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Abstract

Learning representations to capture the very fundamental
understanding of the world is a key challenge in machine
learning. The hierarchical structure of explanatory factors
hidden in data is such a general representation and could be
potentially achieved with a hierarchical VAE. However, train-
ing a hierarchical VAE always suffers from the “posterior
collapse”, where the data information is hard to propagate
to the higher-level latent variables, hence resulting in a bad
hierarchical representation. To address this issue, we first an-
alyze the shortcomings of existing methods for mitigating the
posterior collapse from an information theory perspective,
then highlight the necessity of regularization for explicitly
propagating data information to higher-level latent variables
while maintaining the dependency between different levels.
This naturally leads to formulating the inference of the hi-
erarchical latent representation as a sequential decision
process, which could benefit from applying reinforcement
learning (RL). Aligning RL’s objective with the regulariza-
tion, we first introduce a skip-generative path to acquire
a reward for evaluating the information content of an in-
ferred latent representation, and then the developed Q-value
function based on it could have a consistent optimization
direction of the regularization. Finally, policy gradient, one
of the typical RL methods, is employed to train a hierarchical
VAE without introducing a gradient estimator. Experimental
results firmly support our analysis and demonstrate that our
proposed method effectively mitigates the posterior collapse
issue, learns an informative hierarchy, acquires explainable
latent representations, and significantly outperforms other
hierarchical VAE-based methods in downstream tasks.

1. Introduction
Deriving meaningful representations of data with mini-
mal supervision is a central challenge in machine learn-
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Figure 1. Visualization of different levels’ latent representations of
hierarchical VAEs on FashinMNIST and CelebA [53] to demon-
strate the learned hierarchical structure. HVAE fails to learn a
5-level hierarchy, where higher-level latent representations display
posterior collapse, collapsing into the same modes of “clothing”
and “female faces” regardless of the input. For IVAE, reconstruc-
tions of certain consecutive layers appear highly similar, suggesting
a disrupted hierarchy. In contrast, our method preserves detailed
information of inputs at low levels and captures increasingly ab-
stract semantics at higher levels, mitigating posterior collapse and
establishing an informative hierarchy.

ing [5], while existing research has predominantly concen-
trated on the discriminative approach [10] that relies on
meticulously crafted preprocessing pipelines like pretext
tasks [22, 30, 62, 65, 95] and data augmentations [3, 59].
Methods such as contrastive learning [8, 9, 11, 12, 14–
16, 27, 29, 32, 34, 36, 49, 87, 97, 98] exemplify the success
of this discriminative approach. However, representations
derived from these methods are only limited to tasks invari-
ant to the preprocessing pipelines [24], e.g. representations
learned with the random cropping data augmentation cannot
be applied to pixel-level localization tasks [83, 84], limit-
ing their broader applicability. To transcend these confines,
Bengio et al. [5] advocate for the pursuit of a universal and
fundamental understanding of the world-a “general-purpose
prior”-enabling the direct learning of representations with-
out prior knowledge or assumptions about downstream tasks.
Such representations could be learned by generative ap-
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Figure 2. Absolute Pearson’s correlation between data represen-
tations of the inference network of a hierarchical VAE trained on
FashionMNIST and another trained on MNIST [48], given the same
data point from FashionMNIST. Our method enables the model to
learn low-level information shared on different datasets and high-
level semantic information in a hierarchical manner.

proaches [47, 79], which utilize a deep generative model
[21, 31, 40, 43, 68, 81] to capture the posterior distribution
of the underlying explanatory factors in the observed data,
i.e., the general-purpose prior, such as the hierarchical struc-
ture [76, 85, 86], disentanglement [38], and temporal and
spatial coherence [71]. In this work, we focus on one specific
aspect of this general-purpose prior, the hierarchical struc-
ture of data, which could be potentially achieved by learning
a hierarchy of multi-level abstract latent representations with
a hierarchical VAE [5, 79].

However, actualizing a meaningful hierarchical structure
with a hierarchical VAE faces a considerable issue named
“posterior collapse” [51, 57, 76], where the data informa-
tion fails to be propagated to higher-level latent variables.
Specifically, their posterior distribution qϕ(z∣x) would be
equal to an uninformative prior distribution p(z) [13, 51, 82],
undermining hierarchical VAEs’ capability to capture mean-
ingful representations. Existing literature proposing mitiga-
tion approaches for posterior collapse mainly focuses on
two aspects: the limited capacity of the model architecture
[19, 20, 57, 67, 76, 80] and the improper training objective
[20, 41, 51, 70, 88]. However, our theoretical analysis from
the perspective of information theory [18] presented in Sec-
tion 3.1 suggests that current methodologies focusing on
model architectures fail to explicitly enforce regularization
on the inference of higher-level latent variables, where pos-
terior collapse may still occur; and approaches targeting
training objectives might disrupt the hierarchical dependen-
cies between latent variables, compromising the model’s
structural integrity. Experimental results for better under-
standing can be seen in Figs. 1 and 2. These limitations
contribute to the significant lag in the quality and perfor-
mance of learned representation using hierarchical VAEs
and have resulted in their limited adoption in representation
learning tasks recently [47, 79].

To tackle the issue of posterior collapse that hinders
acquiring an informative hierarchical latent representation,
where different levels’ latent representations are inferred
sequentially from inputs and high-level latent representa-
tions are reliant on the abstraction of low-level ones, it is
imperative to consider not only the information content of
an inferred single-level latent variable but also its impact on
subsequent, higher-level latent variables. This naturally in-
spires us to formulate the inference of the hierarchical latent

representation as a sequential decision process. Inspired by
the huge success of reinforcement learning (RL) in learning
a high-quality sequence, we tried to apply RL to the learning
of a hierarchical VAE for a better hierarchical latent repre-
sentation. Please note that although some methods have also
successfully introduced RL into tasks related to generative
models [6, 50, 94], none of these methods can be directly
applied to train a hierarchical VAE with a focus on learn-
ing informative hierarchical latent presentations. A detailed
discussion can be found in Appendix A.3.

Overall, the contribution of this work could be summa-
rized as follows:
• We highlight limitations of existing approaches of address-

ing posterior collapse for an informative hierarchical latent
representation from an information theory perspective and
appeal for more effective regularization of the inference
process to explicitly propagate data information to higher-
level latent variables and maintain the dependency between
different levels .To our knowledge, this work is the first
to conceptualize the hierarchical VAE’s inference as a se-
quential decision process and employ an RL approach,
specifically policy gradient, to regularize this process. Our
method is broadly applicable to both primary types of
hierarchical VAEs: top-down and bottom-up structures;

• Technically, we set up an RL formulation tailored to hierar-
chical VAEs training, notably with a skip-generative path
that skips its lower levels’ latent variables by marginaliza-
tion to acquire a reward assessing the information content
of the inferred latent variables without introducing addi-
tional networks or modules; then, the Q-value function
developed based on it could have a consistent optimization
direction of the regularization;

• Experiments demonstrate the mitigation of the posterior
collpase, learned informative hierarchy, explanation abil-
ity of latent representations, and superior performance in
VAE-based representation learning tasks.

2. Preliminaries

2.1. Hierarchical Variational Autoencoder

An L-layer hierarchical VAE is an extension of the vanilla
VAE [43, 68], where the generative process is extended
to multi-step generation, formulated as pθ(x,z1∶L) =
pθ(x∣z1)pθ(zL)∏

L−1
l=1 pθ(zl∣zl+1). The pθ(zL) is typically

modeled as a multivariate Gaussian distributionN (0, I) and
θ represents the parameters of the decoder. The inference
process of hierarchical VAEs could be implemented in two
main approaches, bottom-up (BU) and top-down (TD):

BU: qϕ(z∣x) = qϕ(z1∣x)∏
L

l=2 qϕ(zl∣zl−1,x), (1)

TD: qϕ(z∣x) = qϕ(zL∣x)∏
2

l=L qϕ(zl−1∣zl,x), (2)
where ϕ represents the parameters of the encoder. We
provide a demonstration of these processes in Fig. 3. As
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Figure 3. Probabilistic graphical illustration of VAE and hierarchi-
cal VAE during inference and generation. Solid lines (→) denote
inference while dashed lines (⇢) denote generation.

the inference process is to produce a sequence of latent
variables step by step, we denote a hierarchy z1∶T =

{z1, ...,zt, ...,zT }, where T = L. In BU inference scheme,
z1∶T = {z1, ...,zt, ...,zL}; in TD inference scheme, z1∶T =
{zL, ...,zt, ...,z1}. For brevity, we use z to represent z1∶T

in the following parts. Additionally, we introduce j for rep-
resenting the lower level variable zj w.r.t. zt defined by

j =

⎧⎪⎪
⎨
⎪⎪⎩

t − 1, in BU hierarchical VAE,
T − t, in TD hierarchical VAE.

(3)

The training objective of a hierarchical VAE is to maxi-
mize the variational evidence lower bound (ELBO), denoted
asLx, of the training data’s marginal log-likelihood log p(x)
by jointly updating the parameters θ and ϕ, expressed as:
Lx = log p(x) −DKL[qϕ(z∣x)∣∣pθ(z∣x)] (4)
= Ez∼qϕ(z∣x)[log pθ(x∣z)] −DKL[qϕ(z∣x)∣∣p(z)],

where DKL(⋅∣∣⋅) refers to the Kullback–Leibler (KL)
divergence. Defining qϕ(z1∣z0,x) ∶= qϕ(z1∣x) and
pθ(zL∣zL+1) ∶= pθ(zL), for BU and TD hierarchical VAEs,
the respective detailed expressions of their ELBOs are:

BU: Lx = Eqϕ(z∣x)[log pθ(x∣z1)] (5)

−∑
L

l=1DKL[(qϕ(zl∣zl−1,x)∣∣pθ(zl∣zl+1))],

TD: Lx = Eqϕ(z∣x)[log pθ(x∣z1)] (6)

−∑
L

l=1DKL[(qϕ(zl∣zl+1,x)∣∣pθ(zl∣zl+1))].

After convergence, we could extract level l’s latent rep-
resentation by the maximum a posteriori (MAP) estima-

tion of the learned latent variables zl, defined as z∗l =
argmaxzl

qϕ(zl∣x) [5, 43].
However, training hierarchical VAEs often suffers from

the issue known as posterior collapse, which can be formally
defined as follows.

Definition 1 (posterior collapse [7, 13, 82, 88]). Given a
hierarchical VAE p(x,z; θ, ϕ), paramters’ value ϕ = ϕ̂, θ =
θ̂, and for any data x in a dataset Dx = {x1,x2, ..,xN}, the
posterior of inference step t’s latent variable zt collapses if

qϕ(z
t
∣zt−1,x; ϕ̂) = pθ(z

t
∣zj+2; θ̂),∀x ∈ Dx. (7)

The posterior collapse issue mainly occurs in higher-
level latent variables of hierarchical VAEs. Stochastic latent
variables z can be manually divided into lower-level vari-
ables, z<k = {z1, ...,zk−1} and higher-level ones, z≥k =
{zk, ...,zL} where k ∈ {2, ..., L}. Though z<k may not suf-
fer from posterior collapse that could encode sufficient in-
formation to reconstruct the inputs well, the corresponding
high-level stochastic latent variables z≥k could be inclined to
collapse into priors, i.e., qϕ(z≥k ∣x) ≈ pθ(z≥k). An illustra-
tion can be seen in Fig. 1. Consequently, these higher-level
posteriors will hold limited relevance to its input x, resulting
in non-informative representations.

2.2. Reinforcement Learning

We consider a standard RL setup in continuous action space
and discrete timesteps, formalized as a Markov decision pro-
cess (MDP) defined by a tuple ⟨S,A, P, r⟩ [33, 52, 72, 94].
Here, the state space S and action space A are continuous,
the state transition probability function P ∶ S ×A→∆(S)
represents the probability density of the next state st+1 ∈ S
given the current state st ∈ S and action at ∈ A, and
r ∶ S×A→ R denotes the reward function on each transition.

At each time step t ∈ {1,2, ..., T}, an agent observes a
state st ∈ S, takes an action at ∈ A, and receives a scalar
reward rt ∶ S ×A → R . The state st could be described in
various ways, such as the entire history of the observations
st = (o1, ..., ot) [94] or only the current observation st =
ot [33]. An agent’s behavior could be defined by a policy
π(at∣st), which maps states to a probability distribution
over actions. The return at time step t is defined as the sum
of the discounted future reward Rt = ∑

T
i=t γ

(i−t)r(si, ai)
with a discount factor γ ∈ (0,1). The expectation of the
return could be flexibly formulated by the Q-value function
Qπ(st, at) after taking an action at in state st and thereafter
following policy π:

Qπ(st, at) =Esi>t∼P,ai>t∼π[Rt∣st, at]
=r(st, at) + γEst+1∼P,at∼π[Q

π(st+1, at+1)],
(8)

which not only considers the reward of the action to be taken
on the current state but also its effect on the future decision
process. Let us assume that drawing from at ∼ π(at∣st) can



be realized with reparameterization as at = f(st, ϵt), ϵt ∼
p(ϵ). We could directly apply the policy gradient method
[52, 78, 94] on the model parameters Θ with gradient ascent
to maximize the Qπ(st, at) at a time step t:

Θ← Θ +∇ΘQ
π
(st, at). (9)

We sum all time step t’s policy gradient together to represent
the optimization direction ∇ΘJ of the RL, expressed as

∇ΘJ ≃∑
T

t=1Est∼P,ϵt∼p(ϵ)∇ΘQ
π
(st, at), at = f(st, ϵt).

(10)

For the discussion on Related Works, we move it to
Appendix A.

3. Improving Unsupervised Hierarchical
Representation with RL

We first provide an analysis of the existing two major ap-
proaches mitigating posterior collapse for learning a hier-
archical representation with a hierarchical VAE. However,
we found that they either lack regularization for propagating
data information to higher-level latent variables or break the
dependency between different levels’ latent variables. There-
fore, to address these drawbacks, a better training objective
from the perspective of information theory could naturally
lead to an RL scheme with a proper design of the Q-value
function as the regularization of latent representations. Fi-
nally, we develop an RL training scheme with the policy
gradient method to train a hierarchical VAE.

3.1. Analysis of Representation Learning with
Hierarchical VAEs

The aim of representation learning with a hierarchical VAE is
to learn a hierarchy of latent variables z that could represent
the input data x. We begin with rethinking how different
approaches are affecting the representation learning with
a hierarchical VAE. We first rewrite the ELBO from an
information theory standpoint [18]:
Ex∼p(x)[ELBO(x)]
=Ex∼p(x)[Ez∼qϕ(z∣x) log pθ(x∣z1)] − Ex∼p(x)[DKL(qϕ(z∣x)∣∣p(z))]
=Ip,q(x,z1) − Iq(x,z1) −DKL(q(z)∣∣p(z)) −Hp(x),

(11)
where the mutual information between x and z under differ-
ent distribution is defined by

Ip,q(x,z1) = Ep(x)qϕ(z1∣x)[log
p(x,z1)

p(x)q(z1)
] (12)

= Ep(x)qϕ(z1∣x)[log pθ(x∣z1)] −Ep(x)[log p(x)],

Iq(x,z1) = Eq(x)qϕ(z1∣x)[log
q(x,z1)

q(x)q(z1)
] (13)

= Eq(x)qϕ(z1∣x)[log qϕ(x∣z1)] −Eq(x)[log q(x)],

where q(x) is the training data’s distribution and it is
assumed to be equal to the true data distribution p(x);

pθ(x∣z1) and qϕ(x∣z1) could be expressed by

pθ(x∣z1) =
pθ(z1∣x)p(x)

q(z1)
(14)

qϕ(x∣z1) =
qϕ(z1∣x)q(x)

q(z1)
≃
qϕ(z1∣x)p(x)

q(z1)
. (15)

Thus, the target of the ELBO in Eq. 11 effectively becomes
minimizing the gap between the bottom-most latent vari-
able’s posterior qϕ(z1∣x) and its corresponding true poste-
rior pθ(z1∣x) and meanwhile the posterior of higher-level
latent variables {zl}l=1∶L are trained to be close to their re-
spective priors by the DKL[q(z)∣∣p(z)] term.

Since the latent variables above z1 do not receive direct
regularization to maximize I(x,zl), l > 1, it could poten-
tially lead to the posterior collapse phenomenon. There-
fore, approaches that only modify the model structure
[25, 57, 76, 80] still do not impose additional regulariza-
tion to higher-level latent variables in the training objective,
where the posterior collapse could still occur.

Existing regularization strategies in the literature aim to
refine the posterior distribution in order to cultivate good
representations [41, 51, 54]. These methods typically focus
on the relationship between observed data x and a single-
level latent variable zt, which could be interpreted as an
additional regularization on the ELBO expressed as

Iq(x,z) ≃∑
T

t=1 Iq(x,z
t
). (16)

However, by optimizing all latent variables {zt}t=1∶T with a
shared objective I(x,zt) simultaneously, these approaches
may hurt the hierarchical dependency amongst them. This
is due to the implicit incentive for all latent variables to
assimilate, potentially undermining the hierarchical structure.
Learning to generate a sequence {x,z1, ...,zT } with only
one loss after finishing generating the whole sequence could
also bring the imbalance issue, where the concentration of
optimization to the mediate items is not clear [94]. These
limitations hinder the exploitation of the full capabilities
inherent in hierarchical VAEs.

We leave a detailed discussion for the above two ap-
proaches in Appendix B.

In summary, an effective training scheme should max-
imize the information content hidden in latent variables of
all layers, while maintaining the dependencies among latent
variables. Specifically, the regularization on zt should ac-
count for not only I(x,zt), but also the influence on the
subsequent latent variables I(x,zi∣zi−1), i > t, i.e.,

Iq(x,z
t∶T
) =∑

T

i=t Iq(x,z
i
∣zi−1

). (17)
By incorporating a discount factor γ ∈ (0,1), which allocates
greater weight to the mutual information with proximal latent
variables, the regularization for zt becomes:

LI(x,z
t
) =∑

T

i=t γ
i−t
I(x,zi

∣zi−1
). (18)

Therefore, the optimization direction of learning the se-
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Figure 4. Illustration of modeling the inference process of a hierarchical VAE as a sequential decision process (left) and the details of the
elements of RL st, at, st+1 (right). A reward r(st, at) is derived with the skip-generative path depicted in the gray box.

quence {x,z1, ...,zT } can then be expressed by

∇ϕ,θJ ≃∑
T

t=1Ep(x),qϕ,pθ
∇ϕ,θLI(x,z

t
). (19)

The resemblance of the optimization direction to Eq. 10
naturally leads to formulating the learning of hierarchical
VAE as a sequential decision process, prompting the applica-
tion of RL methods. Particularly, we are driven to develop
a proper Q-value function Q(st, at) to play the role of the
regularization LI(x,zt) to achieve a consistent expression
of the two optimization objectives.

3.2. Training Hierarchical VAEs with RL

Inspired by the tremendous success of RL methods in sta-
bly propagating information along long Markov Decision
chains that maximize the cumulative rewards tallied at ev-
ery step, i.e., the Q-value Qπ(st, at) in Eq. 8, we formulate
the progressive inference process of an L-layer hierarchical
VAEs as an L-step sequential decision process. Specifically,
given an input x from a training set Dx, we need a hierarchi-
cal VAE parameterized with {θ, ϕ} to produce a sequence
Y1∶T = {x,z

1,z2, ...,zT }, T = L.
Now, we can set up the basic elements for training with

RL. At each time step t, the state st is characterized as a
tuple including the observed input and already produced
latent variables z1∶t−1 = {z1, ...,zt−1} up to the step:

st ≜ {x,z
1∶t−1
}, (20)

where s1 = {x}. After receiving a state st, the encoder
qϕ(z∣x) of the hierarchical model acts as the policy network
π(at∣st) to produce the latent variable as an action:

πϕ(at∣st) ≜ qϕ(z
t
∣x,z1∶t−1

) = qϕ(z
t
∣zt−1,x), (21)

at ≜ z
t
∼ qϕ(z

t
∣zt−1,x). (22)

Once executing the at, we will get to the next state according
the state transition probability function P , specified as

P (st+1∣st, at) ≜ (δx, δz1∶t), (23)
which is deterministic and reflects the unchanged observed
data x and the inclusion of new inferred latent variables at
the successor state. δv is a Dirac delta distribution that only
manifests a non-zero impulse at v.

Reward function design. When getting such a transition
{st, at, st+1}, we need to design a reward function r(st, at).
The principle of the design is to evaluate the information
content I(x,zt∣zt−1) hidden in the latent variable zt that
represents the inputs, then we could formulate the Q-value
function to regularize zt by ∑T

i=t I(x,z
i∣zi−1). We design

a reward function r(st, at) to evaluate the information be-
tween x and zt as below:

r(st, at) = Ez∼qϕ(z1∶t ∣x) log pθ(x∣zt) −DKL[qϕ(z1∶t∣x)∣∣p(z1∶t)],
(24)

where pθ(x∣z
t) is a skip-generative path, expressed as

pθ(x∣zt) = ∫
z1∶j

pθ(x∣z1)∏1

i=j pθ(zi∣zi+1),zt ∼ q(zt∣z<t,x),

in which z1∶j are marginalized out by the integral. Kindly
note that the skip-generative path pθ(x∣z

t) is different from
the generative path in vanilla hierarchical VAEs, where
pθ(x∣z

1∶t) = pθ(x∣z1) after observing z1∶t. The r(st, at)
based on the skip-generative path could empirically force
the training on maximizing the mutual information between
x and zt after observing zt−1, expressed by

Ep(x)[r(st, at)] (25)

=Ep(x)q(z1∶t ∣x) log pθ(x∣zt) − Ep(x)DKL[qϕ(z1∶t∣x)∣∣p(z1∶t)]
=Ip,q(x,zt) − Iq(x,z1) −DKL[q(z1∶t)∣∣p(z1∶t)] −Hp(x)

Therefore, as shown in Eq. 25, the reward function r(st, at)
is to evaluate how I(x,zt) is closer or larger than I(x,z1).
Thus, the reward function could be an approximate evalua-
tion of Iq(x,zt∣zt−1) after observing the inferred zt−1, i.e.,
r(st, at) ≃ Iq(x,z

t∣zt−1).

Q-value function. To explicitly add regularization on a
current inferred latent variable zt’s influence on its follow-
ing latent variables z>t, we propose to maximize its corre-
sponding Q-value, which considers not only its own reward
r(st, at), but also the future accumulative rewards, i.e.,
Qπ
(st, at) =r(st, at) + γEπ[Q

π
(st+1, at+1)]

=r(st, at) +Eπ[∑
T

i=t+1 γ
i−tr(si, ai)]. (26)



With the efficient reparameterization trick [43], we could do
a single-sample based Monte Carlos (MC) estimation for
the expectation of the Q-value function, i.e., Qπ(st, at) ≃

∑
T
i=t γ

i−tr(si, ai). Please note that the reward function is
differentiable to the model’s parameters, hence we could
directly use gradient descent method [42, 69] to maximize
the Qπ(st, at), where θ and ϕ are trained simultaneously.

Therefore, at every time step t, maximizing its corre-
sponding Q-value function is approximately maximizing the
mutual information between x and zt and the influence of
the inferred zt in the following latent variables zt+1∶T that
depends on it, expressed as:

Qπ
(st, at) ≃∑

T

i=t γ
i−t
Iq(x,z

i
∣zi−1

) = LI(x,z
t
), (27)

which is consistent with the expression of Eq. 18 and the
analysis in Section 3.1.

Finally, to learn a high-quality sequence {x,z1, ...,zT }

aligning with the optimization direction in Eq. 19, we define
the optimization direction on the Q-value function:

∇θ,ϕJ ≃∑
T

t=1Esi∼P,ai∼π∇θ,ϕQ
π
(st, at). (28)

As at could be obtained by reparameterization and
Qπ(st, at) is differentiable to model parameters, we could
implement the policy gradient by directly maximizing
Qπ(st, at) at every time step t by Eq. 9, thereby eliminat-
ing the need for a gradient estimator like REINFORCE [89]
and avoiding the high variance associated with these esti-
mators [77]. We summarize the overall training scheme in
Algorithm 1.

Algorithm 1 Optimizing a hierarchical VAE with RL.

Input: A training dataset Dx, training hyperparameters;
Output: An L-layer hierarchical VAE parameterized with
an encoder qϕ(z∣x) and a decoder pθ(x∣z);
Initialization: Randomly initialize the parameters θ, ϕ;
for epoch = 1 to max_epochs do

Sample a batch of N training samples xn from Dx;
for time step t = 1 to L do

for i = t to L do
Follow Eq. 22, but with reparameterization, to
sample an action ani ∼ π(a

n
i ∣s

n
i );

Get reward r(sni , a
n
i ) by Eq. 24;

end for
Get Qπ(snt , a

n
t ) ≃ ∑

T
i=t γ

i−tr(sni , a
n
i );

Update θ, ϕ using the policy gradient for the current
time step t by Eq. 9;

end for
end for

4. Experiments
Our experiments engage in comparisons with several hier-
archical VAE variants and various unsupervised methods
to assess if our method of training hierarchical VAEs with
RL yields superior performance in 1) mitigating posterior

collapse at higher latent representations, 2) learning a clear
hierarchical representation, 3) attaining an explainable latent
representation, and more importantly, 4) offering better rep-
resentation than other hierarchical VAE-based unsupervised
learning methods on downstream tasks. Additionally, we
present several ablation studies to further evaluate different
settings’ influence on our method’s performance.

4.1. Experimental Setup

Datasets: Our method is benchmarked on 5 datasets: Fash-
ionMNIST [91], CIFAR10 and CIFAR100 [44], TinyIma-
geNet [46], and STL-10 [17]. Each method is trained using
standard train splits and assessed on corresponding test splits.

Evaluation metrics: For representation evaluation, we fol-
low the commonly adopted downstream linear classification
[5, 39, 63], using a linear support vector machine (SVM)
[37] classifier on representations from frozen models. Clas-
sification accuracy is reported to measure linear separability,
acting as a proxy for mutual information of representations
with the labels. Additionally, we apply the MINE statistics
network [4] to estimate the mutual information Ĩ(x,zL),
between input x and the top latent variable zL.

Baselines: We compare our method with two groups of
baselines: i) those modifying the inference process without
changing the training objective (ELBO); ii) those modifying
the training objective to add more regularization on the in-
ference process. For i, we include a BU hierarchical VAE
(HVAE) powered with residual connections [35], a TD hi-
erarchical VAE (LVAE) with a ladder inference [76], and a
more sophisticated bidirectional structure hierarchical VAE
(BIVA) [57]. For ii, to our best knowledge, the most relevant
work to our method is informative hierarchical VAE (IVAE)
[51], which introduces additional layer-wise regularization
on latent representations of a hierarchical VAE. Additionally,
we include a vanilla VAE (VAE) [43] and an adversarial
autoencoder (AAE) [58] of single-level to assess the perfor-
mance improvement brought by hierarchical structures.

Implementation details: We apply our RL optimiza-
tion approach to hierarchical VAEs with BU (HVAE+RL)
and TD (LVAE+RL) inference schemes. For Fashion-
MNIST, hierarchical models use latent dimensions of
{128,64,32,16,8}, and single-layer models use 8. For other
image datasets, hierarchical models’ latent dimensions are
{128conv,64conv,256,128,64}, and single-layer models
have {64}. The discount factor, γ, is set to 0.9. Run on
one NVIDIA A100 GPU with PyTorch [64], models are op-
timized using Adam optimizer [42] at a learning rate of 3e-4.
Training epochs are set to 1000 for baselines and 1000/L for
our method, with outcomes averaged over 5 random seeds.

Detailed experimental setup are in Appendix C.



Table 1. Classification acc. and Ĩ(x,zL) comparisons. Our methods’ results are marked in purple. The best two results are in bold.

Method FashionMNIST CIFAR10 CIFAR100 TinyImageNet STL-10 (32 × 32-downsampled)
Acc. Ĩ(x,zL) Acc. Ĩ(x,zL) Acc. Ĩ(x,zL) Acc. Ĩ(x,zL) Acc. Ĩ(x,zL)

AAE [58] 72.11±0.27 4.08±0.67 38.36±0.20 5.91±1.03 17.56±0.45 6.19±0.95 8.73±0.58 3.37±0.67 36.64±0.17 6.65±1.10
VAE [43] 75.08±0.09 4.36±0.35 39.98±0.05 6.32±0.65 19.05±0.20 13.76±1.85 8.92±0.36 3.76±1.21 37.75±0.07 6.87±0.75
BIVA [57] 28.67±0.64 3.48±0.48 10.40±0.13 5e-9±0.00 1.07±0.05 8e-9±0.00 0.67±0.06 9e-8±0.00 10.02±0.20 1.41±0.38
IVAE [51] 76.25±0.30 2.44±0.52 39.26±0.25 6.41±0.69 19.49±0.33 8.91±0.96 8.07±0.69 3.92±0.98 37.98±0.41 2.86±0.95
HVAE [35] 10.73±0.08 0.31±0.08 10.40±0.05 3e-8±0.00 1.21±0.10 7e-7±0.00 0.63±0.06 5e-10±0.00 10.24±0.07 0.97±0.17

HVAE+RL(ours) 78.23±0.13 5.01±0.70 46.46±0.15 11.39±1.20 25.21±0.21 17.01±2.41 12.76±0.39 11.88±2.87 43.76±0.15 10.93±1.73
LVAE [76] 19.70±0.21 1.73±0.32 15.32±0.10 5e-5±0.00 10.38±0.89 1.04±0.39 4.77±0.47 0.54±0.12 11.89±0.10 0.45±0.08

LVAE+RL(ours) 78.48±0.15 4.37±0.58 46.35±0.17 6.91±0.86 25.41±0.20 9.00±1.19 13.41±0.44 4.48±1.71 41.86±0.26 10.77±1.94

Table 2. Density estimation in bits per dimension (bpd) [21] and
KL divergence at the topmost level of hierarchical VAEs.

Model FashionMNIST CIFAR10
bpd KL bpd KL

VAE 0.306±0.041 17.9±0.3 3.74±0.01 263.0±4.0
BIVA 0.302±0.071 3e-4±0.0 2.85±0.02 2e-3±0.0
IVAE 0.403±0.096 28.9±0.7 3.48±0.05 233.0±7.0
HVAE 0.315±0.067 6e-5±0.0 4.55±0.02 1e-3±0.0

HVAE+RL 0.305±0.089 41.2±0.4 4.36±0.03 265.0±8.0
LVAE 0.313±0.050 9e-4±0.0 2.91±0.03 2e-3±0.0

LVAE+RL 0.335±0.072 32.1±0.5 3.21±0.07 181.0±6.0

4.2. Quantitative Results

Considering the highest-level latent representation zL should
ideally encapsulate the most abstract representation, such
as categorical distinctions, we use top-level representations
for linear classification. Additionally, given that zL could
be the most prone to posterior collapse among all levels,
we estimate its information content I(x,zL) via MINE. Ta-
ble 1 reports the classification accuracy on various datasets
and estimated mutual information. Applying RL to the hi-
erarchical VAEs (HVAE+RL & LVAE+RL) significantly
improves accuracy compared to their counterparts trained on
ELBO (HVAE & LVAE), and also outperforms other meth-
ods, including IVAE, across all datasets. This demonstrates
our approach’s superior representation quality. Moreover,
Ĩ(x,zL) generally correlates classification performance,
with our methods enabling higher mutual information in
the same backbone models than the baselines in most cases,
showing that our method extracts rich information from data.
Notably, HVAE+RL yields significantly high I(x,zL) on
complex datasets like CIFAR100 and TinyImageNet.

In Table 2, we present negative log-likelihood scores in
bpd, where a lower bpd indicates better marginal likelihood
estimation, along with KL divergences at the highest layer.
Intriguingly, we find no direct correlation between the perfor-
mance in estimating marginal log-likelihood log p(x) using
ELBO and the representation learning efficacy, as gauged
by accuracy and Ĩ(x,zL) in Table 1. For instance, despite
BIVA and LVAE’s superior marginal likelihood estimation
on CIFAR10, their performance in representation learning
tasks lags behind IVAE and our methods. This observation

lends empirical support to our analysis in Section 3.1 that
solely optimizing ELBO does not necessarily enhance hier-
archical representation learning. Additionally, we note that
a low KL divergence often signals poor downstream perfor-
mance and reduced Ĩ(x,zL), indicative of posterior col-
lapse as defined in Definition 1.

4.3. Qualitative Results

To elucidate the efficacy of our method in learning infor-
mative hierarchical representations, we first examine the
hierarchies learned by different approaches in Fig. 1 by pro-
jecting latent representations of different levels to the input
space via the skip-generative path. Fig. 1 shows training with
RL effectively mitigates posterior collapse, yielding a more
informative latent hierarchy. This enhancement in hierarchi-
cal representation is further evident in Fig. 2, reinforcing the
conclusions drawn in Section 3.1.

An interesting property of hierarchical VAEs is their ex-
plainable latent space, which we probe using t-SNE and
latent traversal at the topmost level for generation, as shown
in Fig. 5. The results demonstrate notable improvements
achieved by applying RL on mapping inputs to an explain-
able semantic space, to which the improvement of perfor-
mance in linear classification (Table 1) can be attributed.
Furthermore, our exploration into latent traversal sheds light
on the explainability of the latent space, with individual la-
tent dimensions corresponding to specific abstract features
like widths and positions of hollow parts, thus underscoring
the interpretability of our learned representations.

4.4. Ablation Study

Total number of levels. We investigate the impact of vary-
ing L in hierarchical VAEs on downstream task performance
using representations from the topmost latent variable in Fig.
6. We observe that all baselines suffer from classification per-
formance degeneracy with increasing latent levels: posterior
collapses largely impair downstream task performance. In
comparison, our methods are much more stable and achieve
superior performance across all level number settings, indi-
cating its robustness. More importantly, these results suggest
our approach enables the possibility of learning a higher
hierarchy of latent representation.



Figure 5. Panels showing the t-SNE and latent traversal generation
on the highest latent variable in FashionMNIST, for vanilla HVAE
(top) and HVAE+RL(bottom). The anchor point (original input)
for latent traversal is bounded in red in grid center. Traversals are
spaced by inverse Gaussian cdf to align with the prior distribution.
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Figure 6. Classification acc. of hierarchical VAEs of different levels.

Table 3. Classification acc. of different representation source.

Objective Repre. source FashionMNIST CIFAR10
HVAE LVAE HVAE LVAE

ELBO zL only 10.73±0.08 19.70±0.21 10.40±0.05 15.32±0.10
full z 79.96±0.23 80.25±0.27 50.09±0.67 49.87±0.39

RL zL only 78.23±0.13 78.48±0.15 46.46±0.15 46.35±0.17
full z 84.56±0.25 84.77±0.30 52.87±0.54 52.89±0.48

Latent representation source. The substantial cumulative
dimension of all hierarchical latent variables z, while po-
tentially having greater representation capacity, may not be
practical for all tasks. To explore this, we compare in Table
3 the downstream task performance of representations sourc-
ing from the full z versus the most abstract topmost latent
representation zL to assess if zL can maintain performance
comparable to full z. We observe that with RL, models ef-
fectively retain comparable classification performance using
just zL, showing efficient learning of key abstract informa-
tion at the topmost layer.
Discount factor γ. Exploring the impact of focusing solely
on the current step’s reward, we set the discount factor γ to

0 in our method. Besides, we ablate two typical settings of γ,
0.9 and 0.98, in the Q-value function to assess robustness. As
in Table 4, models using Q(st, at) for step-wise optimiza-
tion outperform those relying only on r(st, at), highlighting
the benefits in downstream tasks of considering future accu-
mulative rewards, i.e., regularizing dependencies between
different levels’ latent representations. Moreover, the stable
performance across γ confirms our approach’s robustness.

Table 4. Classification acc. of RL using different discount factors
γ, where γ = 0 means we only maximize r(st, at) at time step t.

Objective γ
FashionMNIST CIFAR10

HVAE LVAE HVAE LVAE
r(st, at) 0 75.63±0.11 75.52±0.10 41.91±0.15 42.16±0.13
Q(st, at) 0.8 78.03±0.16 77.98±0.23 46.45±0.30 46.42±0.27
Q(st, at) 0.85 78.11±0.24 78.34±0.19 45.89±0.24 45.97±0.31
Q(st, at) 0.9 78.23±0.13 78.48±0.15 46.46±0.15 46.35±0.17
Q(st, at) 0.95 77.95±0.19 78.53±0.16 46.21±0.21 46.25±0.25
Q(st, at) 0.98 78.01±0.10 78.28±0.17 46.31±0.20 46.37±0.19

5. Limitation and Conclusion
Limitation and Future work. Though the (hierarchical)
VAEs have advantages in modeling flexibility and sampling
speed compared to other deep generative models [92] and
are the most suitable models to demonstrate our idea with a
theoretical interpretation, hierarchical VAE-based methods’
application on downstream representation tasks could be
somewhat outdated recently. Nevertheless, it’s noteworthy
that our idea of training hierarchical models with RL is not
exclusively limited to hierarchical VAEs. Instead, it holds
the potential when extended to general hierarchical models
like diffusion models [40, 55] , which feature more levels
of latent representation and employ a fixed, non-trainable
encoder for the efficient loss computation as independent
terms over the hierarchy [61]. Our approach may be extended
to learn a diffusion model with a trainable encoder, which
may potentially enhance their representation capacity.
Conclusion. In this paper, we investigate the unsupervised
representation learning with hierarchical VAEs from the per-
spective of information theory. We identify an urgent need
to apply reinforcement learning to learn a high-quality hier-
archy. The learned hierarchical representations have shown
their superiority in improving the downstream task perfor-
mance and mitigating the notorious posterior collapse. Addi-
tionally, an interesting finding is that learning a better ELBO
(original training objective of hierarchical VAEs) is not nec-
essary for learning a better representation, which has been
supported by both our theoretical analysis and empirical re-
sults. Beyond hierarchical VAEs, our method may inspire
future works to apply reinforcement learning to learn a hier-
archical representation in time ahead.
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A. Related Works
A.1. Generative Approaches for Representation Learning

To avoid assuming the prior knowledge of the downstream tasks for choosing proper preprocessing pipelines, Bengio et al. [5]
advocate for unsupervised representation learning methods for capturing the very fundamental understanding of the world, i.e.,
the general-purpose prior. It is promising to be achieved by deep generative models by encoding the information of data, as it
could learn the underlying factors to generate data samples [40, 43]. Deep generative models mainly include VAEs [43, 68],
GANs [23, 26, 31], autoregressive models [71, 81], flow models [21], and diffusion models [40]. VAEs [43, 68] implement
an effective variational inference mechanism. Building upon VAEs, β-VAEs [2, 38, 73, 74] introduce a tunable parameter
to balance between reconstruction and latent space capacity. Adversarial Autoencoders [58] employ adversarial training to
conform encoded data to a prior distribution. BiGANs [23, 26] extend the adversarial process to train inference models that
correlate to the generator. On the other hand, WOLF [56] uses a flow-based invertible decoder and a VAE encoder to capture
global and local representations. Additionally, diffusion models integrate ancillary encoders [66, 75, 96] for representations
or directly use pre-trained networks [1, 45, 60, 90, 93] to extract representations. Among these models, hierarchical VAEs
[35, 51] stand out for their special focus on learning a hierarchical representation. The hierarchical structure could be useful
for downstream tasks by providing different levels of latent representations, with lower-level latent representations focusing on
the detailed low-level data features and higher-level latent representations focusing on the semantic data information.

A.2. Hierarchical VAEs and Posterior Collapse

Hierarchical VAEs extend basic VAEs [43, 68] by introducing a hierarchical structure of L stochastic latent variables such that
the generated output depends on a top-down progressive sampling of these stochastic latent variables. They have advantages
regarding more expressive and powerful representation ability than vanilla VAEs by building feature hierarchies starting from
low-level features to conceptual ones related to data semantics at higher levels on the expressive models [35]. However, the
posterior of high-level latent variables suffer from a tendency to collapse into the expressiveness of the prior distribution in a
phenomenon named “posterior collapse”. To alleviate this, Sønderby et al. [76] propose Ladder VAE (LVAE) to hierarchical
infer posteriors from top-down, introducing the top-down dependencies in latent variables; NVAE [80] extends the LVAE to a
much larger neural network. Maaløe et al. [57] employ a bidirectional inference procedure to obtain a more robust posterior
distribution. Despite techniques on model structures bringing about certain degrees of dependencies of the posteriors at
different levels, posterior collapse is not directly targeted. On the other front, IVAE designs an objective regularizing posterior
distribution for Out-of-Distribution (OOD) detection based on the consistency between different levels [51]. While providing
sufficient capability to aggregate semantic information of data at higher levels, its monolithic regularization on all posterior
distribution disrupts the representation hierarchy in hierarchical VAE, undermining its representation quality. We provide
further analysis of this in Section 3.1 and Appendix B.

A.3. Reinforcement Learning for Generative Models

In sequence generation tasks, Reinforcement Learning (RL) has demonstrated its potential to generate high-quality sequences
with specific purposes and has been applied to the learning of generative models in related tasks. SeqGAN [94] models
sentence generation recurrently using a GAN as an MDP and uses the policy gradient method to optimize a GAN. DC-ETM
[50] employs policy gradient to topic modeling with a Gamma belief network, which leverages the specially designed sawtooth
factorial structure and a global input-independent variable in such a network for evaluating the generated topic’s quality.
DDPO [6] and DPOK [28] regard all the steps in a diffusion model as a multi-step MDP trajectory, but assign only a single
designed reward in the task of fine-tuning the pre-trained model with personalized preferences like compression and aesthetics,
for a whole trajectory instead of a single transition. While RL modelings in these methods offer promising results in their
application, they cannot be directly applied to train a hierarchical VAE from scratch to learn an informative representation.

B. Further Discussion on Existing Two Approaches
For the existing approaches tackling the posterior collapse, the majority of the variants of hierarchical VAEs could be divided
into two categories: 1) increasing the capacity of the model architecture; and 2) adding regularization to the training objective.
We provide an in-depth analysis of these two categories to enhance the reader’s understanding of the background.

B.1. Category 1: Increasing Capacity of the Model Architecture

As an addition to the Section 3.1, we give a detailed derivation for the Eq. 11.



Preliminaries for Derivation. For the purpose of ensuring clarity in our forthcoming derivation, it is pertinent to elucidate
certain key items first.

q(z) is called the aggregated posterior distribution, expressed as

q(z) = ∫
x
qϕ(z∣x)p(x). (29)

Hp(x) is the entropy of distribution p(x), expressed as
Hp(x) = −Ep(x)[log p(x)]. (30)

The mutual information Ip,q(x,z1) is defined on two distribution, where x is defined on p and z is defined on q, expressed
as

Ip,q(x,z1) = Ep(x)qϕ(z1∣x)[log
p(x,z1)

p(x)q(z1)
] (31)

= Ep(x)qϕ(z1∣x)[log pθ(x∣z1)] −Ep(x)[log p(x)].

Similarly, the mutual information Iq(x,z1), where both x and z of are defined on q, could be expressed as

Iq(x,z1) = Eq(x)qϕ(z1∣x)[log
q(x,z1)

q(x)q(z1)
] (32)

= Eq(x)qϕ(z1∣x)[log qϕ(x∣z1)] −Eq(x)[log q(x)].

Please note that the q(x) is the distribution of the training set and p(x) is the data distribution. As the training set is sampled
i.i.d. from the data likelihood p(x), we can assume q(x) = p(x) given the data amount is sufficient. We will flexibly employ
this assumption in the following parts. Thus, with this assumption, we have

Iq(x,z1) = Eq(x)qϕ(z1∣x)[log
q(x,z1)

q(x)q(z1)
] (33)

= Ep(x)qϕ(z1∣x)[log
q(x,z1)

q(x)q(z1)
]

= Ep(x)qϕ(z1∣x)[log qϕ(x∣z1)] −Eq(x)[log q(x)].

Derivation for Eq. 11 With the above preliminaries, the Eq. 11 is derived as follows:
Ex∼p(x)[ELBO(x)] (34)
=Ex∼p(x)[Ez∼qϕ(z∣x) log pθ(x∣z1) −DKL(qϕ(z∣x)∣∣p(z))]

=Ex∼p(x)[Ez∼qϕ(z∣x) log pθ(x∣z1)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L1

−Ex∼p(x)[DKL(qϕ(z∣x)∣∣p(z))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L2

,

for each term (L1 and L2) we have
L1 =Ex∼p(x)[Ez∼qϕ(z∣x) log pθ(x∣z1)] (35)

=Ep(x)qϕ(z1∣x)[log
p(x,z1)

q(z1)

p(x)

p(x)
]

=Ep(x)qϕ(z1∣x)[log
p(x,z1)

q(z1)p(x)
p(x)]

=Ep(x)qϕ(z1∣x)[log
p(x,z1)

q(z1)p(x)
] +Ep(x)qϕ(z1∣x)[log p(x)]

=Ep(x)qϕ(z1∣x)[log
p(x,z1)

q(z1)p(x)
] +Ep(x)[log p(x)]

=Ip,q(x,z1) −Hp(x),



L2 =Ex∼p(x)[DKL(qϕ(z∣x)∣∣p(z))] (36)

=Ex∼p(x)[Ez∼qϕ(z∣x)(log
qϕ(z∣x)

p(z)

q(z)

q(z)
)]

=Ex∼p(x)[Ez∼qϕ(z∣x)(log
qϕ(z∣x)

q(z)

q(z)

p(z)
)]

=Ep(x)qϕ(z∣x)[log
qϕ(z∣x)

q(z)
] +Ep(x)qϕ(z∣x)[log

q(z)

p(z)
]

=Ep(x)qϕ(z∣x)[log
q(x,z)

q(x)q(z)
] +Eq(z)[log

q(z)

p(z)
]

=Ep(x)qϕ(z∣x)[log
q(x∣z)

q(x)
] +Eq(z)[log

q(z)

p(z)
]

=Ep(x)qϕ(z1∣x)[log
q(x∣z1)

q(x)
] +Eq(z)[log

q(z)

p(z)
]

=Iq(x,z1) +DKL[q(z)∣∣p(z)].

(37)
Finally, we could get

Ex∼p(x)[ELBO(x)] (38)
=Ex∼p(x)[Ez∼qϕ(z∣x) log pθ(x∣z1) −DKL(qϕ(z∣x)∣∣p(z))]

=L1 −L2

=Ip,q(x,z1) − Iq(x,z1) −DKL[q(z)∣∣p(z)] −Hp(x).

In summary, following from Eq. 12 to Eq. 15, we can find that the ELBO is actually only forcing all information to the
bottom-most latent variable z1. An illustration of this can be seen in Fig. 1, where HVAE’s bottom-most latent variable z1’s
reconstruction could capture most of the input data’s information while the top-most latent variable zL’s reconstruction is
meaningless.

B.2. Category 2: Modifying the Training Objective

We take the baseline “IVAE” [51] for example to demonstrate how their modified training objective could be translated to
regularization on a single layer expressed in Eq. 16.

Discussion on IVAE. We repeat the training objective from IVAE [51] as follows:

L
IVAE
= Ep(x) [

1

L
∑

L−1
k=0 Epθ(z≤k ∣z>k)qϕ(z>k ∣x) [log pθ(x∣z≤k)] −∑

L

l=1DKL(qϕ(zl∣zl+1,x)∣∣pθ(zl∣zl+1))] . (39)

Compared with the ELBO, IVAE extends the Ez∼qϕ(z∣x) log pθ(x∣z1) to
1

L
∑

L−1
k=0 Epθ(z≤k ∣z>k)qϕ(z>k ∣x)[log pθ(x∣z≤k)], (40)

which is a summarization of all layers’ skip-generation. For each of them, it projects an inferred zk+1 to the input space
according the conditional prior distribution pθ(zl∣zl+1), expressed as

Epθ(z≤k ∣zk)qϕ(z>k ∣x)[log pθ(x∣z≤k)]. (41)
Thus, it is consistent with the skip-generative path, which could be seen as maximizing a single layer’s mutual information
with x, i.e., I(x,zk+1).

Thus, when focusing on a single-level latent variable zt’s regularization, it could be expressed as
L

IVAE
I (x,zt

) = Iq(x,z
t
). (42)

With only an explicit I(x,zt), IVAE may ignore its influence on the following inferred latent variables.
In summary, the explicit regularization applied to a single-level latent variable in models belonging to category 2 reflects

solely the information it has learned from the input data. This approach might disrupt the interdependencies between latent
representations at different levels. Such disruption is evident in our findings, where certain layers in the IVAE exhibit similar
reconstructions. For instance, as depicted in Fig. 1, the visualizations of z1 and z2 in the IVAE are strikingly alike. This



similarity suggests a failure to learn the dependencies between these latent variables, leading to an ineffective hierarchical
structure.

B.3. Detailed Derivation for Our Method

Our approach can be categorized under Category 2, but with a distinctive enhancement involving regulating an inferred latent
variable zt’s impact on subsequent inferred latent variables, which can be expressed as follows:

LI(x,z
t
) ≃ Iq(x,z

t∶T
). (43)

Derivation for Eq. 17. Now, we provide the derivation for how to decompose Iq(x,zt∶T ).
First, we give the expression of the conditional mutual information Iq(x,zt+1∣zt) as follows.

Iq(x,z
t+1
∣zt
) =∫

zt
∫
zt+1
∫
x
q(x,zt,zt+1

) log
q(x,zt,zt+1)q(zt)

q(x,zt)q(zt,zt+1)
(44)

=∫
zt
∫
zt+1
∫
x
p(x)q(zt

∣x)q(zt+1
∣zt,x) log

p(x)q(zt∣x)q(zt+1∣zt,x)q(zt)

p(x)q(zt∣x)q(zt)q(zt+1∣zt)

=∫
zt
∫
zt+1
∫
x
p(x)q(zt

∣x)q(zt+1
∣zt,x) log

q(zt+1∣zt,x)

q(zt+1∣zt)

=Ep(x)q(zt∣x)q(zt+1∣zt,x) log q(z
t+1
∣zt,x) −Ep(x)q(zt∣x)q(zt+1∣zt,x) log q(z

t+1
∣zt
)

=Ep(x)q(zt∣x)q(zt+1∣zt,x) log q(z
t+1
∣zt,x) −Eq(zt)q(zt+1∣zt) log q(z

t+1
∣zt
).

Therefore, we could have

Iq(x,z
t∶T
) =∫

zt∶T
∫
x
q(x,zt∶T

) log
q(x,zt∶T )

p(x)q(zt∶T )
(45)

=∫
zt∶T
∫
x
p(x)q(zt∶T

∣x) log
q(zt∶T ∣x)q(x)

q(x)q(zt∶T )

=∫
zt∶T
∫
x
p(x)q(zt∶T

∣x) log q(zt∶T
∣x) − ∫

zt∶T
∫
x
p(x)q(zt∶T

∣x) log q(zt∶T
)

=Ep(x)q(zt∶T ∣x) log q(z
t∶T
∣x) −Eq(zt∶T ) log q(z

t∶T
)

=Ep(x)q(zt∣x)∏T
i=t+1 q(zi∣zi−1,x) log q(z

t
∣x)∏

T

i=t+1 q(z
i
∣zi−1,x)

−Eq(zt)∏T
i=t+1 q(zi∣zi−1) log q(z

t
)∏

T

i=t+1 q(z
i
∣zi−1

)

=Ep(x)q(zt∣x) log q(z
t
∣x) −Eq(zt) log q(z

t
)

+Ep(x)q(zt∣x)q(zt+1∣zt,x) log q(z
t+1
∣zt,x) −Eq(zt)q(zt+1∣z) log q(z

t+1
∣zt
)+

...

+Ep(x)q(zt∣x)∏T
i=t+1 q(zi∣zi−1,x) log q(z

T
∣zT−1,x) −Eq(zt)∏T

i=t+1 q(zi∣zi−1) log q(z
T
∣zT−1

)

=Ep(x)q(zt∣x) log q(z
t
∣x) −Eq(zt) log q(z

t
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Iq(x,zt)

+Ep(x)q(zt∣x)q(zt+1∣zt,x) log q(z
t+1
∣zt,x) −Eq(zt)q(zt+1∣z) log q(z

t+1
∣zt
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Iq(x,zt+1∣zt)

+

...

+Ep(x)q(zT−1∣x)q(zT ∣zT−1,x) log q(z
T
∣zT−1,x) −Eq(zT−1)q(zT ∣zT−1) log q(z

T
∣zT−1

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Iq(x,zT ∣zT−1)

=∑
T

i=t Iq(x,z
i
∣zi−1

),

where Iq(x,zt∣zt−1) ∶= Iq(x,z
t).

In summary, the above derivation proves that the regularization LI(x,zt) ≃ Iq(x,z
t∶T ) could be implemented by a



series of Iq(x,zi∣zi−1), which leads to the Q-value function Q(st, at) based on the accumulative rewards defined by the
skip-generative path.

C. Experimental Details
C.1. Details of the Datasets

FashionMNIST [91] comprises 70000 28 × 28 gray-scale images, featuring 10 classes of apparel and accessories. CIFAR10
and CIFAR100 [44] are two small-scaled datasets each comprising 60,000 samples of 32× 32 colored images, featuring 10 and
100 classes respectively. TinyImageNet [46], a reduced version of ImageNet, includes 200 classes. Each class is represented by
500 training images, 50 validation images, and 50 test images, all resized to 64 × 64 pixels. STL10 [17] is a dataset featuring
10 classes of colored images of a resolution of 96 × 96. For our experiments, we have resized these images to 32 × 32. For
evaluation presented in Figs. 1 and 2, CelebA and MNIST datasets are used. CelebA [53] is a large-scale archive comprising
celebrity images featuring more than 200,000 photographs. MNIST dataset [48] consists of images of handwritten digits, each
in 28 × 28 gray-scale format.

C.2. Details of the Metrics

Following previous works on unsupervised representation learning [5, 39, 63], we employ classification accuracy as a key
metric. This is measured through downstream linear classification tasks, using a linear support vector machine (SVM) classifier.
The classifier is applied to representations derived from frozen models, acting as a proxy to gauge the mutual information
between the representations and the labels. In practice, the linear SVM is first trained on the train split, utilizing both the
representations and their corresponding class labels. Subsequently, its performance is assessed on the test set, and classification
accuracy is reported. A higher classification accuracy suggests a more effective representation of the data, as it implies a
stronger correlation between the learned representations and the actual data labels.

We have also used Mutual Information Neural Estimation (MINE) [4] to estimate the mutual information between input x
and the top latent variable zL. The core of our approach involves training a discriminator, designed to optimize the Donsker-
Varadhan estimator of the KL divergence, to provide a lower bound of mutual information between the two variables. In the
design of the discriminator, we craft a two-layer fully connected network with hidden layers sized at 512, with LeakyReLU
activation. We conducted the training by 100 epochs, applying a step learning rate decay strategy to help reduce variance in the
estimate. A higher MINE estimate is suggestive of a stronger mutual dependence and information sharing between the input
and the latent variable.

C.3. Details of the Implementation

We train all models with an Adam optimizer [42] with β = (0.9,0.999) and ϵ = 1e − 8 at a learning rate of 3e − 4 with a
mini-batch size of 64 for the TinyImageNet dataset and 128 for the rest of the datasets. Total training epochs are set to 1000
for baselines and 1000/L for our method.

For VAE models, the latent variables are defined through stochastic modules, which are responsible for producing both the
mean and the log-variance parameters of a Gaussian distribution with a diagonal covariance. At the highest layer of the model,
the prior distribution adheres to a standard Gaussian form. Each stochastic module is preceded by a deterministic module
consisting of 3 residual blocks as described in [57]. A deterministic module is implemented as a 3-layer convolutional neural
network. For the gray-scale FashionMNIST dataset, the number of channels is set to 64 while 256 is used for the natural image
datasets. The ReLU activation function is used for the convolutional neural network. Since the boons and banes of using
batch normalization in hierarchical VAEs are still not clearly understood [35, 57, 76], we opt to employ weight normalization
following [35, 57].

Since warm-up and free bits scheme are empirically proven to alleviate posterior collapse in [35], we follow their setting
of warm-up and free bits scheme when training the VAEs that do not explicitly regularize for information at higher levels
(HVAE, LVAE and BIVA). In particular, warm-up anneals over a period of 200 epochs and 2 nats per zi for the first 400
epochs. Nevertheless, to examine if RL training is effective in learning a hierarchy and preventing posterior collapse, neither
warm-up nor free bits scheme is used when we train the hierarchical VAEs on our proposed method.

D. More Ablation Study Results on Total Number of Layers
To determine the applicability of our method to a deeper hierarchical VAE, we conducted an ablation study focusing on the
total number of layers, as detailed in Table 5. The results indicate that our approach maintains stable and high performance
even as the total number of layers increases.



Table 5. Classification acc. of RL-trained hierarchical VAEs of different levels on FashionMNIST.

Method Total number of layers
3 4 5 6 7 8 9 10

HVAE+RL 78.60 78.51 78.23 77.70 77.08 76.59 76.29 75.99
LVAE+RL 78.77 78.32 78.48 77.90 77.21 76.54 75.90 75.82
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Figure 7. DKL(qϕ(zl∣x)∣∣pθ(zl∣zl+1)) at different levels of hierarchical VAEs.

E. DKL of hierarchical VAEs at different levels
We add the direct measurement of DKL(qϕ(zl∣x)∣∣pθ(zl∣zl+1)) in Fig.7. DKL of HVAE falls very close to 0 at higher layers,
indicating posterior collapse, while that of HVAE+RL remains sound.


