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1. Overview
Due to the space limitation in the main paper, we provide
a brief intro to MAML, details of the affine regression net-
work, metric details, implementation details, ablation stud-
ies, further results, and user study results in this supplemen-
tal.

2. A brief intro to MAML
The task of adapting model parameters to a unique task
with only a few examples present is achieved with the help
of meta-learning. The method proposed by [3] (termed
MAML) achieves this with few gradient updates by instill-
ing a sense of adaptability to various task data in model pa-
rameters through meta-training. In short, MAML searches
for parameters that are sensitive to change and uses them
as a reliable initialization. Doing so allows the model to
be adapted quickly in a few updates. A brief intro to the
mathematical formulation of MAML is provided below.

MAML operates under the assumption of a task distribu-
tion, denoted as p(T ). The primary objective of MAML is
to learn initialization parameters that encapsulate the under-
lying knowledge shared across various tasks present in the
distribution.

In a typical k-shot learning scenario, each task T i ∼
p(T ) is associated with a set of k examples, represented as
DT i. These examples, along with their corresponding ob-
jective function LTi

, serve as an approximate representation
of the task. MAML adapts its model to each task through a
fine-tuning process, which involves updating the parameters
as follows:

θ′i = θ − α∇θLTi(fθ). (1)

Once the model is adapted to a particular task Ti, new ex-
amples D′

Ti
are sampled from the same task to evaluate the

model’s generalization performance on unseen data. This
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evaluation process acts as feedback for MAML, enabling it
to adjust its initialization parameters to achieve improved
generalization across tasks:

θ ← θ − β∇θ

∑
Ti

LTi
(fθ′

i
). (2)

Eq. 1 guides the inner loop optimization whereas, Eq. 2
guides the outer loop optimization. For brevity, we will use
LTin

, for inner loop loss and LTout
for outer loop losses for

our formulation. Please refer to the original paper [3] for an
in-depth explanation of this formulation.

3. Affine regression network
For the purpose of rigid affine estimation, we trained a sepa-
rate network trained with the help of randomly transformed
images. The network consists of an encoder-decoder ar-
chitecture with a fully connected head that regresses rota-
tion and translation parameters from the input global opti-
cal flow (as presented in [4]) (FI→I′ ) estimated from input
images I and a transformed image I ′. Their proposed flow
estimation network employs knowledge distillation to fine-
tune a PWC-Net [9] to estimate the global optical flow of
dynamic scenes. We utilize their global flownet instead of
a conventional optical flow estimation network as it masks
out the dynamic objects from the evaluated flow which aids
the proposed affine estimation network to focus on global
transforms in a video rather than local transforms and it is
also robust against augments like cropped regions as high-
lighted in Fig. 1. The proposed affine transform estimation
network contains fully connected layers, due to these lay-
ers, the FI→I′ is downscaled to a resolution of 64×64. The
proposed network regresses the rigid affine parameters as
follows:

Â =

cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1

 = hϕ(FI→I′). (3)
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Figure 1. Comparison of conventional and global optical flow.
Optical flow estimated from RAFT [10] (bottom left) and Global
Optical Flow estimated with [4] (bottom right). Global optical
flow, in addition to masking the dynamic objects, also fills in the
gaps near the frame boundaries.

Here, the estimated rigid-affine transform is denoted by
Â, hϕ is the proposed affine estimation network, θ and
(x, y) are rotation and translation components, respectively.
The proposed affine estimation network is trained with an
affine loss and a pixel loss defined below.

Laffine =
∥∥∥A− Â∥∥∥2

2
, (4)

Lpixel =
∥∥∥I − w(I ′, Â)

∥∥∥2
2
. (5)

For the affine loss (Eq. 4), A denotes the ground truth
rotation and translation components of the random affine
transform, and for the pixel loss (Eq. 5), w(·) denotes the
warping operator which warps the transformed frame I ′ to-
wards its untransformed counterpart I . Both of these losses
are used in the training of the proposed affine estimation
network. The training of this model converged in nearly
∼40K optimization iterations. After the convergence, this
network was used as a stability guide for the inner loop loss
proposed in the main manuscript.

4. Metric details
There are three primary metrics to evaluate the performance
of video stabilization namely, Stability, Cropping, and Dis-
tortion. We provide the implementation details of these
metrics below:

Stability This metric characterizes stability through fre-
quency component analysis. The metric is computed by an-
alyzing feature trajectories in the frequency domain using
the equation:

fv = FFT (V ), (6)

where fv denotes the frequency representation of both
translational and rotational camera trajectories of the V . fv
is obtained by performing a discrete 1D Fourier Transform
on V . After subtracting the direct current (DC) compo-
nent from fv , the stability score is determined following the
guidelines of [11], as follows:

S =

6∑
n=2

fv(n)/

N∑
n=2

fv(n), (7)

where S signifies the stability score for both translational
and rotational motions, and N denotes the total frequency
components present in the signal.

Cropping This metric quantifies the preservation of vi-
sual information within generated frames by computing the
homography between these frames and the actual frames.
The cropping ratio metric is derived by calculating the aver-
age scale component of the estimated homographies across
the entire video.

Distortion This metric assesses the anisotropic homogra-
phy between the produced frames and the original unstable
frames. The computation of this metric involves the ratio
of the two largest eigenvalues from the affine component
of the estimated homography. The distortion value metric
is then determined by selecting the lowest ratio among all
homographies corresponding to the frames.

5. Implementation details
For our experiments, we use the models proposed in [1, 2]
as baselines. We initialize the models with the pre-trained
model parameters provided by the authors and meta-train
these models according to the training algorithm provided
in the main paper. The dataset used in our experiments is
DeepStab dataset [11]. The proposed algorithm was im-
plemented with the help of “Higher” framework for meta-
learning [5]. The optimizers used (for both inner and outer
loop optimization) were Adam [7]. The number of inner
loop updates m was fixed to 1 for the meta-training of both
the baseline models due to memory limitations. The patch
size for sampled sequences for meta-training of both base-
line models was fixed to 192×192 for the inner loop update,
and for the outer loop update, it was increased to 320×320.

In order to manage the resources during test-time adap-
tation, we sample sequential patches of 320× 320 from the
sampled short sequences for adaptation. In our experiments,
we observed that a bigger patch size during adaptation leads
to better results but can be computationally expensive we
can however overcome this by increasing the number of
adaptation iterations.

During our experimentation phase, we observed that a
careful selection of these patches for adaptation (for m ≥ 5)



near the four edges and center of the frames can potentially
lead to better results. As in the case of pure rotation, the
highest jerk effect is seen near the far edges of the frames,
whereas, in the case of pure translation, the jerk in each of
the patches from these locations will be similar in magni-
tude.

It is worth mentioning that the piece-wise adaptation
strategy of sampling and stabilizing short sequences can be
further improved by pre-stabilizing the videos to build a
stronger temporal connection but it requires complex pre-
processing for evaluating rigid transforms between each
successive frame and stabilizing the evaluated transforms
using various smoothing techniques like savitzky-golay fil-
tering with appropriate window sizes and degree for pre-
stabilizing each video as the proposed aligning strategy
works well for short sequences but it might face challenges
in longer sequences with significant content change. Due to
this limitation, we used a piece-wise strategy for our fast-
adaptation algorithm.

The videos used for evaluating both the quantitative and
qualitative results are taken from the NUS dataset [8]. The
meta-training of both models converged in roughly 5000
meta-training iterations. The code and the meta-trained
models will be made available on: https://github.
com/MKashifAli/MetaVideoStab.

6. Further results
Due to the space limitation in the main paper, we present the
expanded view of the baseline comparative results (Fig. 2)
along with cropping (Tab. 1) and distortion metrics (Tab. 2),
and the run-time comparison of the proposed algorithm in
this section.

Table 1. Quantitative comparison of adapted models against
baselines. This table presents the comparison of the cropping
score of baseline models with their scene-adaptive variants. The
subscript shows the number of sequences sampled for adaptation
and the superscript denotes the adaptation number. This table
highlights that despite consistently increasing the stability score,
we see a minor decrease in the cropping value with increasing
adaptation iterations.

Model
Cropping

Crowd Parallax Regular Running Quick Rot Zoom

DMBVS
Baseline 0.9998 0.9997 0.9997 0.9993 0.9995 0.9990
Adapt(1)

100 0.9988 0.9979 0.9995 0.9989 0.9961 0.9984
Adapt(5)

100 0.9985 0.9964 0.9992 0.9965 0.9949 0.9978

DIFRINT
Baseline 0.9997 0.9989 0.9992 0.9988 0.9998 0.9998
Adapt(1)

100 0.9996 0.9996 0.9996 0.9986 0.9989 0.9997
Adapt(5)

100 0.9997 0.9997 0.9996 0.9987 0.9992 0.9996

6.1. User study

It is important to mention that the metrics discussed in the
main paper and in this supplemental, have individual limi-

Table 2. Quantitative comparison of adapted models against
baselines. This table presents the comparison of the distortion
score of baseline models with their scene-adaptive variants. The
subscript shows the number of sequences sampled for adaptation
and the superscript denotes the adaptation number. This table
highlights that despite consistently increasing the stability score,
the quality of the processed videos is not compromised even with
a higher number of adaptation iterations.

Model
Distortion

Crowd Parallax Regular Running Quick Rot Zoom

DMBVS
Baseline 0.9794 0.9659 0.9737 0.9063 0.8772 0.9108
Adapt(1)

100 0.9321 0.8722 0.9422 0.8251 0.8977 0.9396
Adapt(5)

100 0.9415 0.9370 0.9522 0.9351 0.9302 0.9523

DIFRINT
Baseline 0.9534 0.9544 0.9813 0.9108 0.8847 0.9299
Adapt(1)

100 0.9626 0.9615 0.9878 0.9521 0.9366 0.9542
Adapt(5)

100 0.9616 0.9634 0.9884 0.9541 0.9271 0.9697

tations as they do not encompass all the aspects covered by
one another as pointed out by Ali et al. [1]. Therefore, to
properly assess the models for both perceptual quality and
stability, comprehensive user studies become indispensable
and serve as an essential evaluation metric for this task. We
conducted 3 distinct user studies, one for comparing with
the baselines, one for comparing the recurrent extension of
the model proposed in [1] to its non-recurrent variant, and
another for comparing against the SOTA methods for this
task and present our findings below.

6.1.1 Comparison with baselines

A user study involving 40 participants was conducted to as-
sess the performance of adapted variants compared to base-
line models. The study featured a randomized presenta-
tion of videos, comprising a total of 12 randomly sampled
videos from the NUS dataset processed by both the consid-
ered models (baseline and adapted). Specifically, the par-
ticipants viewed six videos for each model, resulting in a
comprehensive evaluation of adaptation effectiveness. The
study aimed to gauge user preferences with regard to the
stability and qualitative improvement and perceptions re-
garding the adapted variants in comparison to the baseline
models. The findings of the conducted user study are pre-
sented in Fig. 3. On average, 81% of the users preferred the
adapted results produced by the model proposed in [1], and
80% of the users preferred the same for the model proposed
in [2].

6.1.2 Recurrent VS. Non-recurrent

Please note that we also extend the inference strategy of the
model proposed in [1] to a frame recurrent setting in which
the synthesized frames from previous timesteps were used
as inputs for synthesizing current frames. Doing so, with-
out the proposed meta-training, results in wobble artifacts as

https://github.com/MKashifAli/MetaVideoStab
https://github.com/MKashifAli/MetaVideoStab
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Figure 2. Expanded view of qualitative comparison with baselines. This figure presents the qualitative comparison with the baseline
methods. The adapted results are highlighted with a dotted outline. The proposed fast-adaptation not only improves the stability of the
baseline methods but also improves the visual quality of the stabilized videos.
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Figure 3. Baseline VS. Adapted results. This bar chart highlights
the user preferences collected through the conducted user study
concerning the comparison of adapted and baseline variants of the
considered models. A significant majority of the participants pre-
ferred the adapted results for both of the considered models.

presented in the main paper. The affine alignment loss in the
inner loop helps mitigate these distortions as it encourages
the stabilization model to synthesize content with similar
shapes at different spatial locations. The proposed recur-
rence strategy for the model proposed in [1] achieves com-
parable stability but better perceptual quality (especially in
videos where large parallax effects are observed) as com-
pared with its non-recurrent variant (as evident from the re-
sults presented in the supplementary video). A user study
was conducted involving 40 participants to investigate the
impact of processing videos using the recurrent and non-
recurrent adapted variants of this model. During the study,
all the participants were presented with a total of 6 ran-
domly sampled videos that had undergone processing by
these variants. The order of the video presentation was also
randomized to ensure impartial evaluation. The objective
of the study was to gather insights into participant prefer-
ences and perceptions regarding the two processing vari-
ants, shedding light on the effectiveness of the recurrent and
non-recurrent approaches. It is worth mentioning that all the
videos were produced with the same number of adaptation
iterations m = 1 and the same ratio of weights for stability
and quality losses during adaptation for both variants. The
videos processed through the recurrent model (especially in
the “Parallax” and “Zooming” category) were significantly
better in terms of temporal consistency (as evident from the
accompanied supplementary video). We present the find-
ings of the conducted user studies in Fig. 4. On average,
∼80% of the users preferred the videos processed through
the recurrent variant.

6.1.3 Comparison with SOTA

In order to assess the user preference for stability and qual-
ity of videos processed through the adapted models, in com-
parison to the longstanding SOTA methods, we conducted
another user study with the same number of participants to

Recurrent Non-recurrent

Figure 4. Recurrent VS. Non-recurrent This donut chart high-
lights the user preferences results of the conducted user study
concerning the recurrent and non-recurrent variant of the model
proposed in [1]. A majority of the participants preferred the re-
sults produced by the recurrent variant. Please note that these re-
sults were produced with the same hyperparameters and number
of adaptation iterations.

Bundled L1 DMBVS  Adapt                                 DIFRINT  AdaptDMBVS   Adapt

Figure 5. Comprehensive user study. This figure presents the
findings of the comprehensive user study which compared the
videos processed by the longstanding SOTA methods [6, 8] with
the scene adaptive variants of the models proposed in [1, 2].
The majority of the users preferred the videos processed with the
scene-adaptive approaches presented in this study.

comprehensively evaluate various methods for video stabi-
lization. In addition to selecting the preferred video, the
users were also asked to record their reasonings for select-
ing specific videos. The study maintained the same settings,
where participants were shown randomly sampled videos
processed through all the discussed methods presented in
the main paper for a comprehensive comparison.

In total, each participant viewed 9 videos. Through this



study, the aim was to elicit participant feedback and pref-
erences regarding the different video stabilization methods,
thus contributing to a deeper understanding of their compar-
ative effectiveness and potential adaptability. On average,
28% of the users preferred the videos stabilized through
the scene adaptive variant of the model proposed in [2]
and remarked that the videos had smooth transitions and
the content was preserved. On the other hand, ∼25% of
the users selected videos processed with the scene adap-
tive recurrent extension of the model presented in [1] and
∼17% of the users selected the videos processed through
the non-recurrent scene adaptive variant of the model pro-
posed in [1], despite achieving a relatively lower stability
score. When asked, a majority of the users attributed their
preference to the superior quality of these videos. As for the
methods presented in [8] and [6], on average ∼10% of the
users preferred the videos stabilized through the bundled
camera paths method [8] (named Bundled) and ∼17% of
the users selected the videos stabilized through the method
proposed in [6] (termed L1). The majority of the users re-
marked that the videos processed through these methods
(Bundled and L1) compromised the quality of the videos
and contained a significant loss of the original content.
Please note that the comparative video results are also pro-
vided in the accompanied supplementary video.

6.2. Computational complexity

We evaluated the average runtime per frame (640×360) for
each method and summarized the findings in Tab. 3. Please
note that Adapt(∗)100 has the time complexity of O(1) for
videos longer than 100 frames.

DMBVS Runtime (s) DIFRINT Runtime (s)

Baseline 0.2342 Baseline 0.0711
Adapt(1)100 + 0.1733 Adapt(1)100 + 0.0767
Adapt(5)100 + 0.8508 Adapt(5)100 + 0.4188

Finetuning 2.0778 Finetuning 0.8170

Table 3. The presented time for adapted models is the average
overhead time for each adaptation iteration (on video clips with
100 frames). The finetuning time varies with the number of frames
and is average over 1000 frames. Please note that the ”+” in front
of the adaptation time highlights the additional time required for
adaptation over the normal inference time.

Please note that the average adaptation overhead is for
DMBVS [1] for Adapt(1)100 is lower than the inference time
because the adaptation is conducted on patches of 320×320
from the video which has a spatial resolution of 640× 320.
Also please note that the presented results for the adapted
methods are overhead results excluding the inference time
of these models.

7. Limitations and Future work
While our proposed algorithm demonstrates promising im-
provements in terms of stability and quality of the full-
frame video stabilization methods, certain limitations ex-
ist. Notably, the dependence of the DIFRINT [2] model on
optical flow estimation can introduce occasional temporal
artifacts in scenarios involving occlusion and disocclusion.
Nevertheless, it is noteworthy that the adaptation stages sig-
nificantly mitigate the frequency of occurrence of these arti-
facts, enhancing the overall quality of results as compared to
their baseline methods. Similarly, the DMBVS [1] model,
while effective, necessitates a substantial number of adap-
tation iterations to achieve further improvements in the sta-
bility score. Addressing these limitations holds great poten-
tial for future work, enabling expedited processing and en-
hanced results. Another potential for faster adaptation could
be the integration of a key-jerk localization module which
can find the most unstable sequences from the video under
consideration, offering the potential to streamline and accel-
erate the adaptation process, thus advancing the robustness
and efficiency of the proposed algorithm.

8. Supplementary video
We provide the comparative qualitative results of all the
methods discussed in the main paper in the accompanied
supplementary video and kindly request the reviewers to ac-
cess it through a third-party media player like VLC. Due to
the size limitation of the supplementary materials, the video
was compiled on 1280×720, please use an appropriate win-
dow size to avoid unintentional artifacts or blur. We humbly
apologize for any inconvenience that this may cause.
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