23.29 53.22 53.17
RISE [8] 80.34 44.64 84.15 90.99 53.29 87.42 73.47
VL2V-ADiP (Ours) 84.56 49.99 81.53 93.41 56.82 88.74 73.26

Combined with SWAD (S) [1]

ERM-LP (S) 71.48 31.35 77.52 67.02 36.65 73.99 56.81
ERM FFT (S) 83.22 50.05 80.33 90.28 56.10 89.31 72.00
LP-FT (S) [10] 81.55 51.61 80.17 91.20 56.03 90.03 72.11
SimKD (S) [3] 66.76 81.01 83.92 28.24 49.42 68.24 61.87
KD (S) [7] 82.73 48.40 80.48 91.46 56.11 89.20 71.84
MIRO (S) [2] 80.09 50.29 81.10 89.50 55.75 88.71 71.35
DART (S) [9] 83.75 49.68 77.29 90.55 58.05 88.54 71.86
SAGM (S) [20] 82.22 53.24 79.60 90.02 55.66 89.22 72.15
Text2Concept (S) [14] 70.24 26.46 64.77 79.03 23.26 53.15 52.82
RISE (S) [8] 83.48 52.55 83.70 93.54 56.58 88.91 73.97
VL2V-ADiP (Ours) 85.74 55.43 81.90 94.94 59.38 89.02 75.48

and domains.
VL2V-ADiP achieves the highest gains in cases where

domain shift is large, highlighting the benefit of using the
supervision from CLIP in improving OOD generalization
on downstream tasks. The domains with the highest gains
include ClipArt (OH), Location-38 (TI), Location-46 (TI),
Cartoon (PACS), Infograph (DN), and Painting (OH). The
domains with the least gains include Product (OH), Real-
World (OH), Art (PACS), Photo (PACS), Quickdraw (DN),
and all domains in VLCS. It is intuitive to see that most
of the domains with the least gains are the cases where the
target distribution is similar to at least one of the source dis-
tributions, making them less challenging to evaluate OOD
robustness. For example, there is no real domain shift in

Table 5. Distillation to lower capacity student models:
Performance (%) of the proposed approach VL2V-ADiP when
compared to existing SOTA DG methods (rows), with different ar-
chitectures of the student model (columns) on OfficeHome dataset.
The teacher architecture is ViT-B/16. (S) denotes SWAD.

Method ViT-B/16 ViT-S/16 DeiT-S/16 ResNet-50 Avg.

ERM-LP (S) 71.48 68.47 74.12 68.46 70.63
ERM-FFT (S) 83.22 78.58 74.95 70.85 76.90
LP-FT (S) [10] 81.55 78.77 74.41 70.39 76.28
SimKD (S) [3] 66.76 54.18 58.75 60.88 60.14
KD (S) [7] 82.73 78.14 74.65 70.67 76.55
MIRO (S) [2] 80.09 69.45 73.18 72.40 73.78
DART (S) [9] 83.75 79.67 75.85 71.90 77.79
SAGM (S) [20] 82.22 77.00 73.94 70.10 75.81
Text2Concept (S) [14] 70.24 63.30 66.27 61.89 65.42
RISE (S) [8] 83.48 80.47 76.09 72.40 78.11
VL2V-ADiP (Ours) 85.74 81.22 77.63 74.42 79.75

Table 6. Distillation using various VLMs: Performance (%) of
the proposed approach VL2V-ADiP (denoted as Ours) on 4 DG
datasets, when distilling from FLAVA [18], BLIP [12], CLIP [16]
and the data-efficient versions [13] of CLIP and FILIP [22]. The
student architecture is ViT-B/16 in all cases.

Teacher Dataset Method OH VLCS PACS TI Avg-OOD

FLAVA
ViT-B/16

PMD
70M

Zero-shot 69.99 79.21 91.34 28.85 67.35
KD (S) 82.50 80.41 90.71 50.86 76.12
Ours 84.16 82.94 93.22 54.56 78.72

BLIP
ViT-B/16

CapFilt
129M

Zero-shot 84.83 71.60 92.23 29.75 69.60
KD (S) 82.45 80.31 87.73 48.03 74.63
Ours 85.86 81.60 94.10 52.07 78.41

CLIP
ViT-B/16

CLIP
400M

Zero-shot 81.57 82.55 95.99 31.15 72.81
KD (S) 82.73 80.48 91.49 48.33 75.76
Ours 85.74 81.89 94.13 55.43 79.30

DeCLIP
ViT-B/32

YFCC
15M

Zero-shot 43.46 77.79 83.69 27.70 58.16
KD (S) 81.84 79.95 89.96 49.49 75.31
Ours 82.85 81.40 92.16 50.50 76.73

DeFILIP
ViT-B/32

YFCC
15M

Zero-shot 46.97 74.08 82.02 16.34 54.85
KD (S) 82.14 79.53 90.68 50.96 75.83
Ours 83.11 81.43 92.03 51.69 77.06

VLCS, apart from the fact that each split is obtained from
a different dataset, with a possible domain shift due to



Table 7. Domain-wise performance (%) of the proposed approaches VL2V-SD and VL2V-ADiP when compared to the respective base-
lines, on individual domains of all Domain Generalization datasets on the DomainBed benchmark [6].

(a) Domain-wise OOD accuracy for the approach VL2V-SD compared to
the baselines combined with SWAD (S) [1] for the white box setting.

Method / Dataset Domains

OfficeHome Art Clipart Product Real Avg.

ERM Full Fine-Tuning (S) 80.12 70.25 86.18 87.49 81.01
MIRO (S) [2] 83.57 75.72 89.70 90.22 84.80
DART (S) [9] 78.79 72.71 86.04 86.17 80.93
SAGM (S) [20] 82.60 72.94 88.94 89.13 83.40
LP-FT (S) [10] 80.18 71.94 86.35 86.23 81.17
CLIPood (S) [17] 84.86 70.93 88.09 89.39 83.31
RISE (S) [8] 75.08 69.16 84.35 84.97 78.39
WiSE-FT [21] 85.15 76.17 92.90 91.04 86.32
VL2V-SD (Ours) 87.33 78.55 91.98 91.65 87.38

TerraIncognita L100 L38 L43 L46 Avg.

ERM Full Fine-Tuning (S) 38.94 38.03 54.03 40.68 42.92
MIRO (S) [2] 67.15 50.75 66.63 52.71 59.30
DART (S) [9] 61.09 39.48 58.97 45.42 51.24
SAGM (S) [20] 72.21 50.10 62.50 49.73 58.64
LP-FT (S) [10] 54.23 38.09 56.52 40.20 47.26
CLIPood (S) [17] 47.32 38.12 55.73 43.94 46.28
RISE (S) [8] 60.30 37.43 56.77 43.94 49.61
WiSE-FT [21] 56.75 51.93 61.71 47.62 54.50
VL2V-SD (Ours) 69.10 48.40 63.10 53.56 58.54

VLCS Caltech LabelMe Pascal Sun Avg.

ERM Full Fine-Tuning (S) 99.12 63.31 79.01 75.08 79.13
MIRO (S) [2] 97.53 66.59 81.57 83.53 82.30
DART (S) [9] 99.12 65.73 81.07 75.63 80.38
SAGM (S) [20] 97.73 65.86 83.77 80.85 82.05
LP-FT (S) [10] 98.24 65.66 81.23 78.40 80.88
CLIPood (S) [17] 82.22 66.47 84.19 75.90 77.19
RISE (S) [8] 99.50 67.27 81.44 74.27 80.62
WiSE-FT [21] 98.99 66.04 83.47 83.01 82.88
VL2V-SD (Ours) 99.24 67.81 86.89 79.05 83.25

PACS Art Cartoon Photo Sketch Avg.

ERM Full Fine-Tuning (S) 91.34 89.07 97.53 87.47 91.35
MIRO (S) [2] 98.05 97.50 99.78 90.46 96.44
DART (S) [9] 94.45 92.27 98.80 88.20 93.43
SAGM (S) [20] 95.18 93.60 99.03 89.41 94.31
LP-FT (S) [10] 91.46 92.59 99.10 88.52 92.92
CLIPood (S) [17] 92.68 91.05 98.95 89.98 93.16
RISE (S) [8] 92.25 93.82 98.65 88.26 93.25
WiSE-FT [21] 98.29 98.50 100.00 92.36 97.29
VL2V-SD (Ours) 98.05 98.19 99.93 90.55 96.68

DomainNet clp inf pnt qkdr real skt Avg.

ERM Full Fine-Tuning (S) 77.10 38.32 66.13 25.02 75.19 65.76 57.92
MIRO (S) [2] 79.70 43.50 67.36 24.62 79.22 68.42 60.47
DART (S) [9] 78.51 39.99 66.89 25.85 76.37 68.29 59.32
SAGM (S) [20] 78.78 40.21 67.31 24.18 76.29 67.54 59.05
LP-FT (S) [10] 77.37 33.88 65.27 24.82 74.60 66.32 57.04
CLIPood (S) [17] 76.28 38.46 66.98 21.76 75.79 67.43 57.78
RISE (S) [8] 77.80 31.32 57.64 24.60 73.96 66.90 55.37
WiSE-FT [21] 72.74 46.36 64.05 16.79 82.82 65.29 58.01
VL2V-SD (Ours) 79.96 49.00 71.05 23.34 82.05 71.36 62.79

(b) Domain-wise OOD accuracy for the approach VL2V-ADiP compared
to the baselines combined with SWAD (S) [1] for the black box setting.

Method / Dataset Domains

OfficeHome Art Clipart Product Real Avg.

ERM Full Fine-Tuning (S) 82.24 72.19 88.43 90.02 83.22
LP-FT (S) [10] 81.67 65.64 89.22 89.67 81.55
KD (S) [7] 80.79 70.76 89.08 90.30 82.73
MIRO (S) [2] 78.89 64.15 87.70 89.62 80.09
DART (S) [9] 81.72 73.17 89.64 90.48 83.75
SAGM (S) [20] 80.23 70.16 88.46 90.02 82.22
Text2Concept (S) [14] 71.06 48.97 77.48 83.45 70.24
RISE (S) [8] 81.87 72.42 89.27 90.33 83.48
VL2V-ADiP (Ours) 84.81 75.92 90.65 91.60 85.74

TerraIncognita L100 L38 L43 L46 Avg.

ERM Full Fine-Tuning (S) 58.98 37.76 58.31 45.15 50.05
LP-FT (S) [10] 58.29 41.08 63.22 43.83 51.61
KD (S) [7] 61.09 33.21 57.84 41.17 48.33
MIRO (S) [2] 61.27 38.14 57.68 44.08 50.29
DART (S) [9] 56.82 37.34 62.31 42.26 49.68
SAGM (S) [20] 64.17 44.42 59.64 44.74 53.24
Text2Concept (S) [14] 43.55 2.04 31.83 28.43 26.46
RISE (S) [8] 59.77 43.79 59.45 47.19 52.55
VL2V-ADiP (Ours) 62.93 44.83 60.71 53.26 55.43

VLCS Caltech LabelMe Pascal Sun Avg.

ERM Full Fine-Tuning (S) 98.49 64.05 82.60 76.17 80.33
LP-FT (S) [10] 96.97 63.58 82.02 78.13 80.17
KD (S) [7] 98.87 65.32 81.33 76.39 80.48
MIRO (S) [2] 99.75 64.79 82.66 77.20 81.10
DART (S) [9] 94.08 63.11 76.12 75.86 77.29
SAGM (S) [20] 98.49 64.92 79.32 75.68 79.60
Text2Concept (S) [20] 98.36 68.08 77.21 72.47 79.03
RISE (S) [8] 100.00 69.15 84.03 81.61 83.70
VL2V-ADiP (Ours) 99.62 66.60 82.87 78.46 81.89

PACS Art Cartoon Photo Sketch Avg.

ERM Full Fine-Tuning (S) 93.78 86.25 99.18 81.93 90.28
LP-FT (S) [10] 94.27 86.83 99.48 84.22 91.20
KD (S) [7] 94.20 86.35 99.25 86.04 91.46
MIRO (S) [2] 94.69 85.98 99.63 77.70 89.50
DART (S) [9] 94.45 86.67 99.55 81.52 90.55
SAGM (S) [20] 93.72 86.57 99.18 80.63 90.02
Text2Concept (S) [14] 80.17 66.47 96.63 15.81 64.77
RISE (S) [8] 93.72 93.23 99.55 87.66 93.54
VL2V-ADiP (Ours) 95.61 92.38 99.85 88.68 94.13

DomainNet clp inf pnt qkdr real skt Avg.

ERM Full Fine-Tuning (S) 76.34 30.92 64.76 21.30 77.70 65.60 56.10
LP-FT (S) [10] 76.49 30.75 65.30 20.82 77.83 64.98 56.03
KD (S) [7] 76.56 31.29 64.55 21.44 77.62 65.23 56.11
MIRO (S) [2] 76.32 30.96 64.52 20.18 77.88 64.63 55.75
DART (S) [9] 77.62 34.14 67.64 21.05 80.73 67.11 58.05
SAGM (S) [20] 76.67 29.85 64.42 20.68 77.58 64.58 55.63
Text2Concept (S) [14] 22.41 10.14 35.26 0.47 56.55 14.61 23.26
RISE (S) [8] 77.87 32.71 61.03 21.20 79.90 66.77 56.58
VL2V-ADiP (Ours) 78.80 36.86 69.21 21.32 81.33 68.79 59.38

photography differences, which can be considered minor.
Hence, taking the supervision of a CLIP model is the least
beneficial here.

4. Analysis on Loss Weighting

The training loss of the proposed approach VL2V-ADiP
presented in Eq. 6 of the main paper, and in L8 and L15
of Algorithm-1, considers equal weights on both loss terms
- cosine similarity of the image embeddings PFs

xi
w.r.t. text

and image embeddings of the VLM teacher respectively. In
this section, we explore the impact of varying these weights
as a convex interpolation between the cosine similarity w.r.t.
text embeddings (weighted by 1−λ) and image embeddings

(weighted by λ) respectively as shown below:

L = − 1

2n

n∑
i=1

{
(1−λ)·cos(PFs

xi
,Tyi

)+λ·cos(PFs
xi
, Itxi

)
}

(1)
We note from the plots in Fig.1 that while the best

OOD accuracy could be achieved at a different λ value, a
setting of 0.5 works reasonably well, since the proposed
approach is not too sensitive to variations in λ in most
cases. Moreover, a value of 0.5 assigns equal weigh-
tage to losses w.r.t. both image and text embeddings
(since they are of the same scale), which is the best
setting to consider in the absence of hyperparameter tuning.
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