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Supplementary Material

A. Additional Results

Qualitative Results. In Fig. A3 and Fig. A4 we present
additional qualitative results on various animal categories
all generate using our SAOR models that are trained on
multiple categories. We provide additional results show-
ing full 360-degree predictions for multiple different cate-
gories on the project website: mehmetaygun.github.
io/saor.

Part Consistency. We also compared SAOR’s surface es-
timates with A-CSM [7] in Fig. A1. Unlike A-CSM, our
method does not use any 3D parts or 3D shape priors but is
still able to capture finer details like discriminating left and
right legs. A-CSM groups left and right legs as a single leg
while their reference 3D template has left and right legs as
a separate entity. Moreover, it mixes left-right consistency
if the viewpoint changes.

Without Depth. We also demonstrate examples from a
variant of our model that was trained without using rela-
tive depth map supervision in Fig. A2. We observe that this
model is still capable of estimating detailed 3D shapes with
accurate viewpoints and similar textures as the full model.
However, the model trained without depth maps tends to
produce wider shapes compared to the full model. Quanti-
tative results for our model without relative depth are avail-
able in Table 2 in the main paper.

Limitations. We showcase some failure cases of our
method in Fig. A5. Our method fails when the animal is
captured from the back, as there is insufficient data avail-
able from that angle in the training sets. Note, methods
such as [13] partially address this by using alternative train-
ing data that includes image sequences from video. Further-
more, when there is also partial visibility (e.g., only the head
is visible), our method produces less meaningful results as
our architecture does not explicitly model occlusion.

Part Ablations. We conducted an additional ablation ex-
periment on the number of parts used for horses. Results
are provided in Table A1. Notably, the PCK scores do not
significantly vary with different numbers of parts. There-
fore, for all other experiments, we used 12 parts.

Number of Parts 6 12 24

PCK 43.8 44.9 44.1

Table A1. Keypoint transfer results on Pascal horses [2] where the
number of parts are varied.

A-CSM [7]
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Figure A1. Comparison with A-CSM [7] on horses using example
images from their paper. Even though A-CSM uses a 3D tem-
plate with pre-defined fixed parts, it still maps left and right legs to
the same leg in the template and the legs are not consistent across
viewpoints (i.e., the part assignment is different in the top row de-
pending on whether the horse is facing left or right. In contrast,
despite not using any 3D object priors at training time, our method
is much more consistent in its assignment. However, it does mis-
take one of the left legs for the horse’s tail in the final column.

B. Additional Implementation Details
B.1. Data Pre-Processing

When constructing our training datasets, we run a general-
purpose animal detector [1] and eliminate objects if any of
the following criteria hold: i) the confidence of the detection
is less than 0.8, ii) the minimum side of the bounding box is
less than 32 pixels, iii) the maximum side of the bounding
box is less than 128 pixels, and iv) there is no margin greater
than 10 pixels on all sides of the bounding box.

We then automatically extract segmentation masks us-
ing Segment Anything Model [6] with the detected bound-
ing box. We automatically estimate the relative monocular
depth using the transformer-based Midas [9, 10], using their
Large DPT model.

To obtain cluster centers for the balanced sampling step
in Section 3.3 in the main paper, we resize the estimated
segmentation masks to 32 × 32, and cluster the 1024-
dimensional vectors into 10 clusters using a Gaussian mix-
ture model in all of our experiments. Visualization of cluster
centers of various animals can be found in Fig. A6.

B.2. Architecture

We use a ResNet-50 [3] as our image encoder fenc in
our CUB[12] experiments and the smaller ResNet-18 in

mehmetaygun.github.io/saor
mehmetaygun.github.io/saor


Input Pose Reconstruction Parts Input Pose Reconstruction Parts

Figure A2. Comparison of models trained with relative depth supervision (top) and without (bottom). Our model trained without depth
also estimates detailed 3D shapes with the correct viewpoint. However, the 3D predictions are marginally worse as the model without
depth produces slightly wider 3D shapes. Please note that part assignment and pose orientation are different since the two models started
from different random initializations.

Layer Input Output Dim

Linear (3,512) S◦ lx N × 512
Linear (512,512) ϕim lz 1× 512
2 × Linear (512,128) lx + lz L N × 128
Linear (128,3) l D N × 3

Table A2. Architecture details of our Deformation Net fd.

Layer Input Output Dim

Linear (3,512) S◦ lx N × 512
Linear (512,512) ϕim lz 1× 512
Linear (512,128) lx + lz L N × 128
Linear (128,128) L L N × 128
Linear (128,K) L W N ×K
K × Linear (512, 9) ϕenc π K × 9

Table A3. Architecture details of our Articulation Net fa. K is
the number of parts and N is the number of vertices, π is camera
parameters.

quadruped animal experiments. This is in contrast to much
larger ViT-based backbones used in other work [13]. We
initialize these encoders from scratch, i.e., no supervised or
self-supervised pre-training is used. The architecture details
are presented in the following tables: deformation network
fd in Table A2, articulation network fa in Table A3, texture
network ft in Table A4, and pose network fp in Table A5.

B.3. 3D Evaluation Details

For 3D quantitative evaluation, we used the Animal3D
dataset [14]. The dataset includes pairs of input images with
their corresponding 3D models, which are estimated via op-
timizing the SMAL [17] model. Moreover, the 3D models
are manually verified to eliminate poorly estimated shapes.
We used the test split of the dataset for the horse, cow, and
sheep categories. As there is no global pose alignment be-

Layer Input Output Dim

Linear (512,512) ϕim L 512× 1× 1
Upsample L Lup 512× 4× 4
Upsample + Conv2D Lup Lup 256× 8× 8
Upsample + Conv2D Lup Lup 128× 16× 16
Upsample + Conv2D Lup Lup 64× 32× 32
Upsample + Conv2D Lup Lup 32× 64× 64
Upsample + Conv2D Lup Lup 16× 128× 128
Conv2D Lup T 3× 128× 128

Table A4. Architecture details of our Texture Net ft.

Layer Input Output Dim

1 × Linear (512,128) ϕim L 128
C × Linear (128,6) L rp, tp 128
Linear (128,C) L α 128

Table A5. Architecture details of our Pose Net fp. C is the number
of cameras, and α are the associated scores for each camera [13].

tween our predictions and the dataset, we run the ICP al-
gorithm to align them. We optimize rotation, R ∈ R3,
translation T ∈ R3, and global scale s ∈ R1 with the
Adam optimizer [5] using L1 norm as our alignment ob-
jective. We also follow the same alignment steps for the
MagicPony [13] baseline.

B.4. Training Losses

Here we describe the training losses from the main paper
in more detail. The appearance loss is a combination of
an RGB and perceptual loss [16]. Lappr = λrgbLrgb +
λpercpLpercp. These terms are defined below,

Lrgb = ||
∑
i,j

Ii,j − Îi,j ||2, (1)
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Figure A3. Additional qualitative results for our SAOR approach on various different animal categories. Note that the part assignment
displays the part with the highest probability for each vertex, but in practice, the articulation for each vertex can be explained by a linear
combination of multiple parts.
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Figure A4. Additional qualitative results for our SAOR approach on various different animal categories. Note that the part assignment
displays the part with the highest probability for each vertex, but in practice, the articulation for each vertex can be explained by a linear
combination of multiple parts.
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Figure A5. Failure cases on cows. On the left we see SAOR-101 predictions (estimated pose, original viewpoint reconstruction, different
view, and estimated parts). On the right we display MagicPony [13] (original viewpoint reconstruction, textured reconstruction, different
view). When the pose is very different than the typical ones present in the training set (top) or there is too much occlusion (bottom) our
method fails to produce a sensible shape estimate. For the first example, MagicPony fails to capture the articulation of the head, and for
the second occluded example it predicts an average template shape with the wrong pose.

Figure A6. Visualization of the cluster centers obtained from estimated silhouettes of various animal categories used in our balanced
sampling. We observe that these cluster centers broadly capture the dominant viewpoints of each object category. Top to bottom: horse,
giraffe, elephant, zebra, and bird.

Lpercp = ||ϕp(Ii,j)− ϕp(Ii,j)||2, (2)

where ϕp is a function that extracts features from different
layers of the VGG-16 [11] network.

The mask loss is calculated based on the difference be-
tween the automatically generated ground truth segmenta-
tion mask M and the estimated mask M̂ derived from our

predicted 3D shape,

Lmask = λmask

∑
i,j

||Mi,j − M̂i,j ||2. (3)

Likewise, the depth loss is computed using the automati-
cally generated relative depth D and the estimated depth D̂
from the predicted shape,

Ldepth = λdepth

∑
i,j

||Di,j − D̂i,j ||2. (4)



Our swap loss is a combination of the RGB and mask
loss between the input image I and swapped image Isw,

Lswap = λswap [Lmask(I, I
sw) + Lrgb(I, I

sw)] . (5)

Finally, we also employ part regularization on the part
assignment matrix W to encourage equal-sized parts,

Lpart = λpart

K∑
k

(
(

N∑
i

Wi,k)−N/K

)2

(6)

where N is the number of vertices in the mesh and K is the
number of parts. We also apply 3D regularization on the 3D
shape, Lsmooth = λsmooth

∑
LS, where L is the laplacian

of shape S and Lnormal which is defined below,

Lnormal = λnormal

∑
ni,nj∈Ω

1− ni.nj

||ni||.||nj||
(7)

Here, ni, nj are normals of neighbor faces. And the
smoothness regularization is defined as λsmoothLsmooth =
||LV ||, where L is the Laplacian operator on the vertices.
The final regularization term is defined as,

Lreg = λpartLpart + λsmoothLsmooth + λnormalLnormal.
(8)

We note the weights used in our experiments for each loss
in Table A6.

B.5. Training

In our experiments, we trained two different models:
SAOR-101 and SAOR-Birds. The bird model is trained
from scratch on CUB [12] for 500 epochs. In the first 100
epochs we only learn deformation, and then enable articu-
lation afterwards.

The SAOR-101 model is trained in two steps. We first
train the model using only Horse data from LSUN [15]
then finetune it on all 101 animal categories downloaded
from the iNaturalist website [4]. In a similar fashion to the
SAOR-Birds model, we only learn deformation in the first
100 epochs, then allow articulation for about 300 epochs on
horse data. Finally, fine-tune the model on all categories on
iNaturalist data for 150 epochs. We utilize Adam [5] with
a fixed learning rate for optimizing our networks. We note
the hyperparameters used in Table A6.

Our simplified swap loss leads to easy hyper-parameter
selection compared to Unicorn [8]. For instance, in their
swap loss term, the following parameters need to be de-
cided: i) feature bank size, ii) minimum and maximum
viewpoint difference, and iii) number of bins to divide sam-
ples in the feature bank depending on the viewpoint. More-
over, they need to do multistage training where they in-
crease the latent dimensions for the shape and texture codes

to obtain similar shapes during training. Here the number
of stages and the dimension of latent codes in each stage
are also hyperparameters. In our method, we eliminated all
of these hyperparameters. Moreover, as we do not use all
of the hypotheses cameras to estimate loss during a forward
pass as in [13] and as a result of our simplified swap loss,
model training is six times faster than Unicorn, as they use
six cameras during training, for the same number of epochs.

Parameter Value/Range

Optimization
Optimizer Adam
Learning Rate 1e-4
Batch Size 96
Epochs 500
Image Size 128 × 128

Mesh
Number of Vertices 2562
Number of Faces 5120
UV Image Size 64 × 128 × 3
Number of Parts 12
Initial Position (0,0,0)

Camera
Translation Range (-0.5, 0.5)
Azim Range (-180,180)
Elev Range (-15, 30)
Roll Range (-30, 30)
FOV 30
Number of Cameras 4

Loss Weights
λrgb 1
λpercp 10
λmask 1
λdepth 1
λswap 1
λsmooth 0.1
λnormal 0.1
λpart 1
λpose 0.05

Table A6. Training hyperparameters.



References
[1] Sara Beery, Dan Morris, and Siyu Yang. Efficient pipeline

for camera trap image review. In Data Mining and AI for
Conservation Workshop at KDD, 2019. 1

[2] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. In
IJCV, 2015. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1

[4] iNaturalist. iNaturalist. www.inaturalist.org, ac-
cessed 8 November 2023. 6

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 2, 6

[6] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross Girshick. Segment anything. In ICCV, 2023. 1

[7] Nilesh Kulkarni, Abhinav Gupta, David Fouhey, and Shub-
ham Tulsiani. Articulation-aware canonical surface map-
ping. In CVPR, 2020. 1

[8] Tom Monnier, Matthew Fisher, Alexei A Efros, and Mathieu
Aubry. Share with thy neighbors: Single-view reconstruction
by cross-instance consistency. In ECCV, 2022. 6
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