
Appendix Summary

We start with a brief overview of the content of the Appendix.

• In Appendix A, we give a more detailed description of
diffusion models in general, cross-attention conditioning,
classifier-free guidance, and our diffusion guidance via
optimization.

• Next, in Appendix B, we provide further details on our
experiments from Sec. 4. In particular, the shape bias of
adversarially robust models (Fig. 14), errors of zero-shot
CLIP (Fig. 15) and different biases of ViT and ConvNeXt
architectures (Fig. 16).

• The process of collecting real images to validate the de-
tected zero-shot CLIP errors (see Fig. 5) is explained in
Appendix C.

• Appendix D is an extension of Section 5 from the main
paper. We give further details about our visual counter-
factual generation. Additionally, we show more VCEs for
ImageNet (Fig. 20), CUB (Fig. 21), Food-101 (Fig. 22),
Cars (Fig. 23) and FFHQ (Fig. 24) as well as EVA02 error
visualizations in Fig. 25.

• In Appendix E, we provide details on the user study com-
paring DVCEs [5] and our UVCEs, including all images
that were used in the study (see Fig. 27).

• Appendix F contains more details and examples for our
synthetic neural visualizations as well as neuron counter-
factuals. We explore a quantitative metric to discriminate
spurious from core neurons in Appendix F.3.

• In Appendix G we give more details about the NPCA [54]
optimization to validate harmful spurious features.

• Finally, Appendix H describes limitations and failure
cases.

A. Background and Method Details

A.1. Diffusion Models

Diffusion models are a class of generative models that learn
to sample from a data distribution q(x). We thereby differ-
entiate between the forward process which, given a real data
point, adds noise at every timestep t ∈ {1, ..., T} until the
noisy sample can no longer be distinguished from a normally
distributed random variable, and the reverse process, which,
given a latent from a normal distribution, removes noise at
evey timestep such that at the final time step, we generate a
sample x ∼ q(x). In short, the forward process takes a real
data point to the latent space and the reverse process gener-
ates a real datapoint from a latent vector. For this section,
we follow the notation from [79].

In this work, we focus on discrete-time diffusion models
where both the reverse and forward process correspond to
Markov Chains of length T and refer readers to [80] for the
time-continuous case. While the first wave of image diffu-
sion models [39, 78] were generating samples directly in

pixel space, it has been shown [64, 83] that it can be benefi-
cial to instead work inside the latent space of a variational
autoencoder (VAE). Instead of generating the image directly,
latent diffusion models (LDM) generate a latent z0 inside
the VAE latent space and then use the VAE decoder D to
transform z0 into pixel space to produce the final image
x = D(z0). As our experiments are based on Stable Diffu-
sion (SD) [64], for the rest of this section, we assume that
we are working with a latent diffusion model where the goal
is to sample a VAE latent z0 using the diffusion process.

Thus let q(z0) be the distribution of the VAE latents that
can be obtained from the image distribution in pixel space
q(x) via the VAE encoder E . The goal is to learn a model
distribution pθ(z0) that is similar to the data distribution,
i.e. pθ(z0) ≈ q(z0), and is easy to sample from. Denoising
Diffusion Probabilistic Models (DDPM) [39] are defined via
the forward process that uses Gaussian transitions q(zt|zt−1)
to incrementally add noise to a noise-free starting latent z0:

q(zt|zt−1) = N
(
zt;

√
αt√
αt−1

zt−1,
(
1− αt

αt−1

)
I
)

(7)

with a fixed decreasing sequence α1:T ∈ (0, 1]T that
determines the noise-level at each time step t. Given z0, this
defines a distribution over the other time steps z1:T via:

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1). (8)

Due to the Gaussian nature of the transitions q(zt|zt−1),
given z0, it is possible to sample from q(zt|z0) in closed-
form instead of following the Markov chain t times via:

q(zt|z0) = N
(
zt,

√
αtz0, (1− αt)I

)
, (9)

from which it follows that:

zt =
√
αtz0 +

√
(1− αt)ϵ, where ϵ ∼ N (0, I). (10)

This makes it obvious that, as long as αT is chosen
sufficiently close to 0, we have that q(zT |z0) ≈ N (0, I),
i.e. the forward process transforms the original distribution
q(z0) into a standard Normal distribution. Thus one defines
pθ(zT ) = N (0, I) as the prior distribution for the generative
model. Our parameterized distribution over the noise-free
latents pθ(z0) is then defined as:

pθ(z0) =

∫
pθ(z0:T )dz1:T

with pθ(z0:T ) = pθ(zT )

T∏
t=1

p
(t)
θ (zt−1|zt).

(11)



The goal in training a diffusion model is thus to optimize
the parameters θ that are used to parameterize the reverse
transitions p(t)θ (zt−1|zt), which intuitively remove some of
the noise from zt, such that pθ(z0) ≈ q(z0). One key finding
from [78] is that in the limit of T → ∞, the reverse tran-
sitions become Gaussians with diagonal covariance matrix,
thus in practice all reverse transitions p(t)θ (zt−1|zt) are as-
sumed to be diagonal Gaussian distributions where the mean
and covariance are parameterized using a DNN. Originally,
diffusion models were trained by optimizing the parameters
of the model that is used to predict the means and covari-
ance matrices of those reverse transitions to maximize the
variational lower bound [78].

[39] found that, if one uses fixed covariances for the
reverse transitions, it is possible to instead optimize a loss
function that resembles a weighted denoising objective:

L(θ) =

T∑
t=1

γt E
z0∼q(z0),ϵ∼N(0,I)

[
∥ϵ(t)θ (

√
αtz0 +

√
(1− αt)ϵ)− ϵ∥22

]
.

(12)

Here, ϵ(t)θ is a denoising model that, given a noisy latent
√
αtz0 +

√
(1− αt)ϵ at time step t, tries to predict the

added noise ϵ, and (γt)
T
t=1 is a sequence of weights for the

individual time steps that depend on (αt)
T
t=1. In practice, all

ϵ
(t)
θ are parameterized using a single U-Net which is given

the current time step t as additional input, i.e. ϵ(t)θ (z) :=
ϵθ(z, t).

Once ϵθ has been trained, there are multiple samplers that
allow us to obtain a new latent z0. In all cases, one starts by
sampling from the prior distribution zT ∼ N (0, I). For this
work, we focus on the DDIM solver, which is a deterministic
solver, i.e. all the randomness of the process lies in zT
whereas the rest of the chain z0:(T−1) is fully determined by
zT . The update rule for DDIM is:

zt−1 =
√
αt−1

zt −
√
1− αt ϵθ(zt, t)√

αt

+
√
1− αt−1 ϵθ(zt, t).

(13)

DDIM can best be understood from Eq. (10) by assuming
that ϵ = ϵθ(zt, t) and solving for z0. Intuitively, this is equiv-
alent to skipping all intermediate time steps and jumping
directly from zt to z0:

z0 =
zt −

√
(1− αtϵθ(zt, t)√

αt
. (14)

Now if we apply Eq. (10) to our estimate of z0 to get to
time step t−1 and again use our noise estimate ϵ = ϵθ(zt, t),

we can recover the DDIM update rule. More formally, DDIM
sampling is related to solving the probability flow ODE
introduced in [80] using the Euler method, see Proposition
1 in [79]. Considering the connection between ODEs and
ResNets described in [16], it is not surprising that the DDIM
updates have the residual connection that allows for easy
gradient flow through diffusion graphs:

zt−1 =

√
αt−1√
αt

zt + F (zt, t),

where F (zt, t) =
(
1−

√
αt−1√
αt

)√
1− αt−1ϵθ(zt, t).

(15)

A.2. Conditional Diffusion Models

While the previous Section introduced unconditional latent
diffusion models, i.e. models that learn a distribution pθ(z),
in practice it is often desirable to work with conditional
models that give the user control over the output of the
diffusion model. For example, if we are using an image
dataset like ImageNet, the conditioning could be the target
class we want to generate, or for the popular text-to-image
models like Stable Diffusion [64], the conditioning will be
a text prompt that tells the diffusion model what image it
should generate.

A.3. Classifier-Free Guidance and Cross-Attention
Conditioning

Classifier-free guidance (CFG) [36] was introduced as an
alternative to classifier guidance [9, 45, 56, 80]. [18] already
used a class-conditional denoising model ϵθ(xt, t, y) that
was given the target class as additional input. The class
label y was thereby integrated into the model via adaptive
group normalization layers. They introduced classifier guid-
ance to enforce the generation of the correct target class by
strengthening the influence of y on the output of the gen-
erative process. Classifier-free guidance is an alternative
that also strengthens the impact of the conditioning signal in
combination with a conditional denoising model ϵθ(xt, t, y)
without the requirement of an external classifier.

In the following, we will first introduce cross-attention
(XA) conditioning that is used by Stable Diffusion [64] to
condition the denoising model ϵθ not only on class labels
but also other modalities such as text prompts or depth maps.
Then we will introduce classifier-free Guidance as a solution
to strengthen the impact of the conditioning signal.

A.3.1 Cross-Attention Conditioning

As our work is based on text-to-image Stable Diffusion [64],
we restrict ourselves to text conditioning in the following
Section. Thus assume that we are given a text prompt P , for
example, "an image of a dog on the beach". The first step



Original an

ZR1

image

2012

of

driving

a

on

Chevrolet

race

Corvette

track

,

Figure 12. Visualization of the cross-attention maps produced from an image from the Cars validation set that was captioned by OpenFlamingo
as "an image of a Chevrolet Corvette ZR1 2012 driving on a race track" and inverted via Null-Text inversion [53]. Given the starting latent
zT and the null-text sequence, (∅t)

T
t=1 from the inversion, we reconstruct the image using 50 DDIM steps and save the XA maps M from

the cross-attention layers inside the denoising U-Net. We show the cross-attention maps corresponding to each word for the first half of the
diffusion process (T : (T/2)) obtained at spatial resolution 16× 16 inside the U-Net averaged across all attention heads, normalized to
[0, 1] and upsampled to 512× 512. Note that the XA maps corresponding to the class name "Chevrolet Corvette ZR1 2012" can be used to
locate the car in the image.

in creating a text-to-image diffusion model is to encode the
prompt using a domain-specific encoder τ . In the case of
Stable Diffusion 1.4, τ is a pre-trained CLIP [59] ViT-L/14
[19] text encoder as suggested in the Imagen paper [67].
Using τ , one can transform the prompt P into a conditioning
matrix C ∈ RNc×dτ , where Nc corresponds to the number
of tokens that the prompt P is split into and dτ is the output
feature dimension of the CLIP encoder.

In SD, the conditioning C is fed into to the denoising U-
Net [65] model ϵθ(zt, t, C) via cross-attention (XA) layers
[84]. In those XA layers, the visual features of the internal
representations of the current latent zt inside the U-Net are
fused with the encoded text conditioning C to generate a
noise estimate ϵθ(zt, t, C) that will not only lead us to the
image manifold but also incorporate the text features. In
detail, let ϕi(zt) denote the intermediate representations
inside the U-Net of the latent zt at time step t that are fed
into the i-th XA layer. As usual in attention layers, ϕi(zt) is
decoded into a query matrix Q(i) via a linear transformation
with weight matrix W (i)

Q . Similarly, the conditioning C is
projected into key and value matrices K(i) and V (i) using
the weight matrices W (i)

K and W (i)
V . The XA operation for

query, key and value matrices Q,K, V is then defined as:

XA(Q,K, V ) =M · V,

where M = softmax
(QKT

√
d

)
.

(16)

During training, the SD model is trained on a dataset con-
taining image-text pairs and the conditioning vector C ob-
tained from the text prompt is given to the denoising model.

This leads ϵθ to learn to use the information in C to gener-
ate a noise estimate that points to images corresponding to
the conditioning information instead of the general image
manifold. In practice, each attention Layer in the U-Net is
implemented as multi-head attention where the attention is
done multiple times in parallel and then combined to the
final output via an additional linear transformation. Intu-
itively, as Q is a representation of the visual features from
zt and K is a representation of the textual features from the
original prompt P , the output of the softmax function M
can be interpreted as a similarity between visual features and
text features. In particular, large entries in M correspond to
spatial locations that are heavily influenced by a particular
text token. We show a visual example for this in Figure 12,
where we plot the XA maps obtained from reconstructing
an inverted image from the Cars validation set that we use
for visual counterfactual generation in Figure 7. We use the
strong spatial localization in the XA maps to generate a fore-
ground segmentation mask for our distance regularization
when creating VCEs (See Section 5 and D).

A.3.2 Classifier-Free Guidance

Even with the conditional denoising model ϵθ(zt, t, C), it
can happen that the generated images do not follow the
conditioning C close enough. Classifier-free guidance was
therefore introduced to strengthen the impact of C. To do
so, the denoising model is jointly trained on images without
text prompt and the conditioning C for all of those images is
replaced by the CLIP encoding of the empty string to create
the null-token ∅ := τ(””). Intuitively ϵθ(zt, t, C) then
points to the direction of noise-free images that correspond



to the prompt C whereas ϵθ(zt, t,∅) is an unconditional
noise-estimate. The estimated noise ϵ in Eq. (1) is then
replaced with the classifier-free version ϵ̂

ϵ̂(zt, t, C,∅) = ϵθ(zt, t, C)

+ w (ϵθ(zt, t, C)− ϵθ(zt, t,∅)) ,
(17)

where w in Eq. (17) corresponds to the classifier-free
guidance strength.

A.4. Diffusion Guidance via Optimization

Next, we present some additional details about our diffusion
optimization. Remember from Sec. 3.2 that our goal is to find
inputs to the diffusion process zT , (Ct)

T
t=1, (∅t)

T
t=1 which

optimize an objective like Eq. (2).
As usual, we want to use a first-order optimizer like

ADAM which requires us to calculate the gradients of the
loss with respect to the input variables. Since DDIM requires
at least 20 steps to yield high-quality images, it is not possi-
ble to store the entire diffusion graph for backpropagation
due to memory limitations. This problem can easily be cir-
cumvented by using gradient checkpointing which allows us
to calculate the exact gradients of the objective with respect
to the optimization variables.

In addition, some readers might recognize the similarity
between our optimization formulation and that of adversarial
attacks. In general, we found the diffusion model to be a
strong prior for the creation of meaningful changes instead
of adversarial perturbations. Note that this behavior is not
unexpected as it has been demonstrated that diffusion models
can be used for adversarial purification [57]. This means that
the combination of a non-adversarially robust classifier and
a denoising diffusion model yields a classification pipeline
with non-trivial robustness to adversarial attacks and it has
been demonstrated that robust models have certain gener-
ative properties [6]. To further prevent the generation of
adversarial examples, we found it helpful to use test-time
augmentations on our generated images before forwarding
them through the classifier f for gradient computations. In
particular, we found that generating different views of the
same input image and averaging the loss over all of them
yields more meaningful changes. In this work, we combine
two types of augmentations. First, we randomly cutout differ-
ent crops from the image [89] and then add Gaussian noise
to each crop. In Fig. 13, we demonstrate that this yields
gradients (with respect to the input image in pixel space) that
are much more localized on the class object of interest.

B. Classifier Disagreement
In Fig. 14, we extend our analysis of the shape bias of ad-
versarially robust models. In addition to the images from
Fig. 3, we also show results from maximizing the standard

model while minimizing the robust one. The generated im-
ages show a richer texture and the shape differs significantly
from the Stable Diffusion initialization which is in line with
our findings in Sec. 4. Fig. 15 shows additional results for
the zero-shot CLIP where we used a ViT-B as second clas-
sifier instead of a ConvNeXt-B. The results show that the
choice of the second classifier has only little influence on the
detected errors. A reason for this is that the zero-shot model
extends the original class to a large set of out-of-distribution
images (see Fig. 4) which is not the case for models that were
trained or fine-tuned on ImageNet. As described in Sec. 4,
we show the results for the different biases of a ViT-B and a
ConvNeXt-B in Fig. 16.

B.1. Hyperparameters

Resolution 512
Guidance Scale 3.0

DDIM steps 25
Optimizer ADAM

Optimization steps 15
Ct,∅t stepsize 0.025
zT stepsize 0.00025
Scheduler cosine

Gradient Clipping 0.05
Num. cutouts 16

Cutout Noise σ 0.05

C. Validation of zero-shot CLIP errors
To validate the errors found in Fig. 5, we collected similar
real images from the LAION-5B dataset using the CLIP
retrieval tool1. The used retrieval queries were of the form
“an image of ...” and resemble the detected failure cases: “...
a waffle” for “waffle iron”, “... an arch bridge” for “steel
arch bridge”, “... a spoon on a wooden table” for “wooden
spoon” and “... a bar in space” for “space bar”. For “steel
arch bridge” and “wooden spoon”, this procedure finds many
images confirming the observed failure case. In the case of
“waffle iron”, some kinds of waffles also produce a high
confidence for the ConvNeXt as this feature is probably
also spuriously correlated in the ImageNet training data.
The “space bar” example is very specific and the retrieval
procedure returns only few images fitting the pattern.

D. Visual Counterfactual Explanations
D.1. Method Details

We start by giving a more detailed description of our
universal visual counterfactual explanation (UVCE) method
and motivate our design choices. As in the main paper, we
assume we are given a starting image from the validation

1https://knn5.laion.ai

https://knn5.laion.ai


Algorithm 1 Diffusion Guidance via Optimization
Input: Loss function L, Initial Prompt P , number of iterations K
zT ∼ N (0, 1) ▷ Draw starting latent
C = τ(P ) ▷ Encode prompt
∅ = τ(””) ▷ Generic null-text

for t = 1, ..., T do ▷ Initialize time step-dependent variables
Ct = C
∅t = ∅

end for
optim = Adam( zT , C1, ..., CT ,∅1, ...,∅T ) ▷ Define the optimizer

for k = 1, ...,K do ▷ Optimization loop
z = zT
for t = T, ..., 1 do ▷ Denoising DDIM loop

with gradient_checkpointing():
ϵ̂ = ϵθ(z, t, Ct) + w (ϵθ(z, t, Ct)− ϵθ(z, t,∅t)) ▷ CFG update (17)
z =

√
αt−1

z−
√
1−αt ϵ̂√
αt

+
√
1− αt−1 ϵ̂ ▷ DDIM step (13)

end for

x = D(z) ▷ Decode final latent using VAE decoder
l = L(x) ▷ Calculate loss l
l.backward() ▷ Calculate gradients

optim.step()
optim.zero_grad()

end for
return zT , (Ct)

T
t=1, (∅t)

T
t=1

Original
Image

Cutouts 0
Noise σ = 0

Cutouts 32
Noise σ = 0

Cutouts 32
Noise σ = 0.05

Cutouts 32
Noise σ = 0.5

Figure 13. We plot the gradient ∇xpf (y|x) with different test-time augmentations, including Cutout and Gaussian Noise with two standard
deviations. The classifier f is a ViT and the original image is an ImageNet validation image for the class "house finch" and the target class y
is "gold finch". Note that the gradient without augmentation is very noisy and not located on the bird. If we average the gradient across
slightly perturbed images, we can achieve localization on the foreground object. While adding noise on top of the Cutout augmentation
can further improve localization, too much noise (σ = 0.5) leads to very coarse gradients that are no longer usable for optimization. Each
gradient is separately rescaled to fit in [0, 1] and grey values of 0.5 correspond to a zero gradient.

set x̂ belonging to class ŷ and our goal is to create a VCE
x that is classified as target class y by the classifier f . In
the next subsections, we go over the individual steps of the
UVCE process. The UVCE generation can be split into the
following parts:

i) Create a caption of the image using OpenFlamingo
ii) Invert the image using Null-Text inversion
iii) Obtain XA maps and compute foreground mask
iv) Optimize the confidence into the target class and



pf : Confidence Robust Vit-S vs. pg : Confidence ViT-S
Head Cabbage (pf / pg ) Koala (pf / pg ) Brown Bear (pf / pg ) Dugong (pf / pg )

SD
In

it.

0.57 / 0.95 0.70 / 0.95 0.79 / 0.96 0.76 / 0.97 0.76 / 0.96 0.67 / 0.96 0.01 / 0.01 0.14 / 0.92

p
f
↑

-p
g
↓

0.82 / 0.00 0.79 / 0.00 0.86 / 0.00 0.92 / 0.06 0.80 / 0.00 0.76 / 0.00 0.66 / 0.02 0.78 / 0.00

p
g
↑

-p
f
↓

0.00 / 0.96 0.02 / 0.98 0.45 / 0.94 0.06 / 0.96 0.09 / 0.97 0.00 / 0.99 0.06 / 0.96 0.08 / 0.97

Figure 14. Classifier disagreement: shape bias of adversarially robust models (extended). This is an extended version Fig. 3 where we
additionally show images maximizing the confidence of the standard model and minimizing the confidence of the robust one (third row)
while starting from the same initial Stable Diffusion image. In contrast to the second row, these images show significant shape changes and a
richer texture compared to the ones of the second row (maximizing/minimizing confidence of the robust/standard model). In particular, the
images of the second row are mainly “cartoon”-like versions of the SD initializations with little texture.

Waffle Iron (pf / pg ) Steel Arch Bridge (pf / pg ) Wooden Spoon (pf / pg ) Space Bar (pf / pg )

SD
In

it.

1.00 / 0.51 1.00 / 0.76 0.71 / 0.01 0.86 / 0.00 0.99 / 0.93 0.72 / 0.85 0.09 / 0.01 0.02 / 0.00

pf : Confidence Zero-shot CLIP ImageNet classifier vs. pg : Confidence ConvNeXt-B

p
f
↑

-p
g
↓

1.00 / 0.01 1.00 / 0.00 1.00 / 0.00 1.00 / 0.00 0.98 / 0.00 0.92 / 0.04 1.00 / 0.00 0.99 / 0.00

pf : Confidence Zero-shot CLIP ImageNet classifier vs. pg : Confidence ViT-B

p
f
↑

-p
g
↓

1.00 / 0.04 0.99 / 0.01 0.99 / 0.01 1.00 / 0.01 0.99 / 0.04 0.26 / 0.07 0.99 / 0.08 0.97 / 0.00

Figure 15. Detected zero-shot CLIP errors are independent of the minimized classifier: We show the results for maximizing the
zero-shot CLIP while minimizing ConvNeXt-B (second row, as in Fig. 5) and minimizing a ViT-B (third row). The zero-shot CLIP extends
the original classes to much larger sets of out-of-distributions images compared to models trained or fine-tuned on ImageNet. Therefore, the
failure cases discovered by maximizing classifier disagreement do not depend on the choice of the minimized classifier.

background similarity to the original image

Additionally, we show a diagram titrhuguublvkrvllkgvt-
bvnrrkhuvvlin Fig. 17 and give an algorithmic overview in

Algorithm 2.



pf : Confidence ViT-B vs. pg : Confidence ConvNeXt-B
Goblet (pf / pg ) Vase (pf / pg ) Shower Curtain (pf / pg ) Tabby (pf / pg )

SD
In

it.

0.96 / 0.93 0.86 / 0.68 0.83 / 0.76 0.95 / 0.44 0.69 / 0.89 0.99 / 0.92 0.21 / 0.03 0.18 / 0.32

p
f
↑

-p
g
↓

0.99 / 0.81 0.86 / 0.68 0.83 / 0.05 0.96 / 0.04 0.99 / 0.06 0.99 / 0.02 0.88 / 0.05 0.83 / 0.02

p
g
↑

-p
f
↓

0.07 / 0.90 0.14 / 0.50 0.18 / 0.89 0.20 / 0.76 0.14 / 0.94 0.07 / 0.96 0.07 / 0.71 0.14 / 0.79

Figure 16. Classifier disagreement: ViT vs. ConvNeXt. For a given class label y, the first row shows the output of Stable Diffusion for “a
photograph of y”. The images in the other rows have been optimized to maximize the difference of the confidence between a ViT-B and a
ConvNeXt-B. Empty wine glasses are classified as “goblet” by the ConvNeXt-B, whereas the ViT-B predicts “red wine”. For the class
“vase”, realistic images without flower blossoms (high confidence for ViT-B) and paintings with more pronounced blossoms (high confidence
for ConvNeXt-B) result in a large difference of confidence. Only the ConvNeXt, but not the ViT, predicts “shower curtain” for colorful
exemplars and the opposite holds for the gray ones. A close-up of a cat face with large green eyes triggers only the ViT’s prediction of
“tabby cat”, while only the ConvNeXt model assigns a high confidence to a zoomed-out version without eyes.

D.1.1 Captioning

As every DDIM inversion requires a prompt, we first have
to generate a prompt that describes x̂. As we are going to
use the XA maps to create a foreground segmentation map,
it is important to have an accurate description of both the
foreground object but also the background, such that in the
XA layers, only the spatial locations in the image belong-
ing to the class object attend to words from the class name
corresponding to ŷ, which we call <ORIGINAL CLASS-
NAME>. We found that using the generic caption "an image
of a <ORIGINAL CLASSNAME>" results in worse post-
inversion reconstruction qualities and can result in words
contained in the class name attending to locations in the
background of the image as these background objects do
not have matching descriptions in the generic caption. We,
therefore, use Open-Flamingo [3, 7] to enhance the generic
captions. In particular, we manually label less than 30 im-
ages from the training set and always use the form: "an image
of a <ORIGINAL CLASSNAME> <BACKGROUND DE-
SCRIPTION>", for example, "an image of a koala hanging
on a tree". We can then use the Flamingo model to take the
image x̂ with the generic prompt "an image of a <ORIGI-
NAL CLASSNAME>" as input and add a background de-
scription that resembles our handcrafted ones. We call the
resulting prompt P̂ . In particular, due to its construction, P̂
is guaranteed to contain the name of the starting class.

To use P̂ as conditioning within the Stable Diffusion
pipeline, we then encode the prompt P̂ into its representation
Ĉ = τ(P̂ ) using the CLIP text encoder τ .

D.1.2 Inversion:

Next, we have to invert x̂, i.e. find a latent zT that, to-
gether with the conditioning Ĉ reconstructs the original
image. The standard DDIM inversion [79] often results
in bad inversions that do not recreate x̂. We, therefore,
use Null-Text inversion [53], which uses the DDIM inver-
sion with its latent zT as initialization and then optimizes
the null-text tokens (∅t)

T
t=1 such that the image resulting

from the diffusion process matches the original image x̂,
i.e. x̂ ≈ D

(
z0(zT , Ĉ, (∅t)

T
t=1)

)
, where we use z0 for the

function that takes a starting latent zT , conditioning matrix
Ĉ and the null-text sequence (∅t)

T
t=1 and returns the final

latent obtained from running the entire diffusion process.

D.1.3 Initialization using XA-injections

Our objective is to create an image x that is similar to x̂ but
shows an object from the new target class y. To achieve
this, we can make use of the knowledge contained in SD
to find a better initialization in the CLIP encoding space.
A good initialization is important because our optimization
problem is highly non-convex, thus the initialization will di-



Figure 17. A graphical representation of our DiG-IN UVCE generation. We start with the input image and caption it using OpenFlamingo
to get a prompt P̂ . A new prompt P containing the target class name is generated via string replacement. Both are encoded via the CLIP
text model to get the conditionings Ĉ and C belonging to the original and target class names. We then use Null-Text inversion with the
original prompt Ĉ to get a starting latent zT and null-text sequence (∅t)

T
t=1 which can be used to re-generate the input image. We then

run the standard DDIM denoising process using zT , Ĉ and (∅t)
T
t=1 which will restore the original image and allows us to capture the

Cross-Attention (XA) maps. These can be used to produce a point prompt for a segmentation model to create a segmentation map of the
foreground object. The initialization for our optimization is obtained by replacing the original conditioning Ĉ with the new conditioning C
and by using prompt-to-prompt-like XA injection using the stored XA maps. As the resulting image will often have low confidence in the
target class and/or be too far away from the input image, we optimize zT , (Ct)

T
t=1 and (∅t)

T
t=1 using the ADAM optimizer to obtain our

final UVCE.

rectly influence the resulting image as we can not guarantee
convergence to the global minimum and also, we are inter-
ested in producing images with as few optimization steps as
possible. It is thus natural to take the original prompt P̂ and
create a new prompt P by replacing the name of the starting
class <ORIGINAL CLASSNAME> with the name of the tar-
get class <TARGET CLASSNAME>. After encoding using
the CLIP encoder τ , we then get an additional conditioning
C = τ(P ), corresponding to the prompt containing the label
of the target class y.

Note that the Null-Text inversion naturally results in a
time-step-dependent sequence of null-text tokens (∅t)

T
t=1,

which is why we also adopted time-step-dependent condi-

tioning (Ct)
T
t=1 to have the same degrees of freedom in both

the null-text and the conditioning during optimization. We
initialize Ct = C for all t.

The issue is that even local changes in the conditioning
tend to have a global impact on the final image, which will
lead to D

(
z0(zT , C, (∅t)

T
t=1)

)
looking very different from

D
(
z0(zT , Ĉ, (∅t)

T
t=1)

)
, not only in the foreground but also

in the background (we refer readers to Figure 5 in the orig-
inal Prompt-to-Prompt paper [34] for a visualization). As
our goal is to create a VCE that resembles the original im-
age, this is highly undesirable as we would have to spend
many optimization steps to minimize the distance in the
background between our new image and the starting image.



[34] found that the overall image structure is mostly dic-
tated by the first diffusion steps and the XA maps inside the
denoising U-Net ϵ. It is thus possible to preserve the overall
image structure by injecting the XA maps that lead to the
creation of one image when creating a new image with a
modified prompt. Recall from Section A.3.1 that inside the
i-th XA layer in the U-Net, we compute a weight matrix
M (i) that measures similarity between the U-Net encoded
spatial features from the current latent ϕi(zt) and the en-
coded text prompt Ct. In detail, M (i) corresponds to the
softmax-normalized similartiy between:
• The query matrix Q(i), i.e. the projected internal repre-

sentation of zt inside the U-Net W (i)
Q · ϕi(zt) where the

number of rows corresponds to the spatial resolution of
the output of ϕi, e.g. 16× 16 = 256. We call this spatial
resolution Nϕi .

• The key matrix K(i), i.e. the projected conditioning Ct

at time step t: W (i)
K · Ct. The number of rows in K(i)

corresponds to the number of tokens Nc that the prompt
was split into in the tokenizer of the CLIP encoder.
As M (i) is defined as the post softmax output of Q(i) ·(

K(i)
)T

, M (i) is a matrix of size Nϕi
×Nc. The (j, k)-th

entry can therefore be interpreted as the similarity between
the spatial features at position j in the flattened version of
ϕi(zt) and the k-th token in the conditioning matrixCt. Now
let M̂ (i)

t correspond to the XA maps that can be obtained
from the i-th XA layer inside the denoising U-Net at time
step t when running the diffusion process with the original
conditioning Ĉ. Due to the null-text inversion, this diffusion
process will nearly perfectly reconstruct the original image
x̂ and thus the XA maps M̂ (i)

t will capture the structure of
the original image.

During optimization, we now want to re-inject those
XA maps when using our modified conditioning sequence
(Ct)

T
t=1. Let M (i)

t denote the new XA maps at time step t
at the i-th XA layer of the U-Net that corresponds to the
similarity between the spatial features and tokens belonging
to the current conditioning Ct being optimized instead of the
original conditioning Ĉ. [34] found that it is not necessary
to inject the original XA maps M̂ throughout the entire dif-
fusion process and therefore only did the XA injection for a
certain part of the diffusion process.

Note that the original Prompt-to-Prompt implementation
only supports the replacement of words in a 1-to-1 fashion.
However, in our case, <ORIGINAL CLASSNAME> and
<TARGET CLASSNAME> can have a different number of
words. We, therefore, calculate a similarity matrix that mea-
sures the cosine distance between all words in both strings in
CLIP embedding space (if a word is encoded into multiple
tokens, we average all of them to get a word-level represen-
tation in the CLIP latent space) and use these distances to
reshape M̂ (i)

t into a matrix that has the same size as M (i)
t

via weighted averaging.

D.1.4 Distance regularization and Optimization

Given zT , (Ct)
T
t=1 and (∅t)

T
t=1 and the original XA maps

M̂
(i)
t we can finally define our optimization objective as

in Eq. (5). Our new initialization will show class features
from y and be relatively similar to x̂, however, as we show
in Figure 18a, the resulting images often have quite low
confidence in the target class y and non-localized changes.
Optimizing the confidence can again be done by maximizing
log pf (y|x). For the distance regularization, we use the
segmentation-based regularization described in the main
paper in Eq. (4).

The idea behind our distance regularization is to allow
the UVCE process to do larger color changes on the object
itself if necessary but keep the background as close to the
original image as possible. If we know the pixel locations
corresponding to the foreground object in the original image,
i.e. we are given a foreground segmentation mask SPX it is
easy to define the distance regularization in pixel space as
was done in the main paper:

∥(1− SPX)⊙ (D(z)− x̂)∥22. (18)

Since we know the class name associated with the fore-
ground object, we could in principle use a segmentation
model with text prompting to obtain such a mask. However,
we noticed that off-the-shelve text prompted models often
yield unreliable segmentation masks. To overcome this, we
first generate a mask estimate using the XA maps and then
use this to generate a point prompt for HQ-SAM [42] to gen-
erate a segmentation mask in pixel space. We found point
prompting with pixel locations belonging to the foreground
object to yield much more reliable segmentation masks. As
noted previously, we can use the XA maps to get an idea of
the location of the object in the image. Typically, the overall
structure is captured best by the XA maps corresponding to
the earlier diffusion steps. We, therefore, average the initial
XA maps M̂ (i)

t from the first half of the diffusion process at
resolution 16× 16 in the U-Net that belong to all tokens that
correspond to the words in <ORIGINAL CLASSNAME> to
approximate the location of the object in the image (see also
Figure 12). For example, for the dog breed "Cocker Spaniel",
we average the XA maps that correspond to the 3 tokens that
the CLIP tokenizer uses to encode this class name. We then
upscale this initial segmentation mask to the resolution of the
original image, normalize it to have a maximum value of 1,
and set all values below a pre-defined background threshold
to 0 to obtain a first segmentation mask. Due to the low
resolution and high amount of noise in the XA maps, this
initial segmentation can be quite inaccurate. We therefore
randomly sample 5 points from this initial mask and use
it to prompt the HQ-SAM model. This gives us a binary



Algorithm 2 DiG-IN UVCE Generation
Input: Input image x̂, Starting class ŷ, Target class y, number of iterations K, Classifier f
start_classname = ClassNames[ŷ] ▷ Create prompts
target_classname = ClassNames[y]
P̂ = open_flamingo( x̂, "an image of a" + start_classname)
P = P̂ .replace(start_classname, target_classname)

Ĉ = τ(P̂ ) ▷ CLIP Encode prompts
C = τ(P )

zOriginal,∅1, ...,∅T = null_text_inversion(x̂, Ĉ) ▷ Invert Image
zT = zOriginal.clone().detach()

xa_maps = ddim_loop_extract_xa(zT , Ĉ,∅1, ...,∅T ) ▷ Extract Cross-Attention maps
SPX, SVAE = make_segmentation_from_xa(xa_maps) ▷ Get Pixel and latent space masks

for t = 1, ..., T do ▷ Initialize time step-dependent conditioning
Ct = C

end for
optim = Adam( zT , C1, ..., CT ,∅1, ...,∅T ) ▷ Define the optimizer

for k = 1, ...,K do ▷ Optimization loop
z = zT
z0 = ddim_loop_xa_inject(zT , C1, ..., CT ,∅1, ...,∅T , xa_maps)

x = D(z0) ▷ Decode final latent using VAE decoder
lCE = − log pf (y|x) ▷ Calculate losses
ld = wVAE∥(1− SVAE)⊙ (z0 − zOriginal))∥22 + wPX∥(1− SPX)⊙ (x− x̂)∥22.
l = lCE + ld
l.backward() ▷ Calculate gradients

optim.step()
optim.zero_grad()

end for
return zT , (Ct)

T
t=1, (∅t)

T
t=1

mask in the size of the original image. We post-process this
mask using erosion and dilation filtering as well as Gaussian
blurring to obtain the mask in pixel space SPX. We show
examples of our masks in Fig. 18b. We found it beneficial
to also regularize the distance in the VAE latent space and
therefore downsample SPX by the VAE downsampling factor
to obtain the VAE latent mask SVAE. Given those masks, we
can define our regularizer as:

d(z, x̂) =wVAE∥(1− SVAE)⊙ (z − E(x̂))∥22
+wPX∥(1− SPX)⊙ (D(z)− x̂)∥22.

(19)

With this masked distance regularizer, we allow our op-
timization to arbitrarily change the foreground object, for
example, it allows us to have large color changes that are not

achievable with standard lp regularization while still enforc-
ing a strong similarity in the background of the image. We
emphasize that it is important to have an accurate description
of the background to make sure that background pixels are
not captured by words in the class name, which is why it
is important to use detailed Flamingo captions instead of
generic ones.

Similar to the original Prompt-to-Prompt paper [34], we
also found it beneficial to use mask blending outside of the
foreground mask to further enforce background similarity to
the original image in the first steps of the diffusion process.

Given the foreground mask, we optimize the starting
latent zT , our modified prompt embedding (Ct)

T
t=1, and the

null-text sequence (∅t)
T
t=1 to maximize the objective given

in Eq. (5).



Original XA Text-Edit DiG-IN
Walker Hound → Redbone → Redbone

0.00 0.99

Original XA Text-Edit DiG-IN
Head Cabbage → Cauliflower → Cauliflower

0.02 0.99

(a) Comparison of UVCEs to text-guided changes with XA injection that we use as initialization: We show examples where the P2P-style initialization
fails. For the image on the left, P2P can preserve the overall image structure, however, the word replacement from "Walker Hound" to "Redbone" in the prompt
is not sufficient for generating an image that is labeled as "Redbone" with a high confidence. Our DiG-IN optimization is able to add the missing features and
achieve 0.99 confidence. For the image on the right, P2P generates a low-quality image and blurs the fingers without creating a proper Cauliflower.

Original Segmentation Original Segmentation Original Segmentation

(b) Foreground segmentation masks created via point-prompting HQ-SAM [42].

Figure 18

D.1.5 Hyperparameters

The hyperparameters are identical across all UVCE tasks
and images presented in this paper. This shows that our
method can adapt to a large variety of image configurations
and supports new classifiers as well as very different image
datasets without any hyperparameter tuning.

Resolution 512
Guidance Scale 3.0

DDIM steps 20
Optimizer ADAM

Optimization steps 20
Ct,∅t stepsize 0.01
zT stepsize 0.001
Scheduler ✗

Gradient Clipping ✗

wVAE 25.0
wPX 250.0

Num. cutouts 16
Cutout Noise σ 0.005

D.2. Qualitative Result

First, we demonstrate the impact of the guiding classifier on
the resulting DiG-IN UVCEs in Fig. 19 using 4 state-of-the-
art classifiers. In addition to the ViT-B [81] pre-trained on
IN21K we used for the ImageNet VCEs in the main paper,
we evaluate a ConvNeXt-L [48] pre-trained with CLIP loss
on Laion-2B [70], a ConvNeXt-V2-H [91] pre-trained on

IN21K and a EVA02-L [23] trained on MIM38M. All models
are fine-tuned on IN1K. As can be seen, the guiding classifier
can have a strong impact on the resulting image which shows
the impact of our optimization even when using the Prompt-
to-Prompt initialization.

In Fig. 20 we show additional qualitative results on Ima-
geNet where we compare our UVCEs to DVCEs [5] in the
generation of classes that are close in the WordNet hierarchy.
As the classifier, we use the same ViT-B as in the main paper.
We again demonstrate that we can generate highly realisti-
cally looking UVCEs with minimal background changes that
achieve high confidence in the target class. Unlike DVCEs,
we cannot only handle texture changes but also more com-
plex class changes that require editing the geometry of the
image. For a selection of random images, please also refer
to Fig. 27 and Fig. 28 which show the images for the user
study.

Additionally, in Fig. 21, Fig. 22 and Fig. 23, we present
UVCEs in a more fine-grained context for the CUB, Food-
101 and Cars datasets. The classifiers are the same as in
Fig. 7, namely a CAL-ResNet101 [62] classifier for Cars, a
fine-tuned ViT-B [30] for CUB and a fine-tuned ViT-B on
Food-101. Our broad model selection shows that our UVCEs
cannot only be used to explain standard vision transformers
but also support models with different pre-training strategies
as well as convolutional neural networks without adjusting
hyperparameters. Note that DVCEs only support ImageNet
due to the requirement for a diffusion model trained on



that dataset and a robust classifier trained on the specific
dataset which are not available for the CUB, Cars, or Food-
101 datasets. Similar to ImageNet, we are able to create
highly realistic VCEs that can handle very fine-grained class
changes which cannot be achieved via textural changes that
also preserve the image background due to our background
distance regularization.

D.2.1 EVA02 Error UVCEs

It can also be interesting to use UVCEs as a tool to under-
stand prediction errors on the validation set. For this, we
first evaluate the test set accuracy and save the indices cor-
responding to all images where the predicted class does not
match the target class. We then create a UVCE into the
target class by optimizing equation Eq. (5). Since we al-
ready use the target class name for the initial prompt P̂ and
during inversion, we cannot use Prompt-to-Prompt for such
error UVCEs. Nevertheless, as Fig. 25 shows, our DiG-IN
UVCE method can generate meaningful images that achieve
a high confidence by optimizing the cross-entropy into the
target class. The EVA02-L we used to generate these UVCEs
classifier achieves an ImageNet-1K validation accuracy of
90.05%, however, as our UVCEs show, the real accuracy is
likely higher, since most errors are either caused by ambigu-
ous labels (i.e. multiple objects on the image) or wrongly
labeled validation images.

D.2.2 Zero-Shot Attribute UVCEs

Lastly, we demonstrate UVCEs for zero-shot attribution
classification using a CLIP model.

Assume we want to create a counterfactual that changes
a certain source attribute to a target attribute in an image, for
example, "smiling" to "looking sad" for a zero-shot attribute
classifier. We first describe how we turn the CLIP model
into a binary zero-shot classifier for this particular image x̂
and attribute. We again start with a prompt P̂ that contains
the textual description of the source attribute and image, for
example, "a closeup portrait of a man smiling". We then
replace the source with the target attribute to obtain P , in
this case, "a closeup portrait of a man looking sad". Note
that we use the same prompts P̂ and P for the zero-shot
classification as well as the DDIM inversion and DiG-IN
generation.

Next, both prompts are encoded by the text encoder of
the CLIP model ftxt. Given an input image x, we decode it
using the image encoder fim. For both encoders, we assume
that the outputs are normalized as per usual. Now we can
calculate the logits for the two classes (corresponding to the
target and source attribute) as:

< ftxt(P ), fim(x) > and < ftxt(P̂ ), fim(x) > (20)

The log-probability of the binary zero-shot classifier de-
tecting the target attribute is thus given by:

log
exp(< ftxt(P ), fim(x) >)

exp(< ftxt(P ), fim(x) >) + exp(< ftxt(P̂ ), fim(x) >)
.

(21)
For the examples in Fig. 24, we use face images from

FFHQ [41] and the OpenCLIP [38] implementation of the
CLIPA [46] ViT-H/14 trained on DataComp-1B [25]. Faces
are generally challenging for VCEs as humans are naturally
good at recognizing minor modifications between the gen-
erated and original image. Still, our examples demonstrate
that we can create highly realistic UVCEs that only change
the source to the target attribute while preserving the overall
facial structure. In particular, for all examples, the person in
the generated image can clearly be identified to be the same
as the one in the starting image and the faces look realistic
without any artifacts.

E. User Study
For the user study, we collected 30 pairs of original and tar-
get classes at random from a pool of more than 3000 VCEs
that were generated for similar classes in the ImageNet hier-
archy and asked 30 participants to answer the four questions
described in Sec. 5. Each participant assessed 1 to 30 image
pairs. They participated voluntarily (without payment) and
had not seen the generated images before.

During the random selection of examples, we disregarded
cases where the optimization failed for one of the methods
by thresholding the confidence in the target class at 0.8. We
also provided four random training images of the target class
as a reference as well as the original image. The VCEs were
displayed as “Counterfactual A” and “Counterfactual B” (see
Fig. 26). For each participant, the order of the examples, as
well as the (per example) assignment of the two methods to
“A” and “B” were chosen at random. All images used in the
user study along with the individual results can be found in
Fig. 27 and Fig. 28.

F. Neuron Activations
F.1. Synthetic Neuron Visualizations

For synthetic neuron visualizations, we start by computing
the activations over the train set. For a given neuron n, we
then ask CogAgent [37] to list the objects in the 5 most
activating train images via the prompt "list the most impor-
tant objects in the image in a list format starting with [ and
ending with ] without a full sentence". For each object, we
use Stable Diffusion to generate 8 images using the prompt
"a photograph of a <OBJECT>" and use the conditioning
from the encoded prompt of the object that achieves the high-
est mean activation for neuron n as initialization C for our
optimization.



ImageNet Guidance: Guidance: Guidance: Guidance:
Validation Image ViT-B ConvNeXt-L ConvNeXt-V2-H EVA02-L

Custard Apple →: Jackfruit →: Jackfruit →: Jackfruit →: Jackfruit
0.99 / 0.90 / 0.95 / 0.72 0.41 / 0.93 / 0.92 / 0.67 0.93 / 0.93 / 0.96 / 0.72 0.03 / 0.22 / 0.28 / 0.81

Ptarmigan →: Peacock →: Peacock →: Peacock →: Peacock
0.99 / 0.86 / 0.90 / 0.67 0.86 / 0.92 / 0.69 / 0.64 0.97 / 0.87 / 0.72 / 0.73 0.95 / 0.87 / 0.80 / 0.73

Kit Fox →: Arctic Fox →: Arctic Fox →: Arctic Fox →: Arctic Fox
0.98 / 0.78 / 0.85 / 0.39 0.96 / 0.97 / 0.91 / 0.74 0.98 / 0.91 / 0.94 / 0.70 0.18 / 0.74 / 0.86 / 0.87

Egyptian Cat →: Persian Cat →: Persian Cat →: Persian Cat →: Persian Cat
0.95 / 0.86 / 0.95 / 0.70 0.65 / 0.96 / 0.88 / 0.66 0.70 / 0.89 / 0.98 / 0.59 0.75 / 0.65 / 0.76 / 0.87

Jeep →: Model T →: Model T →: Model T →: Model T
0.99 / 0.90 / 0.95 / 0.68 0.07 / 0.91 / 0.20 / 0.56 0.52 / 0.88 / 0.95 / 0.66 0.09 / 0.88 / 0.39 / 0.75

Figure 19. Differences between DiG-IN UVCES when using different SOTA ImageNet models as guiding classifier. We use a ViT-B [81]
pre-trained on IN21K, a ConvNeXt-L [48] pre-trained with CLIP loss on Laion-2B [70], a ConvNeXt-V2-H [91] pre-trained on IN21K and
a EVA02-L [23] trained on MIM38M. All models are fine-tuned on IN1K. The confidences into the target classes are given as: confidence
ViT-B / ConvNeXt-L / ConvNeXt-V2-H / EVA02-L.



Original DVCE[5] DiG-IN Original DVCE[5] DiG-IN
Goldfinch → Junco 0.99 → Junco 0.98 Wallaby →Wombat 1.00 →Wombat 0.98

Walker Hound → Redbone 1.00 → Redbone 0.99 Arctic Fox → Red Fox → Red Fox 0.98

Leopard →Cougar 0.93 →Cougar 0.99 Anemone Fish →Goldfish 1.00 →Goldfish 0.99

Orangutan →Chimpanzee 0.99 →Chimpanzee 0.94 Church →Mosque 1.00 →Mosque 0.99

Lifeboat →Fireboat 1.00 →Fireboat 0.97 Head Cabbage →Cauliflower 1.00 →Cauliflower 0.99

Custard Apple →Strawberry 1.00 →Strawberry 0.98 Carbonara →Guacamole 1.00 →Guacamole 0.99

Figure 20. ImageNet-1K [66] DiG-IN UVCEs and DVCEs [5] for a ViT-B/16 AugReg [19, 81] pretrained on ImageNet-21K. Note that
UVCEs are better at preserving the background (the branch for "Goldfinch →Junco", the ground for "Wallaby → Wombat") while also
being able to do more complex geometry changes that can be required to transfer one class into another ("Church → Mosque", "Custard
Apple → Strawberry") and generally yield a higher image quality and more meaningful features ( "Orangutan → Chimpanzee", "Anemone
Fish → Goldfish").



Original DiG-IN Original DiG-IN Original DiG-IN
American Crow → Cardinal 0.99 Least Auklet → Nor. Waterthrush 0.99 Parakeet Auklet → American Pipit 0.98

Red winged Blackbird → Least Flycatcher 0.98 Rusty Blackbird → Hooded Oriole 0.97 Pigeon Guillemot → Common Raven 0.89

Cardinal → Ring billed Gull 0.88 Spotted Catbird → Painted Bunting 0.99 Gray Catbird → Harris Sparrow 0.95

Figure 21. CUB-200-2011 [88] UVCEs for a for a ViT-B/16 AugReg [19, 81] pretrained on ImageNet-21K and fine-tuned on CUB.

Original DiG-IN Original DiG-IN Original DiG-IN
poutine → pork chop 0.99 gnocchi → mussels 0.99 caprese salad → greek salad 0.95

grilled salmon → pad thai 0.99 gyoza → donuts 0.97 fried calamari → onion rings 0.99

cannoli → seaweed salad 0.98 ceviche → beef tartare 0.98 eggs benedict → cup cakes 0.99

Figure 22. Food-101 [11] UVCEs for a for a ViT-B/16 AugReg [19, 81] pretrained on ImageNet-21K and fine-tuned on Food-101.



Original DiG-IN Original DiG-IN Original DiG-IN
GMC Terrain

SUV 2012
→ Hyundai Sonata

2012
0.99

Audi S5
Convertible 2012

→ Dodge Challenger
SRT8 2011

0.97

Ferrari California
Convertible 2012

→ A.M. Virage
Convertible 2012

0.99

A.M. V8 Vantage
Coupe 2012

→ Bentley Arnage
Sedan 2009

0.99

Acura TL
Sedan 2012

→Mercedes S-Class
Sedan 2012

0.99

BMW 3 Series
Sedan 2012

→ Bentley Continental
GT Coupe 2007

0.99

Bentley Continental GT
Coupe 2012

→ Ford Mustang
Convertible 2007

0.99

Buick Verano
Sedan 2012

→ Honda Accord
Sedan 2012

0.99

Lamborghini Aventador
Coupe 2012

→ Jaguar XK XKR
2012
0.99

Figure 23. Stanford Cars [43] DiG-IN UVCEs for a for a CAL-ResNet101 [62] trained on the Cars dataset.

Original DiG-IN Original DiG-IN Original DiG-IN
"...eyes closed..." → "...eyes open..." "...shaved..." → "...moustache..." "...looking sad..." → "...smiling..."

"...red hair..." → "...blonde hair..." "...smiling..." → "...looking sad..." "...old man..." → "...young boy..."

Figure 24. FFHQ UVCEs for a zero-shot attribute classifier based on a CLIPA [46] text and image encoder pair.



Misclassified DiG-IN
Val. Image UVCE

kit fox: 0.50 kit fox: 0.01
red fox: 0.16 red fox: 0.76:

tailed frog: 0.40 tailed frog: 0.06
tree frog: 0.25 tree frog: 0.70

wild boar: 0.48 wild boar: 0.09
hog: 0.24 hog: 0.60

Misclassified DiG-IN
Val. Image UVCE

stopwatch: 0.47 stopwatch: 0.02
analog clock: 0.13 analog clock: 0.75

coffeepot: 0.50 coffeepot: 0.00
espresso maker: 0.16 espresso maker: 0.79

paintbrush: 0.67 paintbrush: 0.07
face powder: 0.02 face powder: 0.30

Misclassified DiG-IN
Val. Image UVCE

recr. vehicle: 0.66 recr. vehicle: 0.00
trailer truck: 0.08 trailer truck: 0.74

choc. sauce: 0.54 choc. sauce: 0.01
ice cream: 0.07 ice cream: 0.75

beach wagon: 0.64 beach wagon: 0.00
minivan: 0.03 minivan: 0.84

Figure 25. EVA02-L error UVCEs: We generate DiG-IN UVCEs into the target class for images that are misclassified by an EVA02-L [23]
(90.05% accuracy) according to the labels in the original IN1K validation set. Above each image, we give the confidence into the wrongly
predicted class (top) and the correct/target class (bottom). We note that most "errors" according to ImageNet labels are results of ambiguous
labels or straight-up labeling errors.

Figure 26. User Study: The participants were shown four training images of the target class, the original image and the two VCEs.



Results: Q1 / Q2 / Q3 / Better? (in %)
Target Example Original DVCE UVCE (ours) Target Example Original DVCE UVCE (ours)

n=19 0 / 79 / 63 / 0 95 / 95 / 95 / 89 n=19 58 / 95 / 42 / 26 63 / 84 / 95 / 26

n=24 0 / 0 / 38 / 0 79 / 58 / 96 / 83 n=19 26 / 32 / 26 / 0 89 / 95 / 100 / 95

n=21 10 / 76 / 86 / 19 90 / 14 / 95 / 38 n=21 62 / 95 / 100 / 81 81 / 71 / 100 / 10

n=18 6 / 44 / 72 / 0 94 / 100 / 100 / 100 n=20 35 / 70 / 80 / 5 95 / 90 / 90 / 70

n=23 30 / 30 / 87 / 4 100 / 87 / 87 / 87 n=21 86 / 76 / 90 / 24 67 / 86 / 90 / 48

n=18 6 / 22 / 89 / 0 67 / 56 / 94 / 56 n=19 58 / 74 / 74 / 0 95 / 89 / 100 / 84

n=18 67 / 100 / 94 / 39 61 / 94 / 89 / 33 n=16 50 / 69 / 56 / 0 75 / 81 / 100 / 75

n=17 94 / 100 / 76 / 82 29 / 88 / 88 / 12 n=20 45 / 75 / 80 / 0 85 / 95 / 100 / 85

Figure 27. User Study: Examples 1-16 Q1: ’... is realistic’ Q2: ’... is realistic’ Q3: ’... is realistic’ Better?: ’Which counterfactuals is
better?’



Results: Q1 / Q2 / Q3 / Better? (in %)
Target Example Original DVCE UVCE (ours) Target Example Original DVCE UVCE (ours)

n=19 47 / 95 / 63 / 26 79 / 100 / 68 / 32 n=19 53 / 84 / 89 / 42 16 / 79 / 89 / 21

n=19 26 / 42 / 63 / 0 89 / 89 / 100 / 89 n=22 91 / 95 / 91 / 73 32 / 55 / 77 / 0

n=18 44 / 78 / 61 / 17 89 / 67 / 94 / 56 n=21 10 / 38 / 81 / 0 90 / 81 / 62 / 90

n=22 9 / 9 / 77 / 5 91 / 91 / 73 / 91 n=20 55 / 100 / 70 / 20 50 / 95 / 65 / 25

n=21 100 / 95 / 95 / 52 90 / 90 / 95 / 19 n=18 67 / 94 / 50 / 22 100 / 94 / 94 / 67

n=17 71 / 82 / 94 / 6 88 / 82 / 94 / 59 n=17 12 / 24 / 76 / 0 47 / 88 / 88 / 82

n=26 19 / 46 / 73 / 4 92 / 92 / 92 / 88 n=18 6 / 44 / 89 / 0 78 / 94 / 94 / 89

Figure 28. User Study: Examples 17-30 Q1: ’... is realistic’ Q2: ’... is realistic’ Q3: ’... is realistic’ Better?: ’Which counterfactuals is
better?’

We then maximize Eq. (6) to achieve prototypical exam-
ples that maximize this neuron. To visualize the necessity of
our optimization and the benefits over manual inspection of
the maximally activating train images and using text-guided
Stable Diffusion without optimization we refer to Fig. 29.
Note that our optimization can generate prototypical exam-
ples for a neuron that achieve higher activations than even
the maximally activating train images that the model was

trained on. Additionally, we can visualize highly specialized
neurons much more accurately than with text guidance only.
For example, the highest activating object from CogAgent
for neurons 494 and 798 of the SE-ResNet is "water". How-
ever, generating images using the default prompt does not
result in large neuron activations. In contrast, DiG-IN can
create highly active images without manual prompt tuning.
We also highlight that given the target neuron n, our pipeline



is completely automatic and does not require humans in the
loop.

We show additional examples of similar neurons, similar
to the ones shown in the main paper in Fig. 30 and more indi-
vidual neurons in Fig. 31. We highlight that we can generate
visualizations for a diverse set of neurons that achieve higher
activations than the most activating train images and that
are easy to interpret. However, while we identify maximally
activating visual concepts of neurons, we note that we are
not aiming at achieving an exhaustive list of such concepts,
but just visualize one per neuron.

F.2. Neuron Counterfactuals

The creation of neuron counterfactuals is similar to that
of our UVCEs. Instead of optimizing the confidence, we
maximize or minimize the activation of the target neuron.
On top of that, since we now want to keep the class object
fixed while allowing for background changes, we no longer
use the inverted masks (1 − SPX) but SPX directly in the
regularization term. The resulting objective is given by:

max
zT ,(Ct)Tt=1,(∅t)Tt=1

ϕ
(
D
(
z0

(
zT , (Ct)

T
t=1, (∅t)

T
t=1

) ))
n

−wVAE∥SVAE ⊙ (z − E(x̂))∥22
−wPX∥SPX ⊙ (D(z)− x̂)∥22.

(22)

Hyperparameters are identical to the ones used for
UVCEs. We show additional examples for our neuron visu-
alization for the spurious neurons found in [76] in Fig. 32
and Fig. 33.

F.3. Quantiative Evaluation

We also quantitatively evaluate whether or not a given neuron
is spurious, i.e. if it is activated by the class object or back-
ground features. To do this, we use HQ-SAM [42] with man-
ual prompting and quality control to segment the foreground
object in our neuron counterfactuals and remove images
where the class object is no longer visible post-optimization
or covers the entire image. We then calculate the HiResCAM
[20] activation map where we use the neuron’s activation
as loss for gradient calculations. This results in a heatmap
with the size of the original input image with larger values in
areas that activate the neuron. We then normalize the CAM
map to sum to 1 and integrate it over our segmentation mask.
A larger sum outside the segmentation mask implies that the
neuron is spurious. The maximum value of 1 would corre-
spond to the entire activation being on the background and
the minimum value of 0 corresponds to the entire activation
being on the class object.

Results for 4 spurious and 4 core neurons can be found
in Tab. 2 and some examples in Fig. 34. Note that the core

neurons from [76] are more focused on the class object (
∑

CAM outside mask closer to 0) whereas the corresponding
sum is closer to 1 for spurious neurons. We note that this is
the case even though our regularization term tries to preserve
the foreground object, in which case the optimization tries to
generate a background that activates the target neuron, which
naturally increases the sum over the CAM map outside of
the segmentation mask even for core neurons.

G. NPCA counterfactuals and harmful spuri-
ous features

Class-wise neural PCA (NPCA) Instead of individual neu-
rons, [54] introduce class-wise neural PCA components to
identify spurious features: Let ϕ(x) ∈ RD be the features of
the penultimate layer of a neural network for an input x and
wk ∈ RD the last layer weights associated with a given class
k. The NPCA components are computed by performing prin-
ciple component analyisis on {ψk(x) := wk ⊙ ϕ(x)}x∈Dk

where Dk are all images of class k in the ImageNet training
set. The contribution of an NPCA component l to the logit
of class k is

α
(k)
l (x) = ⟨1, vl⟩⟨ψk(x)− ψ̄k, vl⟩,

where ψ̄k is the mean of ψk(x) over Dk and vl is the eigen-
vector corresponding to the principal component l. Code for
NPCA and the spurious components are available at https:
//github.com/YanNeu/spurious_imagenet.

NPCA counterfactuals Analogous to the neuron coun-
terfactuals, we maxmize and minimize the logit contribution
α
(k)
l starting from training images of class k for several

NPCA components that were labeled as spurious in [54]
(see Fig. 35). In contrast to the neurons, these contribu-
tions can also attain negative values. The negative range can
correspond to a different semantic feature.

https://github.com/YanNeu/spurious_imagenet
https://github.com/YanNeu/spurious_imagenet


Neuron 494
Prompt with largest Act.: "Water"

Train Img: 7.95 Text-guid.: 0.02 DiG-IN: 17.61

Train Img: 7.24 Text-guid.: 2.12 DiG-IN: 16.42

Neuron 798
Prompt with largest Act.: "Water"

Train Img: 5.84 Text-guid.: 0.81 DiG-IN: 10.66

Train Img: 5.31 Text-guid.: 0.35 DiG-IN: 12.83

Neuron 90
Prompt with largest Act.: "Hill"

Train Img: 7.57 Text-guid.: 0.23 DiG-IN: 7.90

Train Img: 5.89 Text-guid.: 2.51 DiG-IN: 15.13

Figure 29. Neuron visualization for a SE-ResNet-D 152 [90]: We demonstrate the need for our Guided Diffusion optimization to properly
explain a target neuron. While investigating highly activating images from the train set can give us an idea of which concepts are captured by
a neuron, natural images often contain multiple objects which makes it unclear which object or concept in particular activates the target
neuron. For the two leftmost neurons "932" and "494" (see Figure 9 for more examples), the prompt word "water" from CogAgent [37]
achieves the highest average activation for images generated with text-guided Stable Diffusion without guidance. However, these neurons
are highly specialized which makes it hard to generate strongly activating images with text guidance alone, resulting in images that achieve
much lower activations than highly active images from the training set. Our DiG-IN guidance allows us to automatically create images that
show prototypical neuron visualizations that highlight the subtle differences between those neurons and achieve much higher activations
than even the most activating train images.

Maximize Neuron 292 Maximize Neuron 424 Maximize Neuron 583 Maximize Neuron 694
Mean Act. 292: 17.46

Max Mean Act. Others: 2.44
Mean Act. 424: 14.05

Max Mean Act. Others: 3.74
Mean Act. 583: 18.36

Max Mean Act. Others: 1.99
Mean Act. 694: 14.62

Max Mean Act. Others: 3.18

Maximize Neuron 53 Maximize Neuron 530 Maximize Neuron 633 Maximize Neuron 899
Mean Act. 53: 19.69

Max Mean Act. Others: 0.73
Mean Act. 530: 12.78

Max Mean Act. Others: 1.69
Mean Act. 633: 19.90

Max Mean Act. Others: 1.49
Mean Act. 899: 19.40

Max Mean Act. Others: 0.86

Figure 30. Neuron visualization for a SE-ResNet-D 152 [90]: More examples of closely related neurons that capture similar but slightly
different concepts similar to Figure 9. The neurons in the top part of the image all seem to be activated by red sand, however, while neuron
292 seems to capture piles of reddish sand, neuron 424 is activated by larger chunks. The lower part of the Figure shows different "leaf"
neurons, ranging from neurons activated by yellow leaves on the ground, dried and withered leaves, to green leaves in bushes.



Maximize Neuron 13
Generated Mean Act.: 4.55
Max Train Set Act.: 4.21

Maximize Neuron 60
Generated Mean Act.: 17.04
Max Train Set Act.: 10.34

Maximize Neuron 68
Generated Mean Act.: 12.53

Max Train Set Act.: 7.90

Maximize Neuron 73
Generated Mean Act.: 6.93
Max Train Set Act.: 6.71

Maximize Neuron 90
Generated Mean Act.: 12.69

Max Train Set Act.: 7.57

Maximize Neuron 310
Generated Mean Act.: 8.14
Max Train Set Act.: 5.07

Maximize Neuron 322
Generated Mean Act.: 18.24

Max Train Set Act.: 9.98

Maximize Neuron 334
Generated Mean Act.: 11.08

Max Train Set Act.: 6.71

Maximize Neuron 410
Generated Mean Act.: 10.72

Max Train Set Act.: 6.93

Maximize Neuron 473
Generated Mean Act.: 17.58

Max Train Set Act.: 8.54

Maximize Neuron 476
Generated Mean Act.: 13.99

Max Train Set Act.: 7.26

Maximize Neuron 495
Generated Mean Act.: 8.66
Max Train Set Act.: 5.07

Maximize Neuron 498
Generated Mean Act.: 7.03
Max Train Set Act.: 5.79

Maximize Neuron 507
Generated Mean Act.: 16.78

Max Train Set Act.: 8.11

Maximize Neuron 589
Generated Mean Act.: 13.47

Max Train Set Act.: 6.43

Maximize Neuron 608
Generated Mean Act.: 5.92
Max Train Set Act.: 5.26

Figure 31. Additional Neuron visualizations for a SE-ResNet-D 152 [90]: We provide additional examples of coherent concepts captured
by certain neurons.



Neuron 1697 (Conf. class Great White Shark)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize

Neuron 1697 Initialization Neuron 1697 Neuron 1697 Initialization Neuron 1697 Neuron 1697 Initialization Neuron 1697
5.86 (0.63) 3.20 (0.36) 1.47 (0.13) 5.66 (0.79) 1.16 (0.35) 0.09 (0.07) 5.75 (0.95) 1.90 (0.92) 0.19 (0.50)

6.10 (0.80) 4.07 (0.56) 2.27 (0.31) 5.41 (0.87) 2.54 (0.71) 0.91 (0.45) 6.97 (0.36) 4.69 (0.55) 0.32 (0.01)

Neuron 341 (Conf. American Alligator)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize

Neuron 341 Initialization Neuron 341 Neuron 341 Initialization Neuron 341 Neuron 341 Initialization Neuron 341
4.67 (0.57) 0.81 (0.26) 0.00 (0.01) 6.15 (0.11) 0.36 (0.04) 0.02 (0.01) 6.73 (0.28) 0.67 (0.02) 0.3 (0.01)

7.80 (0.07) 3.36 (0.60) 0.19 (0.08) 7.71 (0.01) 1.75 (0.09) 0.02 (0.01) 4.38 (0.40) 0.20 (0.06) 0.02 (0.00)

Neuron 565 (Conf. Prairie Chicken)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize

Neuron 565 Initialization Neuron 565 Neuron 565 Initialization Neuron 565 Neuron 565 Initialization Neuron 565
5.88 (0.97) 3.23 (0.87) 0.08 (0.01) 6.15 (0.99) 2.53 (0.99) 0.31 (0.64) 6.78 (0.80) 3.28 (0.57) 0.32 (0.00)

7.02 (0.99) 3.70 (0.99) 0.37 (0.11) 7.82 (0.98) 2.60 (0.97) 0.09 (0.02) 6.68 (0.99) 2.51 (0.99) 0.05 (0.41)

Neuron 870 (Conf. Fiddler Crab)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize

Neuron 870 Initialization Neuron 870 Neuron 870 Initialization Neuron 870 Neuron 870 Initialization Neuron 870
5.74 (0.99) 2.24 (0.93) 0.02 (0.04) 4.12 (0.99) 1.88 (0.99) 0.14 (0.34) 4.48 (0.99) 2.31 (0.97) 0.03 (0.22)

5.44 (0.99) 3.41 (0.90) 0.2 (0.00) 4.19 (0.98) 1.43 (0.86) 0.07 (0.30) 3.10 (0.95) 1.31 (0.86) 0.17 (0.16)

Figure 32. Neuron counterfactuals for spurious neurons from [76].



Neuron 1697 (Conf. class Albatross)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize

Neuron 1697 Initialization Neuron 1697 Neuron 1697 Initialization Neuron 1697 Neuron 1697 Initialization Neuron 1697
4.97 (0.99) 1.52 (0.97) 0.39 (0.40) 5.54 (0.99) 3.36 (0.99) 0.50 (0.41) 5.00 (0.99) 1.63 (0.97) 0.63 (0.85)

4.27 (0.99) 2.09 (0.99) 0.22 (0.09) 5.60 (0.99) 0.72 (0.66) 0.21 (0.17) 2.46 (0.98) 0.21 (0.93) 0.03 (0.61)

Neuron 595 (Conf. Bee)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize

Neuron 595 Initialization Neuron 595 Neuron 595 Initialization Neuron 595 Neuron 595 Initialization Neuron 595
14.61 (0.65) 4.13 (0.91) 0.15 (0.26) 15.67 (0.22) 9.19 (0.55) 0.65 (0.02) 9.96 (0.35) 0.13 (0.46) 0.03 (0.26)

10.80 (0.78) 4.89 (0.52) 0.91 (0.76) 11.90 (0.71) 5.39 (0.90) 0.99 (0.74) 10.69 (0.84) 3.12 (0.91) 0.47 (0.45)

Neuron 0 (Conf. Dogsled)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize
Neuron 0 Initialization Neuron 0 Neuron 0 Initialization Neuron 0 Neuron 0 Initialization Neuron 0

4.87 (0.99) 1.88 (0.98) 0.89 (0.82) 5.14 (0.98) 2.90 (0.94) 0.73 (0.46) 4.41 (0.99) 0.93 (0.99) 0.17 (0.95)

6.55 (0.99) 1.41 (0.98) 0.25 (0.60) 4.23 (0.91) 1.62 (0.79) 0.51 (0.40) 6.56 (0.99) 3.17 (0.95) 0.48 (0.18)

Neuron 1772 (Conf. Gondola)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize

Neuron 1772 Initialization Neuron 1772 Neuron 1772 Initialization Neuron 1772 Neuron 1772 Initialization Neuron 1772
4.59 (0.99) 0.30 (0.96) 0.15 (0.87) 4.03 (0.99) 0.72 (0.99) 0.46 (0.99) 2.53 (0.99) 1.00 (0.99) 0.38 (0.99)

5.25 (0.99) 1.82 (0.99) 0.13 (0.48) 3.97 (1.00) 1.61 (0.99) 0.44 (0.98) 6.56 (0.99) 4.16 (0.99) 0.22 (0.90)

Figure 33. Neuron counterfactuals for spurious neurons from [76].



Class Neuron Spurious [76]
∑

CAM outside mask Mean Activation
prairie chicken 565 ✓ 0.82 6.45

fiddler crab 870 ✓ 0.86 3.14
great white shark 1697 ✓ 0.77 5.22

American alligator 341 ✓ 0.83 5.76
prairie chicken 1297 ✗ 0.44 5.29

fiddler crab 952 ✗ 0.50 7.07
koala 1571 ✗ 0.33 6.73

leonberg 1065 ✗ 0.31 5.86

Table 2. Neuron countefactuals: Quantitative evaluation for background neuron activations in our DiG-IN Neuron counterfactuals.

Spurious Neurons
Neuron CF CAM CAM in CAM out

prairie chicken - Neuron 1697

fiddler crab - Neuron 870

great white shark - Neuron 1697

American alligator - Neuron 341

Core Neurons
Neuron CF CAM CAM in CAM out

prairie chicken - Neuron 1297

fiddler crab - Neuron 952

koala - Neuron 1571

leonberg - Neuron 1065

Figure 34. Neuron countefactuals: Visualization of the CAM maps and segmentation masks used for generating Tab. 2. Note that for
spurious neurons, most of the activation is on the background while for core neurons, it is on the class object.



Class 2 (Great White Shark) - NPCA Comp. 1 (Conf. class Great White Shark)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize
NPCA 1 Initialization NPCA 1 NPCA. 1 Initialization NPCA. 1 NPCA. 1 Initialization NPCA. 1

5.01 (0.58) 1.01 (0.37) −2.78 (0.04) −0.36 (0.54) −3.96 (0.50) −5.27 (0.33) 3.70 (0.39) −0.70 (0.19) −3.75 (0.05)

5.21 (0.93) −1.59 (0.57) −4.34 (0.15) 10.11 (0.78) 5.02 (0.55) −3.40 (0.07) 2.44 (0.47) −4.38 (0.01) −5.61 (0.00)

Class 554 (Fireboat) - NPCA Comp. 2 (Conf. Fireboat)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize
NPCA 2 Initialization NPCA 2 NPCA 2 Initialization NPCA 2 NPCA 2 Initialization NPCA 2

4.18 (1.00) 0.30 (0.75) −1.00 (0.09) 3.59 (1.00) 0.04 (0.95) −1.30 (0.27) 2.51 (1.00) 0.31 (1.00) −0.98 (0.94)

4.47 (1.00) 0.66 (0.89) −1.14 (0.30) 1.02 (1.00) −1.25 (0.78) −1.37 (0.69) 4.82 (0.99) −0.40 (0.32) −1.18 (0.05)

Class 324 (Cabbage Butterfly) - NPCA Comp. 3 (Conf. Cabbage Butterfly)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize
NPCA 3 Initialization NPCA 3 NPCA 3 Initialization NPCA 3 NPCA 3 Initialization NPCA 3

8.32 (0.80) 2.10 (0.55) −2.46 (0.03) 4.61 (0.90) −0.04 (0.90) −3.11 (0.03) 13.99 (0.96) 3.61 (0.83) −2.89 (0.00)

8.16 (0.78) 0.81 (0.68) −2.94 (0.34) 4.30 (0.93) −0.90 (0.78) −2.60 (0.07) 9.05 (0.96) 0.84 (0.92) −2.97 (0.01)

Class 384 (Indri) - NPCA Comp. 6 (Conf. Indri)
Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize Maximize ← ImageNet→ Minimize
NPCA 6 Initialization NPCA 6 NPCA 6 Initialization NPCA 6 NPCA 6 Initialization NPCA 6

2.21 (0.47) 0.95 (0.35) −0.82 (0.04) 1.49 (0.99) 0.21 (0.99) −0.91 (0.92) 0.54 (0.52) −0.88 (0.11) −1.40 (0.04)

1.27 (0.98) −0.38 (0.71) −1.21 (0.13) 1.66 (0.87) 0.39 (0.71) −0.82 (0.09) 0.86 (0.95) −0.15 (0.83) −0.94 (0.23)

Figure 35. NPCA counterfactuals for harmful spurious features identified in [54]. Outgoing from a generated image of the class the
corresponding NPCA component of this class is maximized respectively minimized. While the class object is not changing much, changing
the spurious feature alone can increase/decrease the confidence in the class significantly. According to [54] the spurious features for each
class are: water/foam for great white shark, water jet for fireboat, flowers for cabbage butterfly, branches/leaves for indri. The NPCA
components are available at https://github.com/YanNeu/spurious_imagenet.

https://github.com/YanNeu/spurious_imagenet


H. Limitations
One potential downside of our method is the increase in
computational cost compared to text-guided Stable Diffusion.
A possible way to overcome this is to use a distilled model
[47, 69] which can generate images in 1 to 8 steps which
would reduce overall computational costs.

We inherit systematic issues from the diffusion model,
for example, in Fig. 31, the images for neuron 73 show
the typical issues that Stable Diffusion has with producing
feet and hands. While we did not encounter this during our
evaluations, if a concept is completely unknown to Stable
Diffusion, it is possible that we fail to uncover potential
vulnerabilities of the generating classifier due to SD not
being able to generate the corresponding subgroup.

Especially for Img2Img tasks, there are several failure
modes that can occur which will reduce the quality of the
resulting image. If the HQ-SAM segmentation mask is off,
we will regularize similarity in the wrong parts of the image
which can result in the generation being too restricted or
allow for too many changes, however, overall we found the
segmentation model to be sufficiently robust. Even if the
mask is correct, it can sometimes be difficult to maximize the
main objective (confidence in the target class or neuron acti-
vation) while simultaneously preserving the image structure
in 20 optimization steps. Lastly, for our DiG-IN UVCEs, we
found that Prompt-to-Prompt sometimes leads to very large
changes and our optimization is not always able to lead the
generation back to the original image. If the diffusion model
does not know the name of the target class, it can sometimes
generate the wrong object. Due to the non-convexity of the
optimization objective, generating the right object from a
conditioning vector that SD does not associate with this ob-
ject can fail with few optimization steps. We demonstrate
some UVCE failure cases in Fig. 36



Original P2P DiG-IN
Welsh springer spaniel → Clumber

0.00
→ Clumber

0.03

ice bear → brown bear
0.76

→ brown bear
0.92

Original P2P DiG-IN

Audi S6 2011 → Volvo 240 1993
0.16

→ Volvo 240 1993
0.99

ice bear → American black
bear 0.68

→ American black
bear 0.85

Figure 36. UVCE failure cases: For the image on the top left, the word "Clumber" is not associated with a dog breed in Stable Diffusion
which leads P2P to generate a human instead. While our optimization is able to recover the background, it cannot generate the proper class
object, likely due to the distance between the CLIP encoding of the word "Clumber" to that of a matching dog breed.
The top right image shows how P2P can sometimes cause large changes in the image structure. Since our mask covers the blue car in the
original image, our distance regularization only enforces similarity in the background and our optimization does not return to the structure of
the original image.
In the bottom row, we show 2 UVCEs from the same starting image of an "ice bear" into "brown bear" and "American black bear". Notice
how the P2P initialization leads to large changes in image structure in both cases. For the first image, our optimization can recover the
original image structure and produce a valid UVCE whereas it produces an image that is too different from the original one in the second
case.


	. Background and Method Details
	. Diffusion Models
	. Conditional Diffusion Models
	. Classifier-Free Guidance and Cross-Attention Conditioning
	Cross-Attention Conditioning
	Classifier-Free Guidance

	. Diffusion Guidance via Optimization

	. Classifier Disagreement
	. Hyperparameters

	. Validation of zero-shot CLIP errors
	. Visual Counterfactual Explanations
	. Method Details
	Captioning
	Inversion:
	Initialization using XA-injections
	Distance regularization and Optimization
	Hyperparameters

	. Qualitative Result
	EVA02 Error UVCEs
	Zero-Shot Attribute UVCEs


	. User Study
	. Neuron Activations
	. Synthetic Neuron Visualizations
	. Neuron Counterfactuals
	. Quantiative Evaluation

	. NPCA counterfactuals and harmful spurious features
	. Limitations

