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Figure 7. UnrealEgo Benchmark Challenge website.

This supplementary material provides more details about
our work, including our benchmark challenge, proposed
datasets, method, and additional results. Please watch
the video on our project page for dynamic visualiza-
tions, including the proposed datasets, i.e., UnrealEgo2 and
UnrealEgo-RW.

A. UnrealEgo Benchmark Challenge
We release the UnrealEgo Benchmark Challenge1 webpage
as shown in Fig. 7. Here, we provide the details of our
proposed datasets, i.e., UnrealEgo2 and UnrealEgo-RW, in-
cluding example visualizations of our setup and data, data
download procedure, evaluation protocol, and performance
results of submitted works. Please see the webpage for more
details.

1https://unrealego.mpi-inf.mpg.de/

B. Dataset Comparison

We provide a detailed comparison of existing datasets [1, 2,
4] for egocentric stereo 3D human pose estimation as shown
in Table 8. As mentioned in Secs. 2 and 3 of the main pa-
per, UnrealEgo2 adapts the publicly available eyeglasses-
based setup [1], offering the largest synthetic dataset with
1.25M in-the-wild stereo fisheye views. Note that it does
not share the same motions with UnrealEgo [1]. Therefore,
it allows for a more comprehensive evaluation of existing
and upcoming methods in various scenarios. UnrealEgo-
RW is based on the head-mounted device equipped with two
fisheye cameras. It provides the largest real-world dataset
with 130k stereo fisheye views among the publicly avail-
able real-world datasets. Note that the EgoGlass dataset [4]
is not publicly available. Unlike the existing real-world
datasets [2, 4], UnrealEgo-RW offers a wider variety of mo-
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Device

Example Data

Egocentric views 30k × 2 views 170k × 2 views 450k × 2 views

Environment studio synthetic 3D worldstudio

UnrealEgo2 (Ours)

1.25m × 2 views

synthetic 3D  world studio

UnrealEgo-RW (Ours)

130k × 2 views

Keypoints body: 17 body: 13 body: 32, hand: 40 body: 32, hand: 40 body: 16

Motion diversity low low high

Distance to user’s face ~25 cm ~1cm ~1cm ~1cm 1~2cm

high high

  EgoCap [2]   EgoGlass [4] (Not publicly available) UnrealEgo [1]

Table 8. Comparison of existing datasets for egocentric stereo 3D human pose estimation.

tions, such as crawling and dancing, making itself a unique
and challenging dataset for egocentric stereo 3D human
pose estimation.

C. Data Loading Protocol
We compare video-based methods (i.e., our approach and
the Baseline) with the existing methods [1, 4] operating on
single frames. For a fair comparison, we pad the input video
with the initial frame for the video-based methods as shown
in Fig. 8 such that the 3D errors can be computed on the
same sequences of the same lengths for both video-based
and single-frame-based methods. Specifically, we pad the
original video input (colored in red) with the first frame, i.e.,
frame 0, at the beginning of the sequence, generating sev-
eral sets of input sequences. Then, 3D poses corresponding
to the last frames of the input sequences (colored in blue)
are used to calculate the 3D errors, i.e., MPJPE and PA-
MPJPE, for the video-based methods.

D. Additional Details of Network Architecture
As mentioned in Sec. 4.4, we use two feature extractors for
depth and heatmap data, i.e., FDepth and FHM, respectively.
FDepth consists of five convolutional layers with a kernel
size of 4, a stride of 2, and a padding size of 1. FHM is
composed of four convolutional layers with a kernel size
of 4, a stride of 2, and a padding size of 1 Also, we use
a transformer decoder that consists of six decoder layers,
eight heads, a hidden dimension of C

2 , and an MLP dimen-
sion of 2C, where C = 512. The pose regression head after
the transformer decoder consists of three linear layers with
input dimension sizes C

2 , C
4 , and C

8 .

E. Additional Implementation Details
We implement our method using PyTorch and train and
test it on a single NVIDIA Quadro RTX 8000 GPU with
48GB of memory. ≈33% of the memory is allocated for
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Figure 8. Schematic visualization of our video padding scheme for
video-based methods. This example is for a video with 10 frames
(red) and the input sequence length of 3, i.e., T = 3, and a skip
size of 3. The video is padded by replicating the first frame, i.e.,
frame 0, to create 10 sets of input sequences. We use the 3D pose
of the last frame (blue) for the calculation of 3D errors.

our model with a batch size of 4 and T=5. The training
time for our model with T=5 is approximately two days on
UnrealEgo-RW, four days on UnrealEgo, and eight days on
UnrealEgo2. The inference speed of our model with T = 5
is 37.8 frames per second if not accounting for the 3D scene
reconstruction with stereo SfM.
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Methods jumping falling down exercising pulling, singing rolling crawling laying

Zhao et al. [4] 86.37 143.97 98.84 84.67 79.22 120.34 207.73 112.88
Akada et al. [1] 82.57 136.13 94.41 82.81 70.89 90.20 186.56 105.88
Baseline 62.28 109.76 71.88 61.62 54.40 76.09 175.29 86.14
Ours 47.75 84.25 57.45 39.18 40.31 52.31 139.62 72.51

Methods
sitting on

the ground
crouching
- normal

crouching
- turning

crouching
- to standing

crouching
- forward

crouching
- backward

crouching
- sideways

standing
- whole body

Zhao et al. [4] 218.99 130.78 125.36 80.44 76.18 98.01 102.09 77.31
Akada et al. [1] 235.04 125.91 142.52 83.43 85.58 88.81 92.56 71.56
Baseline 172.89 95.20 125.79 63.35 58.71 63.55 72.01 53.54
Ours 109.49 67.12 95.43 44.99 38.55 47.40 48.17 38.56

Methods
standing

- upper body
standing
- turning

standing
- to crouching

standing
- forward

standing
- backward

standing
- sideways dancing boxing

Zhao et al. [4] 75.62 79.19 80.22 80.34 77.16 91.50 89.84 76.23
Akada et al. [1] 70.95 76.79 98.95 75.46 73.99 77.94 85.35 74.09
Baseline 51.36 59.91 52.53 57.87 56.66 62.88 63.51 52.70
Ours 36.66 45.03 33.74 42.96 38.05 45.04 47.06 37.34

Methods wrestling soccer baseball basketball american
football golf average

Zhao et al. [4] 89.71 90.54 81.88 59.68 108.89 81.82 88.12
Akada et al. [1] 89.80 85.57 71.49 62.38 103.31 76.67 84.53
Baseline 68.36 61.22 58.34 52.11 94.33 57.12 63.44
Ours 48.94 41.12 47.84 42.10 75.88 41.49 46.20

Table 9. Quantitative evaluation of device-relative 3D pose estimation on the UnrealEgo [1] test split based on the 30 motion categories [1]
(MPJPE with mm-scale), with training on UnrealEgo [1].

Methods jumping falling down exercising pulling, singing rolling crawling laying

Zhao et al. [4] 77.56 132.93 76.28 76.22 71.67 154.17 176.94 98.35
Akada et al. [1] 71.76 113.21 72.61 71.35 65.57 124.76 167.20 86.73
Baseline 49.93 91.86 48.01 48.09 44.52 107.01 141.23 70.73
Ours 31.46 66.37 29.16 25.69 28.15 69.15 119.08 56.29

Methods
sitting on

the ground
crouching
- normal

crouching
- turning

crouching
- to standing

crouching
- forward

crouching
- backward

crouching
- sideways

standing
- whole body

Zhao et al. [4] 197.32 104.21 84.19 81.33 82.07 102.84 98.11 81.29
Akada et al. [1] 155.48 94.83 73.55 77.62 74.47 96.44 87.52 74.36
Baseline 118.10 71.00 54.45 57.12 53.80 74.18 67.15 52.77
Ours 61.89 41.20 28.36 31.81 32.73 37.46 36.35 30.54

Methods
standing

- upper body
standing
- turning

standing
- to crouching

standing
- forward

standing
- backward

standing
- sideways dancing boxing

Zhao et al. [4] 67.85 77.03 70.49 75.27 75.27 73.25 86.13 70.45
Akada et al. [1] 63.76 70.02 67.97 68.17 66.25 67.35 76.35 63.22
Baseline 43.01 51.62 47.24 48.98 48.78 46.52 55.92 45.44
Ours 21.28 35.02 21.47 29.88 27.64 24.22 35.93 24.07

Methods wrestling soccer baseball basketball american
football golf average

Zhao et al. [4] 84.59 78.02 92.78 72.90 105.01 67.98 79.64
Akada et al. [1] 74.57 71.44 82.21 62.54 84.99 63.42 72.82
Baseline 56.01 49.55 59.51 45.32 62.62 47.67 52.23
Ours 31.56 27.26 37.42 29.27 49.17 24.88 30.53

Table 10. Quantitative evaluation of device-relative 3D pose estimation on the UnrealEgo2 test split based on the 30 motion categories [1]
(MPJPE with mm-scale), with training on UnrealEgo2.
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Stereo inputs 2D joint heatmap prediction 3D-to-2D pose reprojection 3D pose estimation

Figure 9. Visualization of outputs from our model on UnrealEgo2 (above) and UnrealEgo-RW (below). 3D pose estimation and ground
truth are displayed in red and green, respectively. For UnrealEgo-RW, we show ground-truth scene meshes for visualization in the right
column.
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F. Quantitative Results per Motion Category
Following the 30 motion categories proposed in Un-
realEgo [1], we report the quantitative results for each mo-
tion type. Tables 9 and 10 summarise the metrics for device-
relative 3D pose estimation on the UnrealEgo [1] and Un-
realEgo2 test splits, respectively. The numbers demonstrate
that our method outperforms the compared methods across
all of the motion categories by a large margin. Another ob-
servation is that the 3D pose estimation for some complex
motion types, such as crawling, shows relatively high 3D
errors. This is mainly because of severe self-occlusions in
all input frames in these scenarios. These results suggest
possible future research directions in stereo egocentric 3D
human pose estimation, such as adding motion priors to de-
velop methods that are more robust to the occlusions.

G. Additional Visualization
We provide additional qualitative results of our method in
Fig. 9, including 2D heatmaps, 3D-to-2D pose reprojections
and the estimated 3D poses. Please also watch our supple-
mentary video for dynamic visualizations of the proposed
datasets as well as more qualitative results.

H. Limitations and Future Work
Our framework adopts SfM, which makes it difficult to
achieve real-time inference. One solution could be to re-
place the SfM with a deep-learning approach as shown
in [3] although this requires ground-truth depth maps of
egocentric views for training. Furthermore, introducing ad-
ditional exocentric cameras can effectively solve the self-
occlusion of egocentric views. Thus, future work could fo-
cus on improving these aspects.
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