Seeing the World through Your Eyes
Supplementary Materials

A. Details on Real Experiments
A.1. Sample input images for the method

The input to our method is a sequence of images captured
by a static camera of a moving person that moves within
the camera field of view. The views of the moving head
essentially provide us with multi-view observations of what
the person is looking at that we can leverage to reconstruct
the observed scene. In Figures 3 and 4, we show the entire
sequence of images used to reconstruct the object of interest
and the recovered texture and reconstructed view. In Figure
6, we also visualize how the estimated eye poses change
after the eye-pose optimization process. Note that while we
also optimize the rotation/orientation of each eye, we only
visualize the optimized translations.

A.2. Qualitative analysis of radial loss

Separating the iris texture and the reflected scene by jointly
optimizing a 2D texture field and 3D radiance field of the
scene can be ill-posed for textureless regions that have no
motion across all captured images. As a result, some re-
gions of the scene can get absorbed into the 2D texture field.
However, one observation to make is that the eye colors are
rotationally consistent, as shown in Figure 1b, by visualiz-
ing the extracted texture in polar coordinates. To alleviate
the issue, we use this observation to penalize regions that
violate the rotational consistency (as stated in Eq. 5 of the
main paper). In Figure lc, we show what regions in the
extracted texture are penalized and show that it consistently
prevents the scene regions from being absorbed into the tex-
ture.

A.3. Capture setup of controlled results

We tested our method with different illuminations and cap-
ture setups. For the structured captures, we use two external
area lights facing the objects of interest to enhance the re-
flection off the user’s eyes, as shown in Figure 2. We used
this setup to validate and test our method. We also show
results on unstructured captures of indoor and outdoor en-
vironments in Figure 9 of the main paper.

A 4. Effects of eye disease on reconstruction

Our method relies on healthy humans having the same
cornea shape. However, eye diseases can affect the cornea
shape. For example, Keratoconus is a condition in which the
cornea bulges outward into a cone shape. To analyze the ef-
fects of such eye disease, we captured a sequence of images
of a person with Keratoconus, as well as control capture
where the user is wearing corrective contacts that mimic the
shape of a healthy cornea. In Figure 7 we show that Kerato-
conus affects the shape of the reflected object, as we can see
that the reflected objects are vertically compressed. Note
that despite the cornea shape not matching our model of the
cornea accurately, we can still recover the reflected object.
We hypothesize that this is due to the eye-pose optimizer,
as it has degrees of freedom to ensure the consistency of the
reflected views and the 3D reconstruction despite the error
in the reflected ray directions and origins, which shows that
our method can be robust to minor errors in the eye geome-
try.

A.5. Depth results

Even though we only have a monocular camera in our cap-
ture setup, the views we get from the eye reflections make
it effectively multi-camera setup. As a result, we can also
get an estimated depth map from the radiance field recon-
struction. In Figure 5, we show the disparity we get from an
unstructured capture of office space as well as the disparity
of an object placed in front of the user. Note that since we
have an estimate of the eye location in 3D space, this could
be a promising approach to obtaining metric depth with a
monocular view by observing moving heads.

B. Additional Synthetic Results
B.1. Additional qualitative results

In Figure 8, we show additional results on novel view syn-
thesis in simulated environments as well as sample corneas
used in the input.

B.2. Pose optimization ablation

In Figure 9, we show how different noise levels affect the re-
construction quality. Note that while noisy poses can signif-
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Figure 2. Capture setup. We illuminate the objects of interest
with two area lights to ensure that sufficient amount of light is
reflected off the eyes.

icantly affect the reconstruction when not using our cornea
pose optimizer, the reconstruction result is not visibly af-
fected when using the pose optimization. Additionally, we
directly visualize the effect of our pose optimizer on depth
errors in the poses in 3D in Figure 10. We do not visualize
X/Y axis or rotation errors in the same way because a sim-
ilar percentage of eye center estimation error (which leads

50

radius (px)
(b) Polar coords.

(c) Penalized regions

Figure 1. Texture analysis. When attempting to sepearte the iris texture from the scene by simply jointly training a radiance field and a
texture field, regions of the scene can be absorbed into the iris texture (as shown in (a)). When rewarping the extracted texture into polar
coordinates (b), we observe that the iris regions are generally consistent in color for the different radii, unlike the scene regions absorved
into the eye. With the radial regularization loss (see Eq. 5 in the main paper), we penalize regions that deviate by a standard deviation in
color from the 10th and 90th percentile colors in the radius they are located in. In (c) we show that the penalized regions indeed penalize
regions that are absorbed from the scene into the iris texture.

to XY error) as iris radius estimation error (which leads to
depth error) results in less change in X/Y value than in Z
value and small rotations are difficult to see in this kind of
3D visualization.

B.3. Texture decomposition ablation

Because of the iris texture in the eye observation, without
an explicit texture decomposition, the radiance field must
compensate by explicitly modeling the iris in the scene. As
a result, the novel views rendered are a mix of the scene and
the iris texture, as shown in Figure 11. By jointly training
the radiance field and texture field, we can recover clean
views of the scene.



Input frames and eye crops

Recovered texture Reconstructed view

Figure 3. Full input. Example of a full input for our method, and the reconstructed view rendered from the radiance field alongside the
recovered texture.
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Figure 4. Full input. Example of a full input for our method, and the reconstructed view rendered from the radiance field alongside the
recovered texture. We brighten the iris texture on the right to assist with visualizing the recovered content only.
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Figure 5. Depth recovery. Since we have multiple views of the
scene through the person’s moving eyes, we can get the depth of
the scene using a static monocular camera.
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Figure 6. Poses visualization. we visualize the initial estimated
location of the user’s eyes against the optimized poses.



Input frame Reconstruction
Without corrective lenses

Input frame Reconstruction
With corrective lenses

Figure 7. Effects of eye disease. We ran our method with a user
who suffers from Keratoconus, an eye disease that distorts the
shape of the cornea. Notice that the reflection in the input frame is
visibly distorted—vertically compressed by a severe astigmatism.
When using our method, we recover a distorted version of the re-
flected object, indicating that the pose optimization compensates
for the inconsistency in eye topology across users.
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Figure 8. Qualitative synthetic results. We show that our method can achieve reasonable radiance field reconstructions suitable for novel
view synthesis from challenging measurements in simulation by visualizing the rendered views at two different eye locations facing the
scene.
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Figure 9. Synthetic pose optimization ablation. In simulation, the cornea pose optimization refines the noisy initial poses and results in
clearer reconstruction.
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Figure 10. Synthetic pose optimization visualization. We directly visualize the effect that the pose optimization has on errors on in the z
(depth) direction. Our implementation of pose optimization succeeds in fixing all errors up to moderate pose noise

Without iris field With iris field

Figure 11. Texture decomposition and novel view synthesis. Without the texture decomposition, the novel view rendering is an overlay
of the iris texture and the scene, but the texture decomposition helps us avoid the iris floaters. We rescale the output color channels for
clarity.
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