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This supplementary material presents additional results
on the human texture estimation task (Section 1), train-
ing cost information (Section 2) and qualitative results of
the pre-training objective as well as of several downstream
tasks (Section 3). In addition, we also include a video show-
ing reconstructions using our pre-training method.

1. Human texture estimation

Our pre-training objective has some similarities with the
task of novel-view synthesis. Given an observation of a
person (the reference image), and some information about a
target pose and viewpoint (the masked target image), the
network is trained to reconstruct an image of the person
from said viewpoint. In order to evaluate this particular
facet of human understanding, we compare different pre-
training strategies on the task of human novel-view genera-
tion. More particularly, we tackle human texture generation
from a single image, following the experimental setup of
TexFomer [5]. They define a key, query and value images
which are partly pre-computed, and partly based on the in-
put image. These images are encoded at different scales us-
ing 3 CNNs, then transformer layers perform multi-headed
attention at different scales. Resulting features are merged
through another CNN. We modify their code, replacing
their whole network with our ViT-based encoder-decoder
architecture. The value image is discarded, and encoder
weights are fine-tuned independently for key and query im-
ages. The network is trained to return a single RGB tex-
ture. This adaptation is a bit naive, but our goal is mainly to
compare different pre-training methods on a different task,
that leverages both encoder and decoder of the pre-trained
network. We follow the TexFormer experimental setup in
terms of hyperparameters, datasets, and metrics. Results
for different network initializations are reported in Figure 1.
For MAE, we randomly initialize the decoder weights. Pre-
training the model does help a lot: both CroCo and MAE
provide a significant boost. CroCo performs slightly bet-
ter, which is probably due in part to the pre-trained decoder.
CroCo-Body outperforms both CroCo and MAE.
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Figure 1. Evaluation scores of various pre-trained models on
the texture estimation task of TexFormer [5], at different fine-
tuning stages. From left to right, we report SSIM? (structural sim-
ilarity index) and LPIPS| [6] metrics. All models return a single
RGB texture.

2. Training time

In this section, we give timings necessary for pre-training
and fine-tuning our models. Pre-training the CroCo-Body
model takes about 8 days on 4 NVIDIA A100 GPUs. Fine-
tuning it on a single A100 takes about half a day per down-
stream task. As for the CroCo-Hand model, pre-training
on 4 V100 GPUs requires 2.25 days, and fine-tuning on a
single V100 GPU takes about 8 hours per downstream task.
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Figure 2. Completion examples on cross-view (i.e. multi-view) pairs from the Mannequin Challenge dataset [2] (first row) and the
GeneBody dataset [1] (last two rows). CroCo-Body (no ref) stands for our model evaluated on the masked input, and a reference view set
to zero (i.e., a fully-black image).
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Figure 3. Completion examples on cross-pose (i.e. temporal) pairs from 3DPW [4] validation set (unseen during pre-training). CroCo-
Body (no ref) stands for our model evaluated on the masked input, and a reference view set to zero (i.e., a fully-black image).

3. Qualitative results ing either the reference image or a reference image entirely
black (‘no ref’), to ablate the cross-image completion ca-
3.1. Pre-training pabilities of the decoder. CroCo tends to recover detailed

patterns on relatively flat surfaces, such as the t-shirt logo
on the first row of Figure 2. It lacks prior knowledge about
humans however, and struggles to reconstruct the left arm
on the second row. In contrast, CroCo-Body produces a

CroCo-Body. We illustrate the pre-training task of CroCo-
Body on both cross-view and cross-pose pairs in Figures 2
and 3 respectively, with data never seen by the model dur-
ing pre-training. We report predictions of CroCo-Body us-



Reference Masked

ESe
£ B b &

Figure 4. Completion examples of CroCo-Hand on unseen
cross-pose (i.e. temporal) pairs, in indoor scenes.
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Figure 5. Completion examples of CroCo-Hand on unseen
cross-pose (i.e. temporal) pairs, in outdoor scenes.

sharper arm reconstruction, which may be attributed to its
human-specific pre-training and the ability to leverage the
reference view. A similar effect is visible on the reconstruc-
tion of the head in the last row.

For cross-pose pairs (Figure 3), we observe that comple-
tions of CroCo are similar to the ones of CroCo-Body with
no reference image. This suggests that CroCo benefits lit-
tle from cross-image attention, being specifically trained to
exploit static stereoscopic pairs only. CroCo-Body on the
other hand seems able to recover information from the ref-
erence image about the lower-body garments even though
they are heavily occluded in the masked target in both ex-
amples, and achieves a better completion of the masked im-
age.

CroCo-Hand. We illustrate the pre-training task of CroCo-

Hand on unseen cross-pose pairs in indoor and outdoor
scenes in Figures 4 and 5, respectively. We tested CroCo-
Hand on internal images which have never been seen dur-
ing the pre-training stage. We observe that CroCo-Hand
learned the structure of a human hand such as shown in
Figure 4 where it reconstructs a pointed index finger from
a small handful of visible palm patches. CroCo-Hand also
performs well on outdoor images such as shown in Figure 5,
despite the fact the pre-training is done integrally using data
captured in labs. It is also interesting to notice that CroCo-
Hand also generalizes well to different skin tones.
Keypoints supervision. We give here more detailed infor-
mation about the keypoints supervision used for the pre-
training ablation in Section 4.2 and Table 3 of the main
paper. We select the set of 13 keypoints used in PennAc-
tion [7]. For each pre-training image, we generate a 13-
channels keypoint heatmap where each keypoint is repre-
sented as a Gaussian with ¢ = 8 pixels. Figure 6 illus-
trates the task on a simple example. During pre-training,
the encoded image is passed through a simple prediction
head that is trained to predict the heatmaps with a sim-
ple binary cross-entropy loss. Ground-truth keypoints are
weighted according to a confidence parameter (O for miss-
ing keypoints). When pre-training with both objectives (Ta-
ble 3 of the main paper, last row), we train the keypoints
prediction on the encoded reference image, that is fully vis-
ible.
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Figure 6. Visualization of the supervised pretext task used for
the ablation in Table 3 of the main paper. The right shows
the position of predicted keypoints (blue) obtained with a simple
argmax on the predicted heatmap, on top of ground truth keypoints
(green). Heatmaps have been artificially converted to 3-channels
images for visualization purpose.

3.2. Downstream results

We now show some visualizations of the different down-
stream tasks that we evaluate on. Figures 7 and 8 show re-
sults on regression tasks (DensePose and body/hand mesh
recovery, respectively), while Figure 9 shows results on the
grasp classification task.
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Figure 7. Qualitative results of CroCo-Body on the DensePose
task on the COCO dataset. The sparse ground-truth labels used for
training and evaluation are dilated here for visualization purposes.

(a) Results on the body mesh recovery task on 3DPW [4].
e

(b) Results on the hand mesh recovery task on HanCo [8].
Figure 8. Qualitative examples of our models on the two mesh
recovery tasks. Each pair shows the input image, and the output
of CroCo-Body (top) or CroCo-Hand (bottom), overlaid on the
image.
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Figure 9. Qualitative examples of our models on the grasp clas-
sification task on GUN-71 [3]. For the images on the top row, we
show below the ground-truth class as well as the top 3 prediction
made by our model.
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