
Appendix
A1. Related Work
Alpha and Bad Weather. Early works on weather model-
ing [22, 23] use volume rendering to characterize the effect
of rain and fog. Dehazing methods [7, 9], apart from sepa-
rating the base scene albedo from the foggy airlight, use the
estimated alpha mask to compute an up-to-scale depth map
proportional to � log(1�↵). The notion of alpha invariance
is implied in this step.

NeRF vs MPI. NeRF uses volume rendering [17] for view
synthesis [20] and other inverse rendering tasks . Unlike
prior works [25, 29, 39, 40] that directly model the alphas
of a fixed set of multi-plane images (MPI), NeRF optimizes
the continuous volumetric densities �(x). MPI fixes the dis-
cretization in advance, whereas the density parameterization
in NeRF makes it easy to adjust discretization and resample
along a ray. The flipside of this flexibility, however, is that
the magnitude of �(x) is tied to the domain of integration.
Our work emphasizes that even though �(x) and distance
change to compensate for each other, the alpha value of a
particular discretized segment should remain constant. The
opacity is an invariant property of local geometry.

Volume-rendered SDF. Signed distance function (SDF) is
suitable for procedural content authoring and surface extrac-
tion. SDF rendering used to rely on finding surface intersec-
tions by sphere tracing [24, 36], but recent methods such as
NeuS [33] and VolSDF [37] move to the “fuzzier” volume
rendering for easier optimization. To perform volume render-
ing, the distance function is first transformed into volumetric
densities before alpha compositing. VolSDF learns scaling
and shrinking coefficients on the distance-transformed vol-
ume densities. NeuS instead demands the CDF of volume
rendering to match the shape of a scaled, horizontally flipped
sigmoid i.e. 1� T (t) = sigmoid(s ·�SDF(t)), so that the
CDF’s derivative, in other words the weighting function
w(t), has its local maxima located at SDF value 0 for pre-
cise surface level-set extraction. The learned parameter s
in the sigmoid acts as a global scaling coefficient on the
implied volume densities. In this sense both formulations
are alpha invariant by default, with the extra constraint that
the magnitude of volume density function is globally tied to
its sharpness. The assumption is restrictive but fine for most
use cases.

Gaussian Splatting. Gaussian splatting [12, 15, 35] ren-
ders an image by alpha compositing point primitives. Since
the scene representation is by nature discrete, the concept
of volume density does not apply, as is the case with MPIs.
These explicit primitives can be efficiently rasterized using
GPU pipelines. Whereas NeRF could use ray sampling strate-
gies on the continuous density field to refine local details and

discover missing structures, 3D gaussians / metaballs [12–
14] are less flexible; it relies on SfM initialization in some
cases, and needs to explicitly optimize point shape, loca-
tion, and periodically remove, repopulate and merge-split
the primitives. 3DGS [12] uses an exponent activation to
scale the shape of each primitive, and it shares a similar
motivation in terms of handling arbitrary scene scaling.

A2. Transmittance in Discrete Setting
In Sec. 3, we write down the expression for high transmit-
tance initialization in the continuous setting. The expression
is the same when the ray is cut into discrete intervals. The
tree-branching analogy in Fig. 1 shows that the transmittance
/ survival probability for each segment is 1�↵i, with overall
survival probability

Q
(1� ↵i) =

Q
e��idi = e�

P
�idi =

exp (�
R L
0 �ds). The same steps as Eq. (5) from Sec. 3 fol-

low.

A3. Additional Results
Surface Statistics. We provide additional visualizations veri-
fying alpha invariance in Fig. A2. Similar to Fig. 4, we shoot
rays through each pixel to obtain the density histograms
{wi}, and query the spatial location at the 50-th percentile of
the probability CDF of each histogram for its � value. Here,
we showcase various scene types from different datasets,
and generate these visualizations with different architectures,
demonstrating how inverse scaling between distance and
volume density is a generalizable phenomenon in radiance
fields.
Voxel Variants, continued. DVGO has a strategy of fix-
ing the scene size to some canonical scale where the in-
terval length between each sampled point is dependent on
the current voxel grid resolution’s ratio to the base resolu-
tion, which empirically equates to either 0.5 or 1, depending
on the stages of optimization progress. We also note that
DVGO’s sampling procedure is stochastic, as each ray has
a potentially unique number of samples. The implication
is that every ray will have a different ray length purely de-
termined by its number of samples as the interval length
between any two contiguous samples is hardcoded to either
0.5 or 1. As such, the term “ray length” loses its meaning in
DVGO’s context as there are no deterministic near and far
planes; every ray is simply deconstructed into its constituent
samples. We observe that disabling this heuristic (i.e., set-
ting the interval lengths to be the true physical distances
and forcing each ray to be bounded within a predetermined
global near and far plane) produces significantly worsened
rendering quality, as shown in Tab. A2.

For Plenoxels, only rectifying � with exp is insufficient
to maintain convergence at various scene scales; a high trans-
mittance offset is needed even at k = 1. See Tab. A3 for
numerical results. We note that our results are worse (⇠ 2-

Chair Ship
Default Ours Default Ours

k = 0.1 31.20 31.14 31.04 14.04 28.82 31.20 31.27 31.07 30.99 31.25 5.88 5.88 27.59 27.61 5.88 27.20 27.06 27.56 27.51 27.31
k = 0.4 28.96 31.32 31.26 31.17 31.26 31.00 31.29 31.02 31.24 31.09 27.57 27.46 27.59 27.35 27.49 27.11 27.14 27.00 27.11 27.84
k = 1.0 14.04 31.32 14.04 14.04 28.82 31.24 31.30 31.11 31.39 31.23 27.56 25.64 27.27 25.57 27.60 27.18 26.99 27.16 27.30 27.11
k = 2.5 14.04 31.37 28.99 31.38 31.32 31.14 31.23 31.15 31.03 31.23 27.50 27.45 5.88 27.49 27.56 27.56 27.31 27.35 27.18 27.16
k = 10.0 14.04 30.97 28.76 31.00 9.75 31.29 31.19 31.16 31.10 31.22 5.88 27.57 27.35 24.12 27.43 26.99 27.00 27.16 27.27 27.28
average 25.76 ± 7.79 31.18 ± 0.10 22.89 ± 8.54 27.23 ± 0.20

Table A1. PSNR " values of Vanilla-NeRF on the chair and ship scenes from the Blender dataset. Here, we run 5 experiments for 5 different
k-values, and compare the results from the default NeRF baseline against our exp parametrization on � and high transmittance initialization.
We observe consistent rendering quality across all runs for both scenes with our method, but identify inconsistent rendering quality for the
default configuration, with failure modes and poor convergence marked here in red.

R
G
B

no initialization

de
pt
h

R
G
B

de
pt
h

with initialization no initialization with initialization no initialization with initialization

Figure A1. RGB-image and depth-maps produced from TensoRF on the lego, mic, chair, ship, materials, and hotdog scenes from the Blender
dataset at a large scene scaling k = 25. When using exp activation to parameterize �, not using our high transmittance initialization strategy
causes the optimization to get stuck with cloudy floaters.

3 dB) than the results presented in Plenoxels [8]. We had
to significantly lower the learning rate to be more suitable
for the exp activation, and believe that other changes in
the hyperparameters are also needed to match the default
performance. We leave this as future work; our results still
demonstrate consistent rendering quality and a need for our
high transmittance initialization strategy.

Benefit of High Transmittance Initialization. We provide

additional RGB-image and depth-map visuals in Fig. A1
demonstrating the benefits of our high transmittance ini-
tialization in handling large scene scales when using exp
activation.

A4. Reproducibility
In Tab. 2, we observe random failure modes when train-
ing the vanilla 8-layer MLP on various scenes using NeRF-

chair drums ficus hotdog lego materials mic ship

disabled fail fail fail fail fail fail fail fail
default 34.10 25.40 32.56 36.67 34.53 29.71 33.23 28.76

fern flower fortress horns leaves orchids room trex

disabled 15.74 17.38 20.77 20.62 16.96 11.77 21.44 20.62
default 24.49 27.61 29.91 27.01 20.41 19.95 30.87 26.41

bicycle bonsai counter garden kitchen room stump

disabled fail fail fail fail fail fail fail
default 21.98 27.33 25.41 24.41 25.81 28.14 23.51

Table A2. PSNR " values of DVGO on the Blender (top row), LLFF (middle row), and Mip-NeRF 360 (bottom row) datasets. DVGO sets the
interval lengths d to the ratio of the current voxel grid resolution to the base voxel grid resolution in order to to make the model independent
of scene size; this is referred to as ‘default’ in the table. We observe that disabling this heuristic (i.e., setting the interval lengths in the
volume rendering equation to be the true physical distances between any two sample points) results in DVGO failing to render at a high
quality. These failure modes are marked with red in the rows titled ‘disabled’.

chair drums ficus hotdog lego materials mic ship

k = 0.1 31.80 / 31.89 24.23 / 24.26 29.41 / 29.58 34.12 / 34.31 31.20 / 31.31 28.21 / 28.41 31.11 / 31.31 28.16 / 28.25
k = 0.4 30.33 / 31.83 23.61 / 24.23 27.65 / 29.12 31.76 / 34.46 29.61 / 31.22 26.06 / 28.02 29.04 / 31.13 27.01 / 28.13
k = 1.0 27.06 / 32.00 21.66 / 24.37 24.77 / 29.39 27.31 / 34.56 26.22 / 31.35 23.14 / 28.31 24.85 / 31.29 24.58 / 28.19
k = 2.5 17.49 / 32.43 17.24 / 24.44 18.89 / 29.83 20.20 / 34.72 16.64 / 31.53 15.51 / 28.64 15.89 / 31.61 16.67 / 28.22
k = 10.0 13.05 / 32.25 10.84 / 24.45 11.40 / 30.23 13.03 / 34.93 11.64 / 31.69 9.57 / 28.79 15.89 / 31.61 11.27 / 28.21

Table A3. PSNR " for Plenoxels [baseline / ours] at different scene scaling k on the Blender dataset. By default, Plenoxels applies a
very large learning rate directly on the coefficients of a voxel grid, where � is queried via trilinear interpolation, followed by ReLU to
ensure non-negative density values. The baseline Plenoxels model here replaces ReLU with exp activation and uses a reduced learning
rate (⌘init = 0.05, ⌘final = 0.005) with no reverse cosine delay. Our model in addition applies a high transmittance offset. As shown, this
transmittance offset is required for high rendering quality at various scene sizes, even at k = 1.

Pytorch [38] at git commit hash 63a5a63. To get a bet-
ter sense of the frequency of these failure modes, we train
Vanilla-NeRF on chair and ship scenes 5 times for each
k-value, comparing the default ReLU parametrization on �
against our high transmittance initialization in combination
with exp. Full results are provided in Tab. A1. We attribute
the random failure modes to poor initialization of the MLP
layers (the initial output distribution has 0 mean and 0 vari-
ance) and the inability of ReLU to provide a smooth transi-
tion from low to high ↵ values. See Fig. 2 for a visualiza-
tion. However, even with such a poorly initialized MLP, our
parametrization on � is enough to guarantee convergence on
all runs across all tested k values.

We train NeRF-Pytorch for only 200k iterations. A longer
training schedule of 500k iterations would push the NeRF-
Pytorch performance closer, but still slightly below the origi-
nal NeRF numbers. The overall conclusions do not change.

fic
us

ground truth �1 (k=1.0) �2 (k=10.0) �3 (k=0.1) � ratio (�1/�2) � ratio (�1/�3)

sh
ip

10�3

10�2

10�1

100

101

102

103

�
(l
og
)

10�3

10�2

10�1

100

101

102

103

�
ra
ti
o
(l
og
)

fe
rn

ho
rn
s

10�2

10�1

100

101

102

�
(l
og
)

10�2

10�1

100

101

102

�
ra
ti
o
(l
og
)

ba
llr
oo
m

m
us
eu
m

10�4

10�3

10�2

10�1

100

101

102

103

104

�
(l
og
)

10�3

10�2

10�1

100

101

102

103

�
ra
ti
o
(l
og
)

Figure A2. Visualization of �-image produced at the 50-th percentile location of each ray’s density histogram CDF. We produce a division
image that shows the global difference of numerical range across different scene scaling factor k. The first four rows are produced from the
TensoRF architecture (the top two rows are the ficus and ship scenes from the blender dataset; the middle two rows are the fern and horns
scenes from the LLFF dataset). The bottom two rows are produced from the Nerfacto architecture on the ballroom and museum scenes from
the Tanks-and-Temples dataset. Across a variety of scenes and NeRF architectures, these visualizations demonstrate that the phenomenon of
alpha invariance holds to a very strong degree.

	. Introduction
	. Background
	. Alpha Invariance
	. Experiments
	. How volume density changes in practice
	. Vanilla NeRF with MLPs
	. Voxel Variants: DVGO, Plenoxels and TensoRF
	. MLP and Hashgrid Hybrids
	. Background Contraction / Disparity Sampling

	. Conclusion
	. Related Work
	. Transmittance in Discrete Setting
	. Additional Results
	. Reproducibility

