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In this appendix, we describe implementation details relevant to UNO including architecture and training, implementation
details for any baselines and ablations, and further details on metrics and evaluation procedures. Finally, we showcase several
additional results:

• Visualizations comparing the 4D occupancy and point cloud forecasts of UNO against various baselines including the
SOTA 4D-OCC.

• Visualizations of UNO’s occupancy in the context of the camera data provided by Argoverse 2.

• Comparing the 4D occupancy recall of UNO, UNO fine-tuned with bounding box data, and UNO trained with bounding
box data without pre-training for 4D occupancy.

1. UNO Implementation Details
1.1. LiDAR Encoder

The LiDAR encoder takes H past LiDAR sweeps to produce a Birds Eye View (BEV) feature map Z used by the implicit
decoder of UNO. Below we describe the architecture of the LiDAR encoder, illustrated in Fig. 1, where we omit the batch
dimension for simplicity.

Voxelization: Each LiDAR sweep is a set of points with four features (x, y, z, t). A small MLP is used encode these points
as feature vectors of size F = 128. The LiDAR points are placed in a 2D BEV grid of shape (L,W ) based on their (x, y)
coordinates. We use an ROI of [−100, 150] m on the x dimension, [−100, 100] m on the y dimension with a voxel size of
0.156 25m in x, y, resulting in L = 200

0.15265 = 1280,W = 250
0.1526 = 1600. A 2D feature map of shape (F,L,W ) is then

generated from this BEV grid, where each grid cell has a feature vector that is the sum of the features from all points in that
grid cell.

Backbone: This 2D feature map is processed by three convolution layers interleaved with batch-normalization and ReLU
layers, the first convolutional layer having a stride of 2, resulting in a feature map of shape (F,L/2,W/2).

Then, this feature map is processed by a series of ten residual layers, labelled ResBlock in Fig. 1, which each employ a
sequence of dynamic convolution [3], batch-normalization, ReLU, dynamic convolution, batch-normalization, squeeze-and-
excitation [4], and dropout operations. Each residual layer produces a feature map, and layers 0, 2, and 4 down-sample their
output by a factor of 2 (using convolutions with stride 2).

We extract three multi-level feature maps from the output of layers 1, 3, and 9 with shapes (F,L/4,W/4), (F,L/8,W/8),
and (F,L/16,W/16) respectively, across which information is fused with multiscale deformable attention [9] to produce
three feature maps with the same shapes as the input.

Feature Pyramid Network These three multi-level feature maps are fused into a single feature map Z of shape (F,L/4,W/4)
by a lightweight Feature Pyramid Network [7]. Z is used by the implicit decoder, described below, to predict 4D geometric
occupancy.

*Denotes equal contribution
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Figure 1. The architecture of the LiDAR Encoder. The batch dimension is omitted from the tensor shapes.
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Figure 2. UNO’s architecture zoomed in on the implicit decoder.

1.2. Implicit Occupancy Decoder

The inputs to the implicit occupancy decoder are the feature map Z ∈ RF×L
4 ×W

4 from the lidar encoder, and a set of 4-
dimensional query points Q ∈ R|Q|×4 with features (x, y, z, t). Our decoder follows closely that of ImplicitO [1], but we
describe it below. See Fig. 2 for an architecture diagram. The decoder consists of three main parts: offset prediction, feature
aggregation, and occupancy prediction.

Offset Prediction: The offset prediction module begins by interpolating Z at the (x, y) locations specified by the spatial
components of the query points qx,y ∈ Qx,y to produce interpolated feature vectors zq that contain information about the
scene around each query point. Next, linear projections of Zq and q are added and passed through a residual layer consisting
of two fully connected linear layers and a residual connection. We use a dimensionality of 16 for these linear projections and
the hidden size of the linear layers in the residual layers. Finally, a linear layer is used to produce an offset per query point
∆q. These offsets are added to the query points to find the offset sample locations r = qx,y +∆qx,y , which is the input to
the next module.

Feature Aggregation: The offset sample points r are meant to store the (x′, y′) locations in Z that contain important
information for occupancy prediction at query point (x, y, t). As such, the feature aggregation module begins by interpolating
Z at r to obtain a feature vector Zr, for each query point. This feature vector is concatenated with zq to obtain the summary
features for the query point, denoted Zf , of dimensionality 2F = 256.

Occupancy Prediction: This module uses the aggregated feature vector Zf and the query points q to predict occupancy
logits, Ô, for all query points. Zf and q = (x, y, z, t) are passed through three residual blocks with an architecture inspired
by Convolutional Occupancy Networks [8]. The residual block takes as input a linear projection of q = (x, y, z, t). Each
block adds its input to a linear projection of Zf , and then passes this through a residual layer using a hidden size 16. The
input to the subsequent block is the output of the previous block.
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Figure 3. An overview of our the learned render header. The predicted occupancy at each point along the ray is combined with the distance
of the point from the sensor, after which the features are reduced using a 1D CNN and then passed through an MLP to produce a single
scalar prediction. || denotes lengthwise concatenation, and + denotes addition.

1.3. Rendering Header

The rendering header is the small network that uses the occupancy predictions of UNO along a lidar ray and estimates the
depth of the lidar point along the ray. Here we provide more details on the architecture and training of this header. A diagram
is in Fig. 3. Given a query lidar ray, we generate Nr = 2000 query points along the ray every ϵr = 0.1m. The query points
inside UNO’s ROI are fed to UNO, which predicts occupancy logits in a tensor of shape Nrin × 1 where Nrin is the number
of points inside the ROI. The occupancy logits are encoded by a linear layer (“Occupancy Encoder” in Fig. 3) to produce a
tensor of shape Nrin × 256. We maintain a learned embedding of shape Nr × 256, and for the Nrout = Nr − Nrin query
points outside the ROI, we index this embedding to create an “Out-of-ROI-Embedding” of shape Nrout × 256. The encoded
occupancy and out-of-ROI-embedding are concatenated along the length dimension resulting in a tensor of shape Nr × 256.
An encoding of the depth of each query point along the ray is added to this tensor, which is processed by a sequence of CNN
layers to combine information across the points. Each CNN layer uses a kernel size of 4 and a stride of 2, and they have
intermediate dimensions of 64, 32, 16, 16, 16, 8. ReLU activations are used between the CNN layers. These 1D features are
flattened (resulting in a feature vector per ray of dimensionality 232) and passed through an MLP using the ReLU activation
function with intermediate dimensions 232, 64, 32, 16, 1 where the final dimension is the scalar prediction for the depth of
the ray D. All the lidar rays are used for training. We randomly sample a batch of 450 lidar rays (90 for each future lidar
sweep) at each training step.

1.4. Training Details

We train UNO for a total of 800,000 iterations across 16 GPUs (50,000 iterations each) with a batch size of 1 on each GPU.

Optimizer: We warmup the learning rate at a constant rate for the first 1000 iterations beginning from 8.0 × 10−5 and
ending at 8.0 × 10−4. Then we use cosine schedule configured to bring the learning rate to 0 by 50,000 iterations. We use
the AdamW optimizer [6] with a weight decay of 1.0× 10−4.



Initialization: We follow [1] in their initialization procedure for the linear layer that predicts the attention offsets in the
implicit decoder: we initialize the weights with a small standard deviation of 0.01 and a bias of 0. This ensures that the initial
offset prediction is small enough such that r = qx,y + ∆qx,y still represents a point within the feature map Z, but large
enough such that the predicted offsets do not get stuck at ∆qx,y = 0.

Training Data: For point cloud forecasting, we present results of UNO on Argoverse 2, NuScenes, and KITTI. For each
evaluation setting, we train a version of UNO on the corresponding training dataset split (for Argoverse 2 we use the Sensor
dataset training split).

For BEV semantic occupancy forecasting, we train all models on the vehicle labels provided by the Argoverse 2 Sensor
dataset. We define the “vehicle class” to be the union of the Argoverse classes REGULAR VEHICLE, LARGE VEHICLE,
BUS, BOX TRUCK, TRUCK, VEHICULAR TRAILER, TRUCK CAB, SCHOOL BUS, ARTICULATED BUS, RAILED VEHICLE,
and MESSAGE BOARD TRAILER.

2. Evaluation Details
2.1. Point Cloud Forecasting

For point-cloud forecasting, we follow the evaluation procedure of 4D-OCC [5]. The code is available online1, but we explain
it in this section.

Setting: On Argoverse 2 and KITTI, H = 5 past LiDAR sweeps are used as input at an interval of 0.6 s, and the goal is to
forecast point clouds at 5 future timesteps {0.6, 1.2, . . . , 3.0} s. On NuScenes we use H = 6 sweeps at an interval of 0.5 s
as input, and forecast point clouds at 6 future timesteps {0.5, 1.0, . . . , 3.0} s. Evaluation for Table 1. in the main paper are
on the following dataset splits:

• AV2: Argoverse 2 LiDAR dataset test split

• NuScenes: validation set2

• KITTI: test set

We note that the Argoverse 2 point cloud forecasting challenge and the point-cloud forecasting results in Table. 2 of the main
paper use the Argoverse 2 Sensor dataset test split.

Metrics: Point cloud evaluation has four metrics: Chamfer Distance (CD), Near Field Chamfer Distance (NFCD), depth
L1 error, and depth relative L1 error (AbsRel), each of which we explain below.

CD is computed as:

CD =
1

2N

∑
x∈X

min
x̂∈X̂

||x− x̂||22 +
1

2M

∑
x̂∈X̂

min
x∈X

||x− x̂||22, (1)

where X ∈ RN×3, X̂ ∈ RM×3 represent the ground-truth and predicted point clouds, respectively. NFCD is CD computed
only on (ground truth and predicted) points inside the ROI of [−70, 70] m in both the x and y axes, and [−4.5, 4.5] m in the
z axis around the ego vehicle.

L1 and AbsRel require the ground truth point-cloud X and the predicted point cloud X̂ to have a 1-1 correspondence of
ray directions. While for UNO this is always the case because we predict depth along the rays from the future ground truth
point clouds, for some point-cloud forecasting methods this condition might not be met. Thus, for fair evaluation, [5] first
fits a surface to the predicted point cloud, and the intersection of the ground truth ray and that surface is computed to find the
predicted ray depth. In practice, this is done by computing the projection of X and X̂ on the unit sphere, for each projected
ground truth point finding the nearest projected forecasted point, and then setting the depth along that ground truth ray equal
to the depth of its nearest forecasted point. The result of this is a vector of forecasted depths along each LiDAR ray D̂ ∈ RN

and ground truth depths D ∈ RN . Then L1 is calculated as

L1 = mean(abs(D− D̂)) (2)

1https://github.com/tarashakhurana/4d-occ-forecasting
2See https://github.com/tarashakhurana/4d-occ-forecasting/issues/8 for an explaination as to why the test set is not used.

https://github.com/tarashakhurana/4d-occ-forecasting
https://github.com/tarashakhurana/4d-occ-forecasting/issues/8


and

AbsRel = mean(abs((D− D̂)/D)), (3)

where the vector division is element-wise.

2.2. BEV Semantic Occupancy Forecasting

Setting: We evaluate BEV semantic occupancy on the Argoverse 2 Sensor validation dataset. The LiDAR input is H = 5
past LiDAR sweeps at an interval of 0.6 s to match the unsupervised pre-training of UNO, and the BEV semantic occupancy
predictions are evaluated on 2D grids of points of size 140m by 140m with a spatial resolution of 0.2m centered on the ego
at future timesteps {0, 0.6, 1.2, . . . , 3.0} s.

Metric: Mean Average Prediction (mAP) is computed on (a) the predicted occupancy values from all the grid points
across all evaluation examples, and (b) the corresponding ground truth occupancy values at those points. For thresholds
[0, 0.01, 0.02, . . . , 0.99, 1.0], the number of true positives (TP), false positives (FP), and false negatives (FN), are calculated.
At each threshold value, we obtain a precision and recall

precision =
TP

TP + FP
, recall =

TP

TP + FN
, (4)

and mAP is then computed as the area under the curve formed by precision (y-axis) and recall (x-axis) across all thresholds.

3. Baseline Implementation Details
FREE-SPACE-RENDERING: We use same model architecture as UNO, described in Sec. 1. Mirroring the training of the
learned renderer (see Sec. 1.3), we sample 450 future lidar rays within the 3 s time horizon. Considering a single lidar ray,
we generate Nr = 2000 evenly spaced query points along the lidar ray at a step size of ϵr = 0.1m from the emitting sensor.
The model is queried at these points to produce occupancy predictions ô = [ô1, . . . , ôNr

] ∈ [0, 1]Nr along each the ray.
Following [5], we complement the cumulative maximum of the occupancy along the LiDAR ray to obtain a prediction of the
free-space:

v̂ = 1− cummax(ô). (5)

Using the ground-truth future lidar point we can generate a free-space label v = [v1, . . . , vNr ] ∈ {0, 1}Nr which is 1 for all
points along the ray prior to the LiDAR point and 0 for all points along the ray after the LiDAR point. Then the model is
trained with cross entropy loss between the free-space label and the free-space prediction.

DEPTH-RENDERING: We use the same model architecture as UNO, described in Sec. 1. Similarly to FREE-SPACE-
RENDERING, we sample future lidar rays and query the model along each lidar ray to produce occupancy predictions ô =
[ô1, . . . , ôNr

] ∈ [0, 1]Nr . The expeceted depth along the ray is computed as

E[ℓ] =
Nr∑
i=0

(ϵr ∗ i)

i−1∏
j=0

(1− ôj)

 ôi

 , (6)

and the loss against the ground truth LiDAR point depth ℓgt is computed as |ℓgt −E[ℓ]|, averaged across all rays in the batch.

MP3 We use the same encoder as UNO for a fair comparison (see Sec. 1). MP3 decodes initial occupancy and forward
flow over time using a fully convolutional header, and the future occupancy is obtained by warping the initial occupancy with
the temporal flow as described in the original paper [2].

ImplicitO We use the same model architecture as UNO (which is very similar to the orignal paper [1], see Sec. 1), but the
query point feature size is 3 (x, y, t) because they are in BEV instead of 3D.
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Rendering
NFCD
(m2) ↓

CD
(m2) ↓

AbsRel
(%) ↓

L1
(m2) ↓

Threshold 0.5 3.09 22.75 13.34 3.80
Threshold 0.8 2.09 18.49 11.33 3.01
Threshold 0.9 1.63 18.16 11.16 2.67
Threshold 0.95 1.48 23.02 14.90 2.91
Learned 0.83 8.10 10.09 2.03

Table 1. Comparing point cloud prediction performance of UNO with different rendering methods (thresholding occupancy and learned
rendering) on the Argoverse 2 Sensor dataset.

4. Additional Quantitative Results
4.1. Effect of Freezing the Encoder During Fine-tuning

In this experiment, we want to investigate how fine-tuning UNO on BEV semantic occupancy is affected by amount of
model parameters that are updated. To do this, we fine-tune UNO on the task of BEV semantic occupancy forecasting, but
freeze all the parameters in the LiDAR encoder (see Sec. 1), which we call UNO Frozen. Fig. 4 presents the results across
multiple levels of supervision, against UNO with all parameters fine-tuned. We notice that for up to 100 labelled frames, the
performance of UNO Frozen is close to UNO, but their performance diverges as the amount of labelled data increases. This
is likely because fine-tuning only the occupancy decoder, which has very few parameters (0.06M out of a total of 17.4M),
has limited representational power in changing the output fully from geometric occupancy (which it was pre-trained for) to
BEV semantic occupancy.

4.2. Effect of Learned Renderer:

In the main paper we described that generating point cloud forecasts from occupancy is a non-trivial task, motivating our
use of the learned renderer. In this experiment, we compare it to a simple baseline that thresholds the forecasted occupancy
values. Specifically, to find the depth of a ray, we walk along the ray direction starting from the sensor location, and stop
when the occupancy value exceeds a given threshold. Tab. 1 presents the results of this comparison on the Argoverse 2
Sensor dataset, where we see large improvements from using the learned rendering method over the thresholding method
with any threshold. This is expected since the learned renderer can better contextualize the scene by taking into account a set
of occupancy values predicted along the ray.

4.3. Supervised vs Unsupervised Occupancy

In this section we compare the unsupervised 4D geometric occupancy predictions to supervised 4D semantic occupancy
predictions (trained using bounding box labels). To do this fairly across geometric and semantic occupancy predictions,
we employ our recall metric described in the main paper, which ignores background regions (which geometric occupancy
includes, but semantic occupancy does not) and focuses on foreground actors and free-space (which both forms of occupancy
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δ (m)
NFCD
(m2) ↓

CD
(m2) ↓

AbsRel
(%) ↓

L1
(m2) ↓

mAP
↑

Soft-IoU
↑ Recall @ 0.7

1.00 0.85 8.22 11.5 2.08 50.3 21.1 65.7
0.01 0.82 8.06 10.8 2.04 52.0 22.2 65.8
0.10 0.83 8.10 10.1 2.03 52.3 22.3 67.0

Figure 6. Ablation of the δ parameter used in the training of UNO.

should understand).
In Fig. 5, we evaluate the multi-class 3D occupancy recall of:

1. UNO: Unsupervised 4D geometric occupancy pre-training only (described in main paper).

2. UNO-From-Scratch: Using the UNO architecture, but with no unsupervised pre-training. Instead, this model is directly
trained only on labeled bounding box data to forecast 4D semantic occupancy. We group all actor classes into a single
class.

3. UNO-4D-Fine-Tuned: UNO with 4D geometric occupancy pre-training and additional fine-tuning to forecast 4D se-
mantic occupancy (grouping all actors into a single class).

For this fine-tuning process, we train both the supervised and the fine-tuned models with all available data.
Remarkably, UNO (which uses no labeled data) achieves overall better recall than UNO-From-Scratch. We hypothesize

this is because the supervised model has to learn to classify between foreground and background objects, which can make it
hard to learn the occupancy of rare classes, small classes, or classes that are hard to distinguish from the background. This is
highly relevant to safe autonomous driving for detecting potentially unknown or rarely seen road agents.

UNO-4D-Fine-Tuned slightly improves recall (see the “All” class) over UNO and greatly improves over UNO-From-
Scratch. This highlights the expressive representations learned during the UNO pre-training procedure.

4.4. Ablation of the δ Parameter

δ = 0.1m was used for all three datasets, however, our pre-training procedure is quite robust to the choice of δ. Below we
ablate the choice of δ on all tasks. First, we note that all the possible values below result in SOTA performance. Second, it
shows that increasing δ from 0.1m to 1.0m indeed degrades performance. Qualitatively, we notice very small differences in
occupancy forecasts, with a slight enlargement of shapes with δ = 1.0m that is apparent in the tree trunks.



5. Additional Qualitative Results
5.1. Occupancy and Point Cloud Forecasting

Figs. 7 to 9 show the geometric occupancy forecasts and point cloud forecasts of UNO and various baselines from the main
paper. A few overarching themes are:

• 4D-OCC struggles to abstract point clouds into occupancy; it mainly predicts occupancy only where there are observed
points.

• 4D-OCC and DEPTH-RENDERING don’t model motion and object extent.

• FREE-SPACE-RENDERING understands extent, but does not model motion very accurately.

• UNBALANCED UNO is under-confident (even on static background areas we see relatively low confidence). It has
reasonable motion predictions but without much multi-modality, and it is worse at understanding of extent than UNO.

• UNO models motion, extent, and multi-modality.

We use the following numbers to highlight interesting things in Figs. 7 to 9.

1. Struggling to abstract point clouds into occupancy.

2. Inaccurate predictions of extent.

3. Predicting a moving actor stays static.

4. Disappearing occupancy on an actor.

5. Inaccurate motion predictions.

6. Under-confidence on background areas.

7. Under-confidence on actors.

8. Multi-modal predictions.

9. Accurate motion predictions for non-linear actors (e.g., turning, lane-changing).
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Figure 7. An additional qualitative showing 4D occupancy and point cloud forecasts on Argoverse 2. The numbered labels refer to the
themes listed in Sec. 5.1.
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Figure 8. An additional qualitative showing 4D occupancy and point cloud forecasts on Argoverse 2. The numbered labels refer to the
themes listed in Sec. 5.1.
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Figure 9. An additional qualitative showing 4D occupancy and point cloud forecasts on Argoverse 2. The numbered labels refer to the
themes listed in Sec. 5.1.



5.1.1 Occupancy Perception

To contextualize UNO’s occupancy predictions, we visualize them along side camera images provided in Argoverse 2 in
Fig. 10. We observe that UNO is able to perceive all objects in the scene, including relatively rare occurrences like construc-
tion, over a large region of interest.
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Figure 10. A visualization of UNO’s occupancy fields at the present time from both perspective and camera view, next to camera data
for reference. The white arrows in perspective view represent the camera viewpoint. Scene 1: UNO perceives construction elements and
cyclist cross the road. Scene 2: UNO perceives a distant cyclist, the construction signage, and many vehicles. Scene 3: UNO perceives the
traffic island median and the cyclist in the ego lane.



5.1.2 Failure Cases

The main failure cases of UNO are due to the limited range and noise of LiDAR sensors, resulting in limited supervision.
Figure 11 shows how this can manifest in uncertain occupancy far from the ego (a), and also at points high above the ego
(b) since the LiDAR rays never return from the sky. Figure 10 also shows that there is room for improvement in capturing
fine details like the shape of the cyclist in Scene 1. Finally, we note that the long occupancy “tails” behind certain vehicles
are not necessarily a failure case. These are expected when predicting marginalized occupancy probabilities on multi-modal
scenarios where a vehicle could stay still or accelerate.

(a): long range

100 m

overly uncertain

150 m

(b): far above the ego

occupancy hallucination at z ≥ 6.0 m

Figure 11. Failure cases UNO.
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