
MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning

Supplementary Material

Tiny Base
Rank = 64

0

1

2

3

4

5

6

7

Re
la

tiv
e 

Im
pr

ov
em

en
t t

o 
 S

in
gl

e-
Ta

sk
 Fi

ne
 Tu

ni
ng

 (%
)

Tiny Base
Rank = 32

0

1

2

3

4

5

6

7
ImageNet-1K ImageNet-22K

Figure 1. Performance with MTLoRA with different pretraining
datasets on various Swin-Transformer backbones.

1. Different pretraining datasets: ImageNet-
1K vs ImageNet-22K

We analyze the effect of using different pretraining datasets
on the performance of MTLoRA. Figure 1 shows the rela-
tive improvement in accuracy compared to the single task
models of MTLoRA when applied to Swin-Tiny and Swin-
Base pretrained on ImageNet-1K and ImageNet-22K. The
figure shows that the pretraining dataset can have a signifi-
cant impact on the model’s performance. Specifically, using
a model pre-trained on a richer dataset (i.e., ImageNet-22K)
results in a better performance on the downstream tasks
without any additional cost on our parameter-efficient train-
ing methodology.

2. MTLoRA with different Adaptation Scales
The scale value α in Equation 2 determines how much
the fine-tuned model can deviate from the original base-
line model. For example, A scale value of 0 is the same as
not using the LoRA weights and only using the base model
weights, and a scale value of 1 means that both the LoRA
weights as well as the base model weights have the same in-
fluence. It is common to use α in 1, 2 for language models
[3]; however, we experiment with different scales to analyze
their effect when fine-tuning vision transformers for multi-
ple tasks. Figure 2 shows the overall accuracy at different
scales. We found that empirically, scale 4 performs the best
for the purpose of MTLoRA.

3. MTLoRA with different Backbones
To ensure the generalizability of MTLoRA, we apply it
to another vision transformer backbone - Pyramid Vision
Transformer [8]. We analyze the impact of using MTLoRA

2 4 6 8 10 12 14 16
Low-Rank Adaptation Scale

1.8

2.0

2.2

2.4

Ac
cu

ra
cy

 Im
pr

ov
em

en
t(%

)

Figure 2. Effect of the hyper-parameter α on the accuracy of MT-
LoRA on the downstream tasks.

when applied on PVT-Small. Table 1 shows that applying
MTLoRA offers Pareto-optimal accuracy-efficiency trade-
off compared to state-of-the-art paramter-efficient training
techniques. Specifically, MTLoRA achieves higher accu-
racy (∆m) when compared to Hyperformer [6] while train-
ing 2× fewer parameters.

4. MTLoRA with different decoders
We analyze the effect of using different decoders on the per-
formance of MTLoRA. We choose 3 commonly used de-
coders for dense prediction tasks: (1) HRNet [7], which
interpolates and concatenates multi-scale features from the
hierarchical backbone and then passes them to a couple of
MLP layers. (2) SegFormer [9], which uses MLP layers
to combine the multi-scale features from the hierarchical
backbone, then parse them to one last MLP layer for pre-
diction. (3) Atrous Spatial Pyramid Pooling (ASPP) [1],
which has a more complicated architecture utilizing spatial
pyramid pooling capable of extracting multi-scale contex-
tual information by probing the incoming features with fil-
ters or pooling operations at multiple rates and multiple ef-
fective fields-of-view. We plug those decoders into a pre-
trained Swin-Tiny backbone, then use our MTLoRA tech-
nique to train the model to perform multiple downstream
tasks. Table 2 shows that MTLoRA generalizes perfectly
when different decoders are used. Different decoders can
provide different accuracy-efficiency trade-offs, which pro-
vide flexibility to adapt the training budget depending on
the application requirements and the available resources.

5. MTLoRA with different number of tasks
In this section, we evaluate MTLoRA in a setting with
increased number of tasks. Table 4 demonstrates the
accuracy-efficiency trade-off with increasing task numbers.



Table 1. MTLoRA versus SoTA parameter-efficient training methods when applied on Pyramid Vision Transformer [8] backbone. The
table summarizes the number of trainable parameters in each method. It also includes the accuracy of the downstream tasks as well as the
average MTL model’s accuracy (∆m).

Method SemSeg Human Parts Saliency Normals
∆m(%)

Trainable Parameters
(mIoU ↑) (mIoU ↑) (mIoU ↑) (rmse ↓) (M)

Single Task 68.81 61.27 62.67 17.55 0.00 97.51
MTL - Fine Tune Decoders 64.86 51.18 61.54 19.55 -8.85 2.11

Compactor++ [4] 70.29 54.80 63.16 18.82 -3.71 2.20
BitFit [10] 71.41 55.71 64.08 18.69 -2.38 2.34
LoRA [3] 71.89 56.9 64.27 18.48 -1.35 2.41

Adapter [2] 71.94 56.38 64.16 18.75 -1.97 2.90
Polyhistor [5] 71.00 57.52 65.83 17.83 +0.13 7.32

Hyperformer [6] 70.81 57.76 65.49 17.75 +0.14 16.14

MTLoRA (r = 64) 69.74 58.08 65.62 17.35 +1.2 8.69

Table 2. Evaluating MTLoRA with rank = 32 when applied on Swin-Tiny backbone pretrained on ImageNet-22K dataset and various
decoders for the downstream dense prediction tasks. The table summarizes the number of parameters for each decoder as well as the total
number of parameters. It also includes the accuracy of the downstream tasks as well as the average MTL model’s accuracy (∆m).

Decoder SemSeg Human Parts Saliency Normals
∆m(%)

Trainable Parameters (M)
(mIoU ↑) (mIoU ↑) (mIoU ↑) (rmse ↓) Decoder/All

HR-Net [7] 69.44 61.08 63.24 16.47 +2.93 1.94 / 6.08
SegFormer [9] 69.59 61.13 63.74 16.62 +3.00 2.08 / 6.22

ASPP [1] 72.32 60.98 63.04 16.51 +3.83 12.44 / 16.58

Table 3. Analyzing the number of FLOPs for different numbers
of tasks for Individual Task-Specific Adaptation versus our Shared
Multi-Task Adaptation depicted in Figures 2(a) and 2(b) respec-
tively. We can clearly notice that our approach is significantly
more efficient as the number of tasks increase.

Individual Task- Shared Multi-
Specific Adaptation Task Adaptation

(Figure 2(a)) (Figure 2(b))

1 Tasks (GFLOPs) 18.48 18.48
2 Tasks (GFLOPs) 36.91 19.50
3 Tasks (GFLOPs) 55.32 20.49
4 Tasks (GFLOPs) 73.74 21.49

The table shows that integrating additional tasks into MT-
LoRA incurs minimal latency (in terms of trainable param-
eters) relative to single-task learning and conventional full
MTL fine-tuning, while still maintaining superior accuracy
compared to these approaches.

6. FLOPs overhead for different number of
tasks.

Thank you for the suggestion. As you mentioned, while
adding tasks incurs a slight overhead in backbone inference,
this cost is marginal as it avoids divergent paths unlike pre-
vious techniques. Moreover, these tasks can be batched for
efficiency, similar to SWIN’s window-based computations,
due to their low-rank nature. We’ve included Table 3 to

Table 4. Evaluating MTLoRA for different numbers of tasks.

Method ∆m(%)
Trainable

Parameters (M)

Single Task (All 4 tasks) 0 112.62
Full MTL Fine-Tuning (All 4 tasks) +2.23 30.06

MTLoRA (SemSeg and Normals) +8.7 5.83
MTLoRA (SemSeg and Sal) +5.2 5.83

MTLoRA (Semseg, Normals, and Sal) +4.37 6.45
MTLoRA (All 4 tasks) +2.55 8.34

compare FLOPs against task numbers in Individual Task-
Specific Adaptation and our Shared Multi-Task Adaptation
(Figures 2(a) and 2(b)). This highlights the minimal impact
on FLOPs in our approach compared to traditional Individ-
ual Task-Specific Adaptation.

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 1, 2

[2] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view
of parameter-efficient transfer learning. arXiv preprint
arXiv:2110.04366, 2021. 2

[3] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.



Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 1, 2

[4] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter
layers. Advances in Neural Information Processing Systems,
34:1022–1035, 2021. 2

[5] Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, and
Zsolt Kira. Polyhistor: Parameter-efficient multi-task adap-
tation for dense vision tasks. Advances in Neural Information
Processing Systems, 35:36889–36901, 2022. 2

[6] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa De-
hghani, and James Henderson. Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks. arXiv
preprint arXiv:2106.04489, 2021. 1, 2

[7] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution repre-
sentation learning for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 43(10):3349–
3364, 2020. 1, 2

[8] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 568–578, 2021. 1, 2

[9] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34:12077–12090, 2021. 1, 2

[10] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit:
Simple parameter-efficient fine-tuning for transformer-based
masked language-models. arXiv preprint arXiv:2106.10199,
2021. 2


