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studies in section 1, detailed breakdown tables and confu-
sion matrices in section 2, an extended discussion on the-
ory of orthogonality in section 3, formulation of contrastive
losses in section 4 and additional implementation details in
section 6.

1. More Ablations

What to pull & what to perturb in OrCo loss. Our OrCo
loss comprises both pull and push components, influenc-
ing the distribution over the hypersphere. The pull effect
is driven by cross-entropy loss (CE), where data features
align with their assigned pseudo-targets. As illustrated in ta-
ble 1, we show the advantage of aligning data features and
pseudo-targets specifically from incremental sessions dur-
ing the third phase. Introducing pseudo-targets assigned to
the base classes to CE loss results in a performance degrada-
tion of approximately 1% in HMg, due to an increased bias
towards base classes. Next, we study the impact of pertur-
bations, which create additional pushing forces, on different
subsets of pseudo-targets. Our findings indicate that per-
turbing both incremental- and base-assigned pseudo-targets
consistently hampers performance compared to perturbing
only those assigned to incremental classes, resulting in
about 9% improvement in HMg. Higher base accuracy in-
dicates that perturbations of both base- and incremental-
assigned pseudo-targets provide more room for prevalent
base classes, hindering the learning of novel classes and
favouring base-class bias.

Pseudo-targets assignment strategy. In table 2, we high-
light the crucial role of optimal initial alignment between
pseudo-targets and class means. We compare a random as-
signment strategy to a Hungarian matching algorithm. Hun-
garian matching allows to find an optimal assignment based
on distances between class means and pseudo-targets. We
identify two optimal assignment strategies within hungarian
matching 1) Reassignment and 2) Greedy Assignment. For
the former, class means are reassigned to closest pseudo-
targets at the beginning of each session whereas the later,
carries forward the assignment from previous sessions.

We find that the random assignment strategy leads to a
notable degradation in accuracy, particularly evident after
the second phase for the base classes, amounting to approx-
imately 8%. Greedy assignment performed better than re-
assignment. Despite reassignment being theoretically opti-
mal, in practice we observe a performance drop likely due

Pseudo-Targets

Inc Inc 67.60 43.80 53.12 58.12 67.14
Base+Inc 78.13 30.86 44.26 50.44 69.17

Base+Inc Inc 69.65 41.85 52.30 57.76 67.90
Base+Inc 78.90 29.53 43.00 48.77 69.25

Table 1. What to pull & what to perturb. CE denotes cross-
entropy that pulls data features to the pseudo-targets; Inc denotes
that only assigned to incremental sessions pseudo-targets partici-
pate in the CE loss, Base+Inc denotes both base- and incremental-
assigned pseudo-targets. The choice of perturbed pseudo-targets
can include incremental assigned pseudo-targets with unassigned
pseudo-targets (Inc), or all assigned pseudo-targets with unas-
signed pseudo-targets (Base+Inc). Base/Inc Acc denotes accuracy
from the last 8" session. aACC denotes average accuracy over all
sessions. Results on mini-ImageNet.

Assignment Base AccT BaseDecay| aHM?T aACC?
Random 75.75 20.40 54.40 59.42
Reassignment 83.30 29.65 55.49 62.74
Greedy 83.30 15.72 58.12 67.14
Table 2. Pseudo-targets assignment strategy. Comparing

our optimal assignment strategy against random assignment of
pseudo-targets.

to noisy few-shot classes appearing geometrically closer to
previously assigned pseudo-targets hence causing a shift of
previously seen assigned classes and causing misalignment.
This can be clearly seen in the loss of generalisation given
a base decay of 29.65% vs 15.62% for best case.

Overall accuracy is substantially improved, demonstrat-
ing the critical contribution of the optimal assignment ap-
proach in addressing forgetting and achieving better align-
ment.

Number of exemplars. Due to the memory constraints in-
herent in FSCIL, it is common to utilize a constrained num-
ber of exemplars from the previous task. To investigate this,
we conducted tests with 0, 1, and 5 exemplars, and the re-
sults are presented in table 3. We note that even with just 1
exemplar, our model achieves a performance improvement
of 2.84% compared to our strong baseline, the IW method.

2. More Results

Base and incremental accuracy breakdown. We show
our SOTA results with a base and incremental session ac-



Session-wise Harmonic Mean (%) 1
# aHM  aACC
1 2 3 4 5 6 7 8
0 693 479 423 349 312 280 248 244 378 546
1 644 534 487 489 454 405 40.7 435 482 649

5 687 639 609 580 553 524 527 531 581 67.1

Table 3. Number of saved exemplars (#) for incremental sessions.

curacy breakdown for all sessions in tables 6 to 8. Note
that, for Imprinted Weights (IW) [7] we use the implemen-
tation of a decoupled learning strategy from [3] and we ini-
tialise the method with our model pretrained during Phase
1. We note that LIMIT [12] has been unintentionally left
out from figure 4 (main) for CUB200. Furthermore, we re-
port the average accuracy metric to provide a comprehen-
sive overview of our results. Note that the considerable data
imbalance between base and incremental classes has an im-
pact on this metric. The improved accuracy especially in
the base classes, as illustrated in the breakdown tables, con-
tributes to the overall enhancement of this measure.

Confusion matrices. In figure 2, we compare session-wise
confusion matrices for a) OrCo, b) NC-FSCIL [8], and c)
BiDist [10] during the final session of mini-ImageNet. Our
benchmark involves assessing OrCo against its two closest
competitors. OrCo plays a crucial role in finding a deli-
cate balance between preserving knowledge of base classes
and efficiently learning new ones, showcasing significantly
enhanced learning capabilities in incremental classes. No-
tably, other methods exhibit a strong bias towards the base
classes due to low transferability, while our pretraining ses-
sion establishes a robust backbone. Moreover, our space
reservation scheme, along with strong separation using per-
turbed targets and robust contrastive learning, enables us to
learn a highly performant learner.

3. Theory of Orthogonality

This section covers the mathematical theory of orthogonal-
ity of independent vectors in high dimensional space. Let
X1, Xs,...,X, be independent and identically distributed
(i.i.d.) random vectors sampled from a normal distribution
with mean 0 and variance 1. These vectors are in R™. The
claim is that these vectors are mutually orthogonal on the
unit sphere. To prove this, let’s first establish that the vec-
tors are normalized to have a length of 1.

Given a vector X; = (X1, Xio,. ..,
given by:

Xin), its length is

1Xil = /X2 + X3+ ..+ X2,

Since each component X;; is independently sampled from
a normal distribution with mean O and variance 1, the ex-
pected value of Xigj is 1. Therefore, the expected value of
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Figure 1. Practical effect of dimensions on average pair-wise angle
of a 100 independant random vectors.

the length squared is:
E[|Xil") = E[XZ + X5 +... + X7 =n

This means that ﬁXi has a length of 1 in expectation.

Now, let’s consider the inner product of two different vec-
tors X; and X; (where i # j):

ELX; - X;] =Y > E[Xir - X

k=1k'=1

Since X, and X, are independent for i # j, the cross-
terms in the summation will have an expected value of 0,
and the only non-zero terms will be the ones where k& = £/,
resulting in:

E[Xi- X;] = > E[Xu- Xj] =Y E[X}]6;; =i - n
k=1 k=1

where §;; is the Kronecker delta. Therefore, the expected
value of the inner product is n if ¢ = j and 0 otherwise.
This means that the vectors are orthogonal in expectation.
It is important to note that this property specifically holds
for vectors drawn from a normal distribution with mean 0
and variance 1.

The figure 1 shows the practical effects of the above the-
ory which yields near orthogonality but not perfect orthog-
onality. Only near feature dimension = 2! do we generate
nearly orthogonal vectors. Which would lead to the projec-
tion head having ~ 68 million parameter making our frame-
work incomparable to other methods. Explicit orthogonal-
ity as we have shown previously in table 3 (main) yields
better results which is why we explore this practical con-
straint.

4. Contrastive losses

Supervised Contrastive Loss. Given a set of sample-label
pairs (z;,y;) € Z°°L, we define the positive set PS¢ for
x; as the collection of pairs (z;,y;) where j varies over all
instances such that y; = y;. Correspondingly, the negative



set N7CL is defined as Z°°L \ PSYL. Then, supervised
contrastive loss (SCL) is defined as:

o) = L Xp(e2/7)
»CSCL(Zve)_|PiSCL‘ Z log > exp(zi-ay/T)

SCL
z;EP;

zRENSCE

Self-Supervised Contrastive Loss. Given a set of samples
x; € Z99YL we define a positive for x; as A(x;) where
A(+) is arandom transformation. Then, self-supervised con-
trastive loss (SSCL) loss is defined as:

1 exp(x; - A(x;)/7)
Lsscr(i;0) = —1-log Dy exp(z; - ok /T)

2L €ZSSOL Lk

5. Orthogonality Loss

In this section, we further expand on the orthogonality loss
in our framework. We employ the orthogonality loss as an
implicit geometric constraint on the set O predicated on the
current batch. O contains the following: mean features for
all classes within batch 1, assigned targets not represented
within batch and all unassigned targets 7}..

Formally, let us assume the session ¢ with data D' and
classes C*. In order to define a set O we compute some pre-
liminaries. Firstly, for every training batch B we compute
the within-batch mean for all data features. This is com-
puted as:

c7]
1 o
Wi = T kzzozk,Vj €Ch (1)

where C% € C" refers to all classes appearing in this
particular batch. The combined set of all means can then be
termed M p. For the classes that did not appear in this batch
we define as ~C% = C?\ C%. Subsequently we define
a mapping function from seen class labels to the assigned
pseudo target.

h:C—T° 2)

We incorporate the remaining real data by adding the fol-
lowing set of assigned pseudo targets as =15 = h(=C%).
For completeness, we combine the above with the unas-
signed targets T leading to the following definition of O:

O={MpU-TRUT, | B} 3)

Finally, the orthogonality loss takes the form:

O] |O]
EORTH(O) = @ Zlogzeoi'oj/To,Oi,Oj €0 (4)
i=1 j=1

In essence, the orthogonality loss introduces a subtle
geometric constraint between real class features and the
pseudo-targets. Additionally the batch-wise construction
helps regularise the loss function.

Although the improvement from the Orthogonality loss
are not prominent like in PSCL, it remains measurable and
consistent across settings (e.g. in table 2 of the original pa-
per, line 1 vs line 2, line 3 vs line 4), and thus contributes to
our results. Additionally, we would like to highlight that
each loss term in equation 6 in the main paper incorpo-
rates orthogonality constraints either implicitly or explic-
itly. E.g. the orthogonality enforced on the pseudo-targets
implies an implicit orthogonality among the features as they
are pushed to these targets.

6. Further Implementation Details

Model parameters.
work is composed of:

* Encoder/Backbone Network (f) We use the ResNetl8
and 12 [4] variant for our experiments. Depending on
the variant of the encoder, the representation vector has
output dimensions Dg = 512 or 640, respectively. In ta-
ble 4 we compare our choice of architecture against other
FSCIL studies.

* Projection Network (projector)(g). Following the en-
coder, a projection MLP maps the representation vector
from f to the contrastive subspace. We use a two layer
projection head with a hidden dimension of size 2048. By
convention output projections are normalised to the hy-
persphere. For simplicity, the dimension of the projected
hyper sphere is initialised as d = 2[log(C)| where C'is
the total number of classes for our FSCIL task. Following
convention, we assume normalised feature vectors.

Our representation learning frame-

Training details. For CUB200 dataset, we skip the pre-
training phase given that it is common in literature to use
pretrained ImageNet weights for the backbone [3, 8, 10, 11].
For any incremental sessions (> 0) we finetune only the
projection head from phase 2. For the PSCL loss we choose
a perturbation magnitude A,.,; = le-2 for our experiments
and perturb only the incremental targets and unassigned tar-
gets. We train the projection head for 10 epochs in the 0-th
incremental session and 100 epochs for all following ses-
sions. Cosine scheduling is employed with warmup for a
few epochs for all our phases with a maximum learning rate
set to 0.4 in phase 1, 0.25 in phase 2 and 0.1 in phase 3.
Given the equation 4 (main), we double our batch size by
over sampling target perturbations such that the number of
perturbed targets is always the same as the original training
batch size. Orthogonality loss is applied batch wise. More
concretely, the orthogonality loss takes as input, the within
class average features inside a batch along with any other
pseudo targets not in the batch. Cross entropy is applied



Method Model

mini-ImageNet CIFAR100 CUB200
W [7] ResNet18 ResNetl2  ResNetl8
FACT [11] ResNetl8 ResNet20  ResNetl8
CEC [9] ResNet18 ResNet20  ResNetl8
C-FSCIL [5] ResNet12 ResNet12 -
LIMIT [12] ResNetl8 ResNet20  ResNetl8
LCwoF [6] ResNet18 - -
BiDist [10] ResNet18 ResNetl8  ResNetl8
NC-FSCIL [8] ResNet12 ResNetl2  ResNetl8
OrCo ResNet18 ResNetl2  ResNetl8

Table 4. ResNet architectures used in FSCIL literature

exclusively to incremental class data as base classes are al-
ready aligned.

For pseudo target generation we employ an SGD op-
timiser, with le-2 learning rate for 2000 epochs to mini-
mize the loss. For CUB200 the dimension of the projec-
tion head is higher which constitutes longer training cycle to
fully orthogonalize the pseudo targets. CUB200 was most
susceptible to forgetting for which reason we ensured that
base classes were incorporated inside the CE loss compo-
nent of the loss function. With the lack of a pretrain step
in CUB200, we must also finetune the backbone during
phase 2 to align base classes while also capturing specific
representation which is important for learning effectively
on a fine-grained dataset. For pretraining, we use Ran-
dAug [2] for mini-Imagenet and AutoAugment policy [1]
for CIFAR100. Additionally, following the implementation
of [11] we apply auto augment policy for CIFAR100 during
the incremental sessions as well.

Parameter Count

Architecture e aHM  Base Acc
(million)
ResNet-18 12.49 58.12 83.30
ResNet-12 15.06 59.30 83.65

Table 5. Comparing ResNet-12 to ResNet-18

7. ResNet 12 with Mini-ImageNet

In this section we measure the efficacy of our method on a
different backbone. More specifically we train a ResNet-12
backbone used by [8] with our method. In table 5 we show
the results. Our reported results with ResNet-18 are 58.12,
while the results with ResNet-12 are 59.30 indicating an im-
provement with the wider ResNet-12 architecture. ResNet-
18 remains as our elected architecture due to its prominence
in prior works, low parameter count, while still maintaining
state-of-the art performance.
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Figure 2. Visualising the session-wise confusion matrix for mini-ImageNet using a) OrCo, b) NC-FSCIL [8], and c¢) BiDist [10]. Each
matrix demonstrates the predictive accuracy for base and incremental sessions, separated by yellow lines. High values on the diagonal
(indicative of correct session predictions) are contrasted with low off-diagonal values (representing misclassifications). The first column
in each matrix highlights potential prediction bias towards base classes. Our method’s performance, as illustrated, demonstrates both high
diagonal accuracy and a balanced approach in reducing base class bias, as compared to the results of the competing methods.

Session-wise Accuracy (%)

Method Class Group 0 i 3 3 3 5 3 7 3 Means aACC
W [7] Base 83.10 81.17 80.58 79.93 79.55 7888 78.38 78.08 77.25 79.66 68.77
Incremental - 3560 31.30 3227 3265 31.16 29.13 2991 3240 31.80 '
Base 75778 7522 7483 7447 7430 7405 73.82 73.47 7337 7437
FACT 1] Incremental - 16.60 17.10 17.20 15.15 1324 1193 12,17 1243 1448 60.86
CEC [9] Base 72.17 7077 7005 69.53 69.27 6895 68.65 6825 6795 69.51 50.57
Incremental - 20.60 20.60 1993 19.75 17.68 16.63 16.80 17.18 18.65 ’
Base 76.60 76.15 7470 73.82 73.18 71.10 70.08 6827 67.58 72.39
C-FSCIL [5] Incremental - 520 1190 17.80 2040 23.08 2337 26.06 2635 19.27 61.21
Base 7327 7043 6947 68.68 68.18 67.73 6730 67.07 66.68 68.76
LIMIT{12] Incremental - 29.80 24.00 2273 21.85 19.72 1940 19.71 20.18 22.17 58.04
LCwoF [6] Base 6445 5733 5331 5287 5138 4825 47.60 4751 4773 5227 46.80
oro Incremental - 3220 30.70 31.00 31.12 29.68 2827 2734 27.65 29.75 '
BiDist [10] Base 74.67 73.63 7250 71.03 70.63 7037 68.70 6798 69.25 70.97 61.25
s Incremental - 3260 3140 3033 3030 2548 2523 27.09 25.10 28.44 '
Base 84.37 7825 76.00 7573 7480 7542 7552 75.13 7477 76.67
NC-ESCIL [8] Incremental - 51.80 51.00 4433 4120 37.04 3420 3337 3277 40.71 67.82
OrC Base 8330 7640 7410 72.00 71.20 70.50 69.20 68.10 67.60 72.49 67.14
© Incremental - 6240 56.10 52.80 48.90 4540 4220 4290 43.80 49.31 ’

Table 6. Base and Incremental accuracy shown per session for mini-ImageNet.



Session-wise Accuracy (%)

Method Class Group 0 i 3 3 5 3 7 3 Means aACC
W [7] Base 78.58 7545 75.15 74.65 7438 74.07 73.80 73.55 73.03 7474 64.05
Incremental - 2940 3190 28.53 27.60 2636 2720 2691 2588 27.97 ’
Base 7735 76770 76.17 7552 7535 7422 7392 73.63 72.87 75.08
C-FSCIL 5] Incremental - 19.80 1740 1620 13.65 1492 1453 13.66 14.00 15.52 6142
Base 79.63 7540 7447 73770 7322 7252 7222 72.02 7132 73.83
LIMIT [12] Incremental - 2720 24.60 2147 21.00 20.76 21.10 20.54 20.13 22.10 61.66
CEC [9] Base 7293 7213 7142 70.72 70.12 6920 68.67 68.43 6775 70.15 50.53
Incremental - 29.60 27.00 22.60 21.80 2240 22.13 21.66 21.08 23.53 ’
Base 78.72 7623 7530 74.63 7390 73.07 72.58 7228 7173 74.27
FACT [11] Incremental - 29.80 25.60 21.20 20.70 20.24 2233 21.69 2195 2294 62.55
BiDist [10] Base 69.68 68.45 67.55 6647 6580 64.87 64.77 6427 6450 66.26 56.91
! Incremental - 36.80 31.20 28.80 2575 2436 22.87 2243 2035 26.57 ’
Base 8252 7955 78.63 7798 77.60 7598 7445 75.18 7398 77.32
NC-FSCIL [8] Incremental - 44,00 41.60 36.47 3195 3132 3397 31.31 2930 3499 67.50
0rCo Base 80.08 67.37 68.12 6330 6340 6393 6145 61.08 58.22 6522 62.11
Incremental - 77.60 60.20 51.67 4890 4580 48.23 4494 43.15 52.56 ’
Table 7. Base and Incremental accuracy shown per session for CIFAR100.
Session-wise Accuracy (%)
Method Class Group 0 i 3 3 4 3 3 7 3 9 10 Means aACC
IW [7] Base 67.53 67.07 66.83 66.55 66.48 66.31 66.13 65.99 65.85 65.85 65.75 66.39 5072
Incremental - 29.03 27.74 25.00 25.95 26.61 26.51 25.45 24.34 26.08 26.93 26.36 ’
CEC [9] Base 75.64 74.27 73.88 73.64 72.66 72.31 71.75 71.09 70.98 70.64 70.46 72.48 61.33
Incremental - 4516 41.52 33.1 36.34 33.1 34.17 34.34 32.96 34.41 34.16 35.93 ’
BiDist [10] Base 75.98 74.23 73.71 73.85 73.08 72.35 71.68 71.65 71.68 71.12 70.36 72.70 62.91
1S Incremental - 55.20 46.11 38.19 41.67 37.62 38.11 39.28 36.81 39.73 39.83 41.26 ’
FACT [11] Base 77.23 75.04 74.83 74.79 74.41 74.20 73.60 73.46 73.22 72.87 72.84 74.22 64.42
Incremental - 53.05 47.17 38.08 40.21 38.37 39.66 40.25 38.30 40.11 39.93 41.51 ’
LIMIT [12] Base 79.63 79.02 78.81 78.77 78.39 78.04 77.72 77.51 77.24 76.68 73.46 77.75 65.49
Incremental - 49.82 44.88 37.38 39.35 37.35 38.40 40.01 38.47 39.92 42.15 40.77 ’
Base 80.45 76.89 77.62 78.63 77.23 77.13 76.85 76.29 76.61 75.94 76.19 77.26
NC-FSCIL [8] Incremental - 66.67 45.41 42.59 45.88 41.72 44.11 44.99 41.16 42.66 43.07 45.83 67.29
OrCo Base 75.59 65.54 63.79 66.76 64.91 65.05 65.50 65.01 66.24 66.27 66.62 66.48 62.36
Incremental - 7993 65.37 53.47 55.41 51.03 51.31 50.90 47.69 49.70 49.25 55.41 ’

Table 8. Base and Incremental accuracy shown per session for CUB200.
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