
OrCo: Towards Better Generalization via Orthogonality and Contrast for
Few-Shot Class-Incremental Learning

Supplementary Material

Within the supplement, we provide additional ablation
studies in section 1, detailed breakdown tables and confu-
sion matrices in section 2, an extended discussion on the-
ory of orthogonality in section 3, formulation of contrastive
losses in section 4 and additional implementation details in
section 6.

1. More Ablations

What to pull & what to perturb in OrCo loss. Our OrCo
loss comprises both pull and push components, influenc-
ing the distribution over the hypersphere. The pull effect
is driven by cross-entropy loss (CE), where data features
align with their assigned pseudo-targets. As illustrated in ta-
ble 1, we show the advantage of aligning data features and
pseudo-targets specifically from incremental sessions dur-
ing the third phase. Introducing pseudo-targets assigned to
the base classes to CE loss results in a performance degrada-
tion of approximately 1% in HM8, due to an increased bias
towards base classes. Next, we study the impact of pertur-
bations, which create additional pushing forces, on different
subsets of pseudo-targets. Our findings indicate that per-
turbing both incremental- and base-assigned pseudo-targets
consistently hampers performance compared to perturbing
only those assigned to incremental classes, resulting in
about 9% improvement in HM8. Higher base accuracy in-
dicates that perturbations of both base- and incremental-
assigned pseudo-targets provide more room for prevalent
base classes, hindering the learning of novel classes and
favouring base-class bias.

Pseudo-targets assignment strategy. In table 2, we high-
light the crucial role of optimal initial alignment between
pseudo-targets and class means. We compare a random as-
signment strategy to a Hungarian matching algorithm. Hun-
garian matching allows to find an optimal assignment based
on distances between class means and pseudo-targets. We
identify two optimal assignment strategies within hungarian
matching 1) Reassignment and 2) Greedy Assignment. For
the former, class means are reassigned to closest pseudo-
targets at the beginning of each session whereas the later,
carries forward the assignment from previous sessions.

We find that the random assignment strategy leads to a
notable degradation in accuracy, particularly evident after
the second phase for the base classes, amounting to approx-
imately 8%. Greedy assignment performed better than re-
assignment. Despite reassignment being theoretically opti-
mal, in practice we observe a performance drop likely due

CE
Perturbed

Base Acc Inc Acc HM8 aHM aACC
Pseudo-Targets

Inc Inc 67.60 43.80 53.12 58.12 67.14
Base+Inc 78.13 30.86 44.26 50.44 69.17

Base+Inc
Inc 69.65 41.85 52.30 57.76 67.90

Base+Inc 78.90 29.53 43.00 48.77 69.25

Table 1. What to pull & what to perturb. CE denotes cross-
entropy that pulls data features to the pseudo-targets; Inc denotes
that only assigned to incremental sessions pseudo-targets partici-
pate in the CE loss, Base+Inc denotes both base- and incremental-
assigned pseudo-targets. The choice of perturbed pseudo-targets
can include incremental assigned pseudo-targets with unassigned
pseudo-targets (Inc), or all assigned pseudo-targets with unas-
signed pseudo-targets (Base+Inc). Base/Inc Acc denotes accuracy
from the last 8th session. aACC denotes average accuracy over all
sessions. Results on mini-ImageNet.

Assignment Base Acc ↑ Base Decay ↓ aHM ↑ aACC ↑

Random 75.75 20.40 54.40 59.42

Reassignment 83.30 29.65 55.49 62.74

Greedy 83.30 15.72 58.12 67.14

Table 2. Pseudo-targets assignment strategy. Comparing
our optimal assignment strategy against random assignment of
pseudo-targets.

to noisy few-shot classes appearing geometrically closer to
previously assigned pseudo-targets hence causing a shift of
previously seen assigned classes and causing misalignment.
This can be clearly seen in the loss of generalisation given
a base decay of 29.65% vs 15.62% for best case.

Overall accuracy is substantially improved, demonstrat-
ing the critical contribution of the optimal assignment ap-
proach in addressing forgetting and achieving better align-
ment.
Number of exemplars. Due to the memory constraints in-
herent in FSCIL, it is common to utilize a constrained num-
ber of exemplars from the previous task. To investigate this,
we conducted tests with 0, 1, and 5 exemplars, and the re-
sults are presented in table 3. We note that even with just 1
exemplar, our model achieves a performance improvement
of 2.84% compared to our strong baseline, the IW method.

2. More Results

Base and incremental accuracy breakdown. We show
our SOTA results with a base and incremental session ac-



#
Session-wise Harmonic Mean (%) ↑

aHM aACC
1 2 3 4 5 6 7 8

0 69.3 47.9 42.3 34.9 31.2 28.0 24.8 24.4 37.8 54.6

1 64.4 53.4 48.7 48.9 45.4 40.5 40.7 43.5 48.2 64.9

5 68.7 63.9 60.9 58.0 55.3 52.4 52.7 53.1 58.1 67.1

Table 3. Number of saved exemplars (#) for incremental sessions.

curacy breakdown for all sessions in tables 6 to 8. Note
that, for Imprinted Weights (IW) [7] we use the implemen-
tation of a decoupled learning strategy from [3] and we ini-
tialise the method with our model pretrained during Phase
1. We note that LIMIT [12] has been unintentionally left
out from figure 4 (main) for CUB200. Furthermore, we re-
port the average accuracy metric to provide a comprehen-
sive overview of our results. Note that the considerable data
imbalance between base and incremental classes has an im-
pact on this metric. The improved accuracy especially in
the base classes, as illustrated in the breakdown tables, con-
tributes to the overall enhancement of this measure.
Confusion matrices. In figure 2, we compare session-wise
confusion matrices for a) OrCo, b) NC-FSCIL [8], and c)
BiDist [10] during the final session of mini-ImageNet. Our
benchmark involves assessing OrCo against its two closest
competitors. OrCo plays a crucial role in finding a deli-
cate balance between preserving knowledge of base classes
and efficiently learning new ones, showcasing significantly
enhanced learning capabilities in incremental classes. No-
tably, other methods exhibit a strong bias towards the base
classes due to low transferability, while our pretraining ses-
sion establishes a robust backbone. Moreover, our space
reservation scheme, along with strong separation using per-
turbed targets and robust contrastive learning, enables us to
learn a highly performant learner.

3. Theory of Orthogonality
This section covers the mathematical theory of orthogonal-
ity of independent vectors in high dimensional space. Let
X1, X2, . . . , Xn be independent and identically distributed
(i.i.d.) random vectors sampled from a normal distribution
with mean 0 and variance 1. These vectors are in Rn. The
claim is that these vectors are mutually orthogonal on the
unit sphere. To prove this, let’s first establish that the vec-
tors are normalized to have a length of 1.

Given a vector Xi = (Xi1, Xi2, . . . , Xin), its length is
given by:

∥Xi∥ =
√

X2
i1 +X2

i2 + . . .+X2
in

Since each component Xij is independently sampled from
a normal distribution with mean 0 and variance 1, the ex-
pected value of X2

ij is 1. Therefore, the expected value of
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Figure 1. Practical effect of dimensions on average pair-wise angle
of a 100 independant random vectors.

the length squared is:

E[∥Xi∥2] = E[X2
i1 +X2

i2 + . . .+X2
in] = n

This means that 1√
n
Xi has a length of 1 in expectation.

Now, let’s consider the inner product of two different vec-
tors Xi and Xj (where i ̸= j):

E[Xi ·Xj ] =

n∑
k=1

n∑
k′=1

E[Xik ·Xjk′ ]

Since Xik and Xjk are independent for i ̸= j, the cross-
terms in the summation will have an expected value of 0,
and the only non-zero terms will be the ones where k = k′,
resulting in:

E[Xi ·Xj ] =

n∑
k=1

E[Xik ·Xjk] =

n∑
k=1

E[X2
ik]δij = δij · n

where δij is the Kronecker delta. Therefore, the expected
value of the inner product is n if i = j and 0 otherwise.
This means that the vectors are orthogonal in expectation.
It is important to note that this property specifically holds
for vectors drawn from a normal distribution with mean 0
and variance 1.

The figure 1 shows the practical effects of the above the-
ory which yields near orthogonality but not perfect orthog-
onality. Only near feature dimension = 215 do we generate
nearly orthogonal vectors. Which would lead to the projec-
tion head having ∼ 68 million parameter making our frame-
work incomparable to other methods. Explicit orthogonal-
ity as we have shown previously in table 3 (main) yields
better results which is why we explore this practical con-
straint.

4. Contrastive losses

Supervised Contrastive Loss. Given a set of sample-label
pairs (xi, yi) ∈ ZSCL, we define the positive set PSCL

i for
xi as the collection of pairs (xj , yj) where j varies over all
instances such that yj = yi. Correspondingly, the negative



set NSCL
i is defined as ZSCL \ PSCL

i . Then, supervised
contrastive loss (SCL) is defined as:

LSCL(i; θ) =
−1

|PSCL
i |

∑
xj∈PSCL

i

log
exp(xi · xj/τ)∑

xk∈NSCL
i

exp(xi · xk/τ)
.

Self-Supervised Contrastive Loss. Given a set of samples
xi ∈ ZSSCL, we define a positive for xi as A(xi) where
A(·) is a random transformation. Then, self-supervised con-
trastive loss (SSCL) loss is defined as:

LSSCL(i; θ) = −1 · log
exp(xi ·A(xi)/τ)∑

xk∈ZSSCL,i̸=k

exp(xi · xk/τ)
.

5. Orthogonality Loss
In this section, we further expand on the orthogonality loss
in our framework. We employ the orthogonality loss as an
implicit geometric constraint on the set O predicated on the
current batch. O contains the following: mean features for
all classes within batch µj , assigned targets not represented
within batch and all unassigned targets T i

u.
Formally, let us assume the session i with data Di and

classes Ci. In order to define a set O we compute some pre-
liminaries. Firstly, for every training batch B we compute
the within-batch mean for all data features. This is com-
puted as:

µj =
1

|Cj |

|Cj |∑
k=0

zk,∀j ∈ Ci
B (1)

where Ci
B ∈ Ci refers to all classes appearing in this

particular batch. The combined set of all means can then be
termed MB . For the classes that did not appear in this batch
we define as ¬Ci

B = Ci \ Ci
B . Subsequently we define

a mapping function from seen class labels to the assigned
pseudo target.

h : Ci → T i (2)

We incorporate the remaining real data by adding the fol-
lowing set of assigned pseudo targets as ¬T i

B = h(¬Ci
B).

For completeness, we combine the above with the unas-
signed targets T i

u leading to the following definition of O:

O = {MB ∪ ¬T i
B ∪ T i

u | B} (3)

Finally, the orthogonality loss takes the form:

LORTH(O) =
1

|O|

|O|∑
i=1

log
|O|∑
j=1

eoi·oj/τo , oi, oj ∈ O (4)

In essence, the orthogonality loss introduces a subtle
geometric constraint between real class features and the
pseudo-targets. Additionally the batch-wise construction
helps regularise the loss function.

Although the improvement from the Orthogonality loss
are not prominent like in PSCL, it remains measurable and
consistent across settings (e.g. in table 2 of the original pa-
per, line 1 vs line 2, line 3 vs line 4), and thus contributes to
our results. Additionally, we would like to highlight that
each loss term in equation 6 in the main paper incorpo-
rates orthogonality constraints either implicitly or explic-
itly. E.g. the orthogonality enforced on the pseudo-targets
implies an implicit orthogonality among the features as they
are pushed to these targets.

6. Further Implementation Details

Model parameters. Our representation learning frame-
work is composed of:
• Encoder/Backbone Network (f ) We use the ResNet18

and 12 [4] variant for our experiments. Depending on
the variant of the encoder, the representation vector has
output dimensions DE = 512 or 640, respectively. In ta-
ble 4 we compare our choice of architecture against other
FSCIL studies.

• Projection Network (projector)(g). Following the en-
coder, a projection MLP maps the representation vector
from f to the contrastive subspace. We use a two layer
projection head with a hidden dimension of size 2048. By
convention output projections are normalised to the hy-
persphere. For simplicity, the dimension of the projected
hyper sphere is initialised as d = 2⌈log(C)⌉ where C is
the total number of classes for our FSCIL task. Following
convention, we assume normalised feature vectors.

Training details. For CUB200 dataset, we skip the pre-
training phase given that it is common in literature to use
pretrained ImageNet weights for the backbone [3, 8, 10, 11].
For any incremental sessions (> 0) we finetune only the
projection head from phase 2. For the PSCL loss we choose
a perturbation magnitude λpert = 1e-2 for our experiments
and perturb only the incremental targets and unassigned tar-
gets. We train the projection head for 10 epochs in the 0-th
incremental session and 100 epochs for all following ses-
sions. Cosine scheduling is employed with warmup for a
few epochs for all our phases with a maximum learning rate
set to 0.4 in phase 1, 0.25 in phase 2 and 0.1 in phase 3.
Given the equation 4 (main), we double our batch size by
over sampling target perturbations such that the number of
perturbed targets is always the same as the original training
batch size. Orthogonality loss is applied batch wise. More
concretely, the orthogonality loss takes as input, the within
class average features inside a batch along with any other
pseudo targets not in the batch. Cross entropy is applied



Method
Model

mini-ImageNet CIFAR100 CUB200

IW [7] ResNet18 ResNet12 ResNet18
FACT [11] ResNet18 ResNet20 ResNet18
CEC [9] ResNet18 ResNet20 ResNet18
C-FSCIL [5] ResNet12 ResNet12 -
LIMIT [12] ResNet18 ResNet20 ResNet18
LCwoF [6] ResNet18 - -
BiDist [10] ResNet18 ResNet18 ResNet18
NC-FSCIL [8] ResNet12 ResNet12 ResNet18
OrCo ResNet18 ResNet12 ResNet18

Table 4. ResNet architectures used in FSCIL literature

exclusively to incremental class data as base classes are al-
ready aligned.

For pseudo target generation we employ an SGD op-
timiser, with 1e-2 learning rate for 2000 epochs to mini-
mize the loss. For CUB200 the dimension of the projec-
tion head is higher which constitutes longer training cycle to
fully orthogonalize the pseudo targets. CUB200 was most
susceptible to forgetting for which reason we ensured that
base classes were incorporated inside the CE loss compo-
nent of the loss function. With the lack of a pretrain step
in CUB200, we must also finetune the backbone during
phase 2 to align base classes while also capturing specific
representation which is important for learning effectively
on a fine-grained dataset. For pretraining, we use Ran-
dAug [2] for mini-Imagenet and AutoAugment policy [1]
for CIFAR100. Additionally, following the implementation
of [11] we apply auto augment policy for CIFAR100 during
the incremental sessions as well.

Architecture
Parameter Count

aHM Base Acc
(million)

ResNet-18 12.49 58.12 83.30
ResNet-12 15.06 59.30 83.65

Table 5. Comparing ResNet-12 to ResNet-18

7. ResNet 12 with Mini-ImageNet

In this section we measure the efficacy of our method on a
different backbone. More specifically we train a ResNet-12
backbone used by [8] with our method. In table 5 we show
the results. Our reported results with ResNet-18 are 58.12,
while the results with ResNet-12 are 59.30 indicating an im-
provement with the wider ResNet-12 architecture. ResNet-
18 remains as our elected architecture due to its prominence
in prior works, low parameter count, while still maintaining
state-of-the art performance.
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Figure 2. Visualising the session-wise confusion matrix for mini-ImageNet using a) OrCo, b) NC-FSCIL [8], and c) BiDist [10]. Each
matrix demonstrates the predictive accuracy for base and incremental sessions, separated by yellow lines. High values on the diagonal
(indicative of correct session predictions) are contrasted with low off-diagonal values (representing misclassifications). The first column
in each matrix highlights potential prediction bias towards base classes. Our method’s performance, as illustrated, demonstrates both high
diagonal accuracy and a balanced approach in reducing base class bias, as compared to the results of the competing methods.

Method Class Group
Session-wise Accuracy (%) Means aACC0 1 2 3 4 5 6 7 8

IW [7]
Base 83.10 81.17 80.58 79.93 79.55 78.88 78.38 78.08 77.25 79.66

68.77
Incremental - 35.60 31.30 32.27 32.65 31.16 29.13 29.91 32.40 31.80

FACT [11]
Base 75.78 75.22 74.83 74.47 74.30 74.05 73.82 73.47 73.37 74.37

60.86
Incremental - 16.60 17.10 17.20 15.15 13.24 11.93 12.17 12.43 14.48

CEC [9]
Base 72.17 70.77 70.05 69.53 69.27 68.95 68.65 68.25 67.95 69.51

59.57
Incremental - 20.60 20.60 19.93 19.75 17.68 16.63 16.80 17.18 18.65

C-FSCIL [5]
Base 76.60 76.15 74.70 73.82 73.18 71.10 70.08 68.27 67.58 72.39

61.21
Incremental - 5.20 11.90 17.80 20.40 23.08 23.37 26.06 26.35 19.27

LIMIT [12]
Base 73.27 70.43 69.47 68.68 68.18 67.73 67.30 67.07 66.68 68.76

58.04
Incremental - 29.80 24.00 22.73 21.85 19.72 19.40 19.71 20.18 22.17

LCwoF [6]
Base 64.45 57.33 53.31 52.87 51.38 48.25 47.60 47.51 47.73 52.27

46.80
Incremental - 32.20 30.70 31.00 31.12 29.68 28.27 27.34 27.65 29.75

BiDist [10]
Base 74.67 73.63 72.50 71.03 70.63 70.37 68.70 67.98 69.25 70.97

61.25
Incremental - 32.60 31.40 30.33 30.30 25.48 25.23 27.09 25.10 28.44

NC-FSCIL [8]
Base 84.37 78.25 76.00 75.73 74.80 75.42 75.52 75.13 74.77 76.67

67.82
Incremental - 51.80 51.00 44.33 41.20 37.04 34.20 33.37 32.77 40.71

OrCo
Base 83.30 76.40 74.10 72.00 71.20 70.50 69.20 68.10 67.60 72.49

67.14
Incremental - 62.40 56.10 52.80 48.90 45.40 42.20 42.90 43.80 49.31

Table 6. Base and Incremental accuracy shown per session for mini-ImageNet.



Method Class Group
Session-wise Accuracy (%) Means aACC0 1 2 3 4 5 6 7 8

IW [7]
Base 78.58 75.45 75.15 74.65 74.38 74.07 73.80 73.55 73.03 74.74

64.05
Incremental - 29.40 31.90 28.53 27.60 26.36 27.20 26.91 25.88 27.97

C-FSCIL [5]
Base 77.35 76.70 76.17 75.52 75.35 74.22 73.92 73.63 72.87 75.08

61.42
Incremental - 19.80 17.40 16.20 13.65 14.92 14.53 13.66 14.00 15.52

LIMIT [12]
Base 79.63 75.40 74.47 73.70 73.22 72.52 72.22 72.02 71.32 73.83

61.66
Incremental - 27.20 24.60 21.47 21.00 20.76 21.10 20.54 20.13 22.10

CEC [9]
Base 72.93 72.13 71.42 70.72 70.12 69.20 68.67 68.43 67.75 70.15

59.53
Incremental - 29.60 27.00 22.60 21.80 22.40 22.13 21.66 21.08 23.53

FACT [11]
Base 78.72 76.23 75.30 74.63 73.90 73.07 72.58 72.28 71.73 74.27

62.55
Incremental - 29.80 25.60 21.20 20.70 20.24 22.33 21.69 21.95 22.94

BiDist [10]
Base 69.68 68.45 67.55 66.47 65.80 64.87 64.77 64.27 64.50 66.26

56.91
Incremental - 36.80 31.20 28.80 25.75 24.36 22.87 22.43 20.35 26.57

NC-FSCIL [8]
Base 82.52 79.55 78.63 77.98 77.60 75.98 74.45 75.18 73.98 77.32

67.50
Incremental - 44.00 41.60 36.47 31.95 31.32 33.97 31.31 29.30 34.99

OrCo
Base 80.08 67.37 68.12 63.30 63.40 63.93 61.45 61.08 58.22 65.22

62.11
Incremental - 77.60 60.20 51.67 48.90 45.80 48.23 44.94 43.15 52.56

Table 7. Base and Incremental accuracy shown per session for CIFAR100.

Method Class Group Session-wise Accuracy (%) Means aACC0 1 2 3 4 5 6 7 8 9 10

IW [7] Base 67.53 67.07 66.83 66.55 66.48 66.31 66.13 65.99 65.85 65.85 65.75 66.39 59.72Incremental - 29.03 27.74 25.00 25.95 26.61 26.51 25.45 24.34 26.08 26.93 26.36

CEC [9] Base 75.64 74.27 73.88 73.64 72.66 72.31 71.75 71.09 70.98 70.64 70.46 72.48 61.33Incremental - 45.16 41.52 33.1 36.34 33.1 34.17 34.34 32.96 34.41 34.16 35.93

BiDist [10] Base 75.98 74.23 73.71 73.85 73.08 72.35 71.68 71.65 71.68 71.12 70.36 72.70 62.91Incremental - 55.20 46.11 38.19 41.67 37.62 38.11 39.28 36.81 39.73 39.83 41.26

FACT [11] Base 77.23 75.04 74.83 74.79 74.41 74.20 73.60 73.46 73.22 72.87 72.84 74.22 64.42Incremental - 53.05 47.17 38.08 40.21 38.37 39.66 40.25 38.30 40.11 39.93 41.51

LIMIT [12] Base 79.63 79.02 78.81 78.77 78.39 78.04 77.72 77.51 77.24 76.68 73.46 77.75 65.49Incremental - 49.82 44.88 37.38 39.35 37.35 38.40 40.01 38.47 39.92 42.15 40.77

NC-FSCIL [8] Base 80.45 76.89 77.62 78.63 77.23 77.13 76.85 76.29 76.61 75.94 76.19 77.26 67.29Incremental - 66.67 45.41 42.59 45.88 41.72 44.11 44.99 41.16 42.66 43.07 45.83

OrCo Base 75.59 65.54 63.79 66.76 64.91 65.05 65.50 65.01 66.24 66.27 66.62 66.48 62.36Incremental - 79.93 65.37 53.47 55.41 51.03 51.31 50.90 47.69 49.70 49.25 55.41

Table 8. Base and Incremental accuracy shown per session for CUB200.
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