
Rethinking Inductive Biases for Surface Normal Estimation

Supplementary Material

1. Network architecture
Tab. 1 shows the architecture of the CNN used to extract the
initial surface normals, initial hidden state, and context fea-
ture. For the ConvGRU cell and convex upsampling layer,
we use the architecture of [1] and [5], respectively.

2. Data preprocessing
During training, the input image goes through the follow-
ing set of data augmentation (p: the probability of applying
each augmentation).
• Downsample-and-upsample (p = 0.1). Bilinearly

downsample the image (H×W ) into (rH×rW ), where
r ∼ U(0.2, 1.0). Then upsample it back to (H ×W ).

• JPEG compression (p = 0.1). Apply JPEG compression
with quality q ∼ U(10, 90).

• Gaussian blur (p = 0.1). Add Gaussian blur with kernel
size (11× 11) and σ ∼ U(0.1, 5.0).

• Motion blur (p = 0.1). Simulate motion blur by con-
volving the image with a 2D kernel whose value is 1.0
along a line that passes through the center and is 0.0
elsewhere. The kernel is then normalized such that its
sum equals 1.0. The kernel size is drawn randomly from
[1, 3, 5, 7, 9, 11].

• Gaussian noise (p = 0.1). Add Gaussian noise x ∼
N (0, σ) where σ ∼ U(0.01, 0.05). Note that the image is
pre-normalized to [0.0, 1.0].

• Color (p = 0.1). Use ColorJitter in PyTorch [4] with
(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.2).

• Grayscale (p = 0.01). Change the image into grayscale.
We also randomize the aspect ratio of the input im-

age. Suppose that the input has a resolution of H ×
W . We first randomize the target aspect ratio H target ×
W target, while making sure that the total number of pixels
is roughly 300K (to maintain GPU memory usage). We
then resize the input into rH × rW , such that rH ∼
U(min(H,H target),max(H,H target)). The resized input is
then cropped based on the target resolution.

3. Additional results
We provide an additional qualitative comparison to Om-
nidata v2 [3] in Fig. 1.

References
[1] Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla. Iron-

depth: Iterative refinement of single-view depth using surface
normal and its uncertainty. In Proceedings of the British Ma-
chine Vision Conference (BMVC), 2022. 1

[2] Weifeng Chen, Shengyi Qian, David Fan, Noriyuki Kojima,
Max Hamilton, and Jia Deng. Oasis: A large-scale dataset for
single image 3d in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 3

[3] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Za-
mir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 1, 3

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2019. 1

[5] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020. 1



Input Layer Output Output Dimension
image - - H ×W × 3

Encoder

image EfficientNet B5
F8 H/8×W/8× 64
F16 H/16×W/16× 176
F32 H/32×W/32× 2048

Decoder
F32 + r32 Conv2D(ks=1, Cout=2048, padding=0) x0 H/32×W/32× 2048

up(x0) + F16 + r16

Conv2D(ks=3, Cout=1024, padding=1),
GroupNorm(ngroups = 8),

LeakyReLU()

× 2 x1 H/16×W/16× 1024

up(x1) + F8 + r8

Conv2D(ks=3, Cout=512, padding=1),
GroupNorm(ngroups = 8),

LeakyReLU()

× 2 x2 H/8×W/8× 512

Prediction Heads

x2 + r8

Conv2D(ks=3, Cout=128, padding=1), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),

Conv2D(ks=1, Cout=3, padding=0), Normalize(), rayReLU()
nt=0 H/8×W/8× 3

x2 + r8

Conv2D(ks=3, Cout=128, padding=1), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),

Conv2D(ks=1, Cout=64, padding=0)
f H/8×W/8× 64

x2 + r8

Conv2D(ks=3, Cout=128, padding=1), ReLU(),
Conv2D(ks=1, Cout=128, padding=0), ReLU(),

Conv2D(ks=1, Cout=64, padding=0)
ht=0 H/8×W/8× 64

Table 1. Network architecture. In each 2D convolutional layer, ”ks” and Cout are the kernel size and the number of output channels,
respectively. FN represents the feature-map of resolution H/N × W/N , and rN is a dense map of per-pixel ray direction in the same
resolution. X + Y means that the two tensors are concatenated, and up(·) is bilinear upsampling by a factor of 2.



Input Image Omnidata v2 Ours

Figure 1. Additional comparison to Omnidata v2 [3] on in-the-wild images from the OASIS dataset [2].


	. Network architecture
	. Data preprocessing
	. Additional results

