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1. Details on ES-Studio and ImageNet-ES Im-
plementations (Sec. 4)

This section provides details on how ES-Studio is built and
ImageNet-ES is collected in ES-Studio.

1.1. ES-Studio Setup

ES-Studio is established with the primary objective of en-
suring the reproducibility of our proposed dataset while
minimizing external factors, focusing specifically on light
conditions and camera sensors. As illustrated in Figure 1,
ES-Studio is designed as a completely dark room with di-
mensions of (1.5 m × 1.5 m × 2 m), equipped with four
key components (screen, camera, ceiling lamps and desk-
top).

In terms of the dark room setup, all sides are covered
with blackout fabric to effectively block out any external
light. Within the dark room, a desk with a height of 267
mm is positioned at the front, featuring the placement of a
large screen (Component 1) on top and a desktop computer
(Component 4) below. To prevent light reflection from the
desk, it is covered with blackout fabric, extending to the
floor. To prevent any image distortion, careful attention is
given to the height of the camera (Component 3), ensur-
ing it is located at a distance of 1 m from the large screen
(Component 1) in a straight line. Light is controlled by two
ceiling lamps (Component 2), strategically positioned at the
midpoint between the large screen and the camera lens. The
entire setup aims to maintain consistency and accuracy in
the captured images. Additionally, to address thermal is-
sues and minimize errors and delays during data collection,
ventilation outlets are installed.

Finally, the detailed specification of each component is
as follows:

• Screen (Component 1): The screen utilized in ES-
Studio is an OLED TV with the model named ‘LG
OLED55B3FNA,’ featuring a 55-inch display and a high
resolution of 4K UHD (3,840 × 2,160). The incorpora-
tion of a high-spec screen ensures the optimal representa-
tion of the original image to the highest possible qual-
ity. During dataset collection, Tiny-ImageNet’s subset
images were displayed on the screen, using the left-top

Figure 1. Actual appearance of ES-Studio

corner as the starting point.
• Ceiling Lamps (Component 2): We have installed two

‘Philips Hue White & Color Ambiance Infuse’ lights,
each with a maximum lumen1 output of 3700 lm. We
choose this model for its ability to provide sufficient
brightness even in dark room, allowing for an appropriate
depiction of a light-on scenario. Additionally, these ceil-
ing lamps offer the advantage of automating dataset col-
lection through remote control APIs. To prevent the issue
of light reflecting on the screen, the screen and the cam-
era are positioned at a sufficient distance from the ceiling
lights.

• Camera (Component 3): The camera selected for ES-
Studio is ‘Canon EOS-RP’ body paired with ‘RF 24-
105mm F4-7.1 IS STM’ lens. When combining this lens
and body configuration, ISO can be implemented in the
range of 100 to 40000, shutter speed from 1/4000 to 30
seconds, and aperture from f4.0 to f22. We opted for a
full-frame CMOS sensor model rather than a crop one
to achieve a broader field of view and higher resolution.
We acknowledge that a change in the camera, even with
the same parameter settings (both manual and AE), can
lead to variations in the captured image. In other words, a

1brightness emitted by a light source within a unit solid angle in one
second



Table 1. Manual camera sensor parameter setting in validation set

Parameter No. ISO Shutter speed Aperture

1 200 0”4’ f5.0
2 800 0”4’ f5.0
3 3200 0”4’ f5.0
4 12800 0”4’ f5.0
5 200 1/20’ f5.0
6 800 1/20’ f5.0
7 3200 1/20’ f5.0
8 12800 1/20’ f5.0
9 200 1/160’ f5.0

10 800 1/160’ f5.0
11 3200 1/160’ f5.0
12 12800 1/160’ f5.0
13 200 1/1250’ f5.0
14 800 1/1250’ f5.0
15 3200 1/1250’ f5.0
16 12800 1/1250’ f5.0
17 200 0”4’ f8.0
18 800 0”4’ f8.0
19 3200 0”4’ f8.0
20 12800 0”4’ f8.0
21 200 1/20’ f8.0
22 800 1/20’ f8.0
23 3200 1/20’ f8.0
24 12800 1/20’ f8.0
25 200 1/160’ f8.0
26 800 1/160’ f8.0
27 3200 1/160’ f8.0
28 12800 1/160’ f8.0
29 200 1/1250’ f8.0
30 800 1/1250’ f8.0
31 3200 1/1250’ f8.0
32 12800 1/1250’ f8.0
33 200 0”4’ f13
34 800 0”4’ f13
35 3200 0”4’ f13
36 12800 0”4’ f13
37 200 1/20’ f13
38 800 1/20’ f13
39 3200 1/20’ f13
40 12800 1/20’ f13
41 200 1/160’ f13
42 800 1/160’ f13
43 3200 1/160’ f13
44 12800 1/160’ f13
45 200 1/1250’ f13
46 800 1/1250’ f13
47 3200 1/1250’ f13
48 12800 1/1250’ f13
49 200 0”4’ f20
50 800 0”4’ f20
51 3200 0”4’ f20
52 12800 0”4’ f20
53 200 1/20’ f20
54 800 1/20’ f20
55 3200 1/20’ f20
56 12800 1/20’ f20
57 200 1/160’ f20
58 800 1/160’ f20
59 3200 1/160’ f20
60 12800 1/160’ f20
61 200 1/1250’ f20
62 800 1/1250’ f20
63 3200 1/1250’ f20
64 12800 1/1250’ f20

Table 2. Manual camera sensor parameter setting in test set

Parameter No. ISO Shutter speed Aperture

1 250 1/4’ f5.0
2 2000 1/4’ f5.0
3 16000 1/4’ f5.0
4 250 1/60’ f5.0
5 2000 1/60’ f5.0
6 16000 1/60’ f5.0
7 250 1/1000’ f5.0
8 2000 1/1000’ f5.0
9 16000 1/1000’ f5.0
10 250 1/4’ f9.0
11 2000 1/4’ f9.0
12 16000 1/4’ f9.0
13 250 1/60’ f9.0
14 2000 1/60’ f9.0
15 16000 1/60’ f9.0
16 250 1/1000’ f9.0
17 2000 1/1000’ f9.0
18 16000 1/1000’ f9.0
19 250 1/4’ f16
20 2000 1/4’ f16
21 16000 1/4’ f16
22 250 1/60’ f16
23 2000 1/60’ f16
24 16000 1/60’ f16
25 250 1/1000’ f16
26 2000 1/1000’ f16
27 16000 1/1000’ f16

change in the camera’s hardware, even with identical soft-
ware settings, can result in differences in the final output.

• Desktop Computer (Component 4): We automate the
data collection system using the ‘Apple Mac Studio M2
Max’ desktop model, which communicates with the three
aforementioned components via WIFI network. The
desktop utilizes the Phillips Hue API for lighting con-
trol and the Canon camera control (CC) API for wireless
camera control. The automation not only minimizes er-
rors that could occur with human intervention, such as
changes in camera position and external light interfer-
ence, but also ensures consistency and accuracy, enabling
faster and more efficient capturing and preprocessing pro-
cesses.

This comprehensive configuration ensures a controlled
environment within ES-Studio, limiting external influences
to only light factors and camera sensors.

1.2. Data Collection Module Implementation

In this section, we revisit the key points discussed in Section
4.2. of the main text and subsequently delve into the finer
details. In terms of reference dataset, a total of 2000 image
samples were selected from a Tiny-ImageNet [24] subset.
Out of these, 1000 images were dedicated to the validation
set, and the remaining 1000 formed the test set, ensuring
that there was no overlap between the two sets. During
the data collection phase, each original reference image was
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Figure 2. ImageNet-ES sample (a), (b), (c) : In all subfigures, a broad range of variations can be observed based on each parameter option.
Looking at Figure 2a, the following becomes evident: under the same camera parameter settings (AE and manual), it is apparent that the
captured image undergoes substantial changes depending on environmental variations (light on/off). Particularly in Figure 2c, variations in
skin tone are noticeable due to changes in both environmental conditions (light on/off) and camera parameter settings. This indicates that
alterations in camera sensor and environmental settings can bring about significant variations, especially in certain scenarios. For example,
in contexts related to race, such changes may lead to semantic shifts.

taken with manual camera sensor parameter settings, span-
ning 64 options for the validation set and 27 options for the
test set, as well as in auto exposure (AE) settings, the im-
ages were repeatedly captured five times, respectively. No-
tably, this procedure was reiterated for both the “light on”
and “light off” environments, covering each of the (AE +
64) options for validation and (AE + 27) options for the test
set in each lighting condition.

The detailed manual parameter settings are provided in
the Tables 1 and 2. While determining manual parameter
options, we aimed to evenly cover the ranges of each camera
sensor parameter (i.e. ISO, shutter speed, aperture). How-
ever, scenarios involving shutter speeds exceeding 1 sec-
ond were excluded, considering their infrequent occurrence
in real-world situations. Additionally, the data collection
process involved meticulous efforts to minimize distortion
through precise camera angle adjustments and thorough at-
tention to diverse camera settings. Regarding the focus, it
has been set to AF (auto focus) mode, and the metering is set
to evaluative metering mode, allowing the camera to assess
the entire frame for metering2 before determining the expo-
sure. We have set the recording resolution during shooting

2the process of how modern cameras decides to assign the right shutter
speed and aperture based on the amount of light the camera can pick up

to the maximum supported by the camera, which is approx-
imately 26 million (6240 × 4160) pixels .

After undergoing the preprocessing steps described in
Section 4.2.2 in the main paper, composite images of the
2000 reference images for the subjective validation process
are generated. During the subjective validation, three re-
viewers individually assessed a set of 2000 composite im-
ages, documenting identified issues such as 1) crop errors,
2) missed images, and 3) label mismatches. In cases where
even one reviewer detected minor issues, the appropriate
measures and reevaluation were applied to the correspond-
ing images. When deemed necessary, reshooting or repro-
cessing was carried out. This ensured the collection of ac-
curate and consistent data. While visually inspecting the
collected data, we were able to identify some interesting
points. Those are on Figure 2.

2. Details on OOD Detection Experiments (Sec.
5.1)

2.1. Setup and Implementation

In this section, we provide more details regarding the ex-
periments in Section 5.1. in the main paper. The datasets
used for semantics-centric and Model-Specific OOD (MS-



Table 3. Datasets used in OOD detection experiments

Experiment Setting Train Validation Test
ID OOD ID OOD C-OOD Near S-OOD Far S-OOD C-OOD ID

Semantics-centric S3 OpenImage-O (train) S1 Textures (test)
valImageNet-ES

(128 options)

n/a n/a n/a n/a

MS-OOD S3+ S3− S1+ S1− SSB-hard [21],
NINCO [2]

iNaturalist [20],
Textures (test) [3], OpenImage-O [22]

testImageNet-ES

(54 options) S2+

Table 4. Description of partitions of Tiny-ImageNet [24] validation set (10K samples)

Partition S1 S2 S3
Reference of valImageNet-ES Reference of testImageNet-ES (valTiny−ImageNet \ (S1 ∪ S2) )

# of samples 1,000 1,000 8,000

Table 5. Description of underlying models for OOD detection ex-
periments. (Optimizer: SGD, Scheduler: ReduceLROnPlateau,
Batch size: 128)

Model # of params Pretrained Acc. on V alTin Training configuration

EfficientNet-B0 [19] 4.3M
ImageNet-1K

86.2% lr: 5× 10−3, epochs: 20
ResNet18 [6] 11.3M 82.4% lr: 5× 10−2, epochs: 15

ViT [5] 86M 91.2% lr: 5× 10−3 , epochs: 20
Swin-B [14] 86.9M 94.2% lr: 5× 10−3 , epochs: 20

OOD) frameworks are outlined in Table 3. Other public
datasets are used in its entirety, but we split the validation
set of Tiny-ImageNet [24] into three segments: S1, S2, and
S3. We pick the same images to the validation and test split
of ImageNet-ES as S1 and S2, respectively. The remain-
der is designated as S3, which includes 40 images per each
class. Since images in Tiny-ImageNet are provided in re-
sized version (64 × 64), corresponding images from Im-
ageNet are used to preserve the original resolution. This
partition scheme of Tiny-ImageNet is described in Table 4.
To train OOD detection methods within semantics-centric
framework, we use S3 and the training set of OpenImage-
O [22] as ID and OOD dataset, respectively. Within MS-
OOD framework, S3+ and S3− are employed as ID and
OOD datasets, respectively. To identify the validity of
semantics-centric framework on ImageNet-ES, we employ
S1 and the test set of Textures [3] as ID and OOD datasets
respectivley. Within MS-OOD framework, we use S1+ and
S1− as ID and OOD datasets, respectivley. For both frame-
work, the validation set of ImageNet-ES is used as C-OOD
dataset. We test five S-OODs (SSB-hard [21], NINCO [2],
iNaturalist [20], Textures [3], OpenImage-O [22]) and cat-
egorize them into near-OOD and far-OOD following prior
works [25]. We employed S2+ as ID in test set and as-
sign samples in test set of ImageNet-ES into labels follow-
ing each framework’s policy and conducted tests.

The details of the underlying models are outlined in Ta-
ble 5. This table also includes information of two additional
models (Swin-B [14] and ResNet18 [6]) whose experimen-
tal results will be presented in the following section. All
model weights used in the OOD detection experiments are
obtained from timm library [23]. Since the obtained model
weights produce prediction result for 1,000 classes, we fine-
tune the classifier of each model to have 200 classes as in
Tiny-ImageNet. Non-resized images from the training set
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Figure 3. EfficientNet [19]: ReAct [18] and ASH [4] OOD
score distribution with semantics-centric and MS-OOD frame-
works. Tiny-ImageNet [24] and Texture [3] are used for the ID
and S-OOD datasets, respectively. ImageNet-ES serves as a C-
OOD dataset.

20 15 10 5 0 5 10
0.000

0.002

0.004

0.006

De
ns

ity

ViM

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

De
ns

ity

MSP

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.000

0.005

0.010

De
ns

ity

ODIN
ID
S-OOD
ImageNet-ES

10 20 30 40 50
0.000

0.002

0.004

0.006

De
ns

ity

ASH

5 6 7 8 9 10 11 12 13
OOD score

0.000

0.002

0.004

De
ns

ity

ReAct

(a) Semantics-centric framework

25 20 15 10 5 0 5 10
0.0000

0.0025

0.0050

0.0075
ViM

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0025

0.0050

0.0075
MSP

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

ODIN
ID+
ID-

ImageNet-ES+
ImageNet-ES-

10 20 30 40 50 60
0.000

0.002

0.004

0.006

ASH

6 8 10 12 14 16 18
OOD score

0.000

0.005

0.010
ReAct

(b) MS-OOD framework

Figure 4. ResNet18 [6]: OOD score distribution with semantics-
centric and MS-OOD frameworks. Tiny-ImageNet [24] and Tex-
ture [3] are used for the ID and S-OOD datasets, respectively.
ImageNet-ES serves as a C-OOD dataset.

of Tiny-ImageNet are used for finetuning and the feature
extractor part of each model is kept frozen during finetun-
ing. The specific training configuration and final accuracy
are also presented in Table 5.

To validate the current OOD detection methods, we fully
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Figure 5. Swin-B [14]: OOD score distribution with semantics-
centric and MS-OOD frameworks. Tiny-ImageNet [24] and Tex-
ture [3] are used for the ID and S-OOD datasets, respectively.
ImageNet-ES serves as a C-OOD dataset.
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Figure 6. ViT [5]: OOD score distribution with semantics-centric
and MS-OOD frameworks. Tiny-ImageNet [24] and Texture [3]
are used for the ID and S-OOD datasets, respectively. ImageNet-
ES serves as a C-OOD dataset.

utilize the results and APIs provided by OpenOOD [25].
We experiment state-of-the-art methods, such as ViM [22]
or ReAct [18] as well as MSP [8] which commonly
serves as the baseline method. Advanced version of MSP,
ODIN [13] is also tested. The implementation is based on
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Figure 7. Classification accuracy vs OOD score for additional un-
derlying models. Each point represents the OOD score measured
on the single parameter setting of ImageNet-ES

the OpenOOD package. All experiments are conducted on
a system with Intel Xeon® Silver 4216 CPU and NVIDIA
RTX 3090 GPU.

2.2. Additional Experiments

In this section, we present additional experimental find-
ings for two additional models (ResNet18 [6], Swin-B [14],
ViT [5]). The overall structure of experiments follows that
presented in Section 5.1.1 and 5.1.2 of the main paper.
• We verify that the MS-OOD framework [1] is still

more suitable than the semantics-centric framework
for other architectures as well. Similar to the experi-
ments done in Figure 5 of the main paper, we visualize
the distribution of OOD score across different OOD de-
tection methods within semantics-centric and MS-OOD
framework. In Figure 4, 5 and 6 we observe consistent
pattern in the OOD score distribution of ID, OOD and



ImageNet-ES (C-OOD) for ResNet18, Swin-B and ViT,
as in EfficientNet. Furthermore, we evaluate 54 manual
environmental/sensor variations in ImageNet-ES test set
in terms of classification accuracy and OOD scores as in
Figure 6 of the main paper, but based on different under-
lying models (ResNet18 [6], Swin-B [14] and ViT [5]).
Figure 7 show both OOD score and the classification ac-
curacy of different OOD detection methods in ImageNet-
ES, based on Swin-B [14], ResNet18 [6] and and ViT [5],
respectively. As in EfficientNet [19] case, we find that
MSP [8] or ODIN [13] exhibit desirable correlation be-
tween OOD score and the classification accuracy, while
ViM [22] demonstrates unacceptable results.

• We evaluate the performance of OOD detection methods
based on different underlying models, similar to the ex-
periments done in Figure 7 of the main paper. In Fig-
ure 8a, 8c and 8e, the C-OOD detection performance is
presented in terms of F1 score. We observe the ten-
dency that closely resembles the pattern with Effi-
cientNet [19] presented in the main paper: MSP [8]
and its advanced versions(ODIN [13] and ReAct [18])
consistently outperforms ASH [4] and ViM [22], which
are the less effective than others.

• Meanwhile, S-OOD performance exhibits different re-
sult when different underlying models are employed.
In Figure 8b, 8d and 8f we plot the S-OOD detection
performance in terms of FPR. When Transformer-based
models (Swin-B [14] and ViT [5]) are employed (Figure
8d, 8f), ASH [4] falls behind other methods across all S-
OOD datasets. In the context of ResNet18 [6] (Figure
8b), ASH [4], demonstrate results improved than other
models. In contrast, ViM [22] exhibits the performance
notably inferior to the results obtained from EfficientNet.

3. Comparisions between MSP [8] and
ViM [22]

MSP utilizes confidence scores and incurs OOD detection
errors when the model overconfidently misclassifies a sam-
ple [18]. This event happens more frequently in S-OOD
than in C-OOD since a misclassified C-OOD sample usu-
ally results in low confidence scores. On the other hand,
ViM forms a feature space from ID samples and detects
OOD when a sample contains a significant amount of un-
seen features [22]. However, while S-OOD samples are
likely to contain unseen features, C-OOD samples present
different distributions of already seen features. The lack of
unseen features in C-OOD causes detection errors in ViM.
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Figure 8. Performance of OOD methods with C-OOD and S-OOD
based on different underlying models. (a), (b) Each point is the F1
score measured on a parameter setting of testImageNet-ES. (c), (d)
N1: SSB-hard [21], N2: NINCO [2], F1: iNaturalist [20], F2:
Texture [3], F3: Openimage-O [22].

4. Details on Domain Generalization Experi-
ments

4.1. Implementation Details of Finetuning

In this section, we provide the implementation details to
produce the experimental results presented in Table 2 of
the main paper. Every finetuning starts from the pretrained
weights from PyTorch [17]. We use SGD optimizer with
initial learning rate of 0.001. The learning rate decreases to
1e-6 following the cosine annealing schedule. We finetune
for 10 epochs on each experiment. Batch size is set to 256.

During finetuning, we employ an image similarity met-
ric LPIPS [26] to filter out some images that deviate too far
from the original image. To do this, we calculate LPIPS be-
tween original image and perturbed image on each parame-
ter setting. The calculated LPIPS is averaged over all 1,000
images collected under the same parameter setting. We use
AlexNet [12] as a base model for LPIPS calculation. Calcu-
lated LPIPS for each manual parameter setting along with
the sample image is presented in Figure 9. Based on the
calculated LPIPS, we exclude images from parameter set-
ting whose LPIPS is above the threshold which we set to
0.8. Chaning thershold would result in more/less perturbed
images during finetuning. To study the impact, we experi-
ment with different LPIPS threshold (0.6 and 1.0), as pre-
sented in Table 6. Utilizing less perturbed images (LPIPS
threshold = 0.6) weakens the robustness of the model, on



Figure 9. Calculated LPIPS [26] for each manual parameter setting with sample images on ImageNet-ES, in the ascending order of LPIPS.
Environment, parameter setting number and LPIPS is provided under each image in the following format: [Environment]-[Parameter No.]:
[LPIPS]

Table 6. Ablation study of finetuning techniques with different LPIPS threshold. The experiment ID and domain generalization techniques
are same as those used in Table 2 of the main paper. The result is based on ResNet-50 [6]. (IN: ImageNet)

ID Comp.aug Basic Advanced Incl. LPIPS threshold = 0.6 LPIPS threshold = 0.8 LPIPS threshold = 1.0
digital aug digital aug ImageNet-ES IN IN-C ImageNet-ES IN IN-C ImageNet-ES IN IN-C ImageNet-ES

4 ✓ ✓ 85.8 51.4 53.9 86.0 51.8 55.8 85.8 52.0 56.3
5 ✓ ✓ ✓ 85.7 51.4 53.2 85.8 51.4 54.5 85.8 51.7 55.2
6 ✓ ✓ ✓ ✓ 84.2 57.2 51.8 84.0 57.9 53.7 84.6 58.2 53.8

both digital (ImageNet-C [7]) and real world (ImageNet-
ES) perturbations. Without digital augmentations, adding
more perturbed images (LPIPS threshold = 1.0) results in
degraded model performance on ImageNet-ES (Experiment
4). When finetuned with digital augmentations, however,
the performance degradation could be diminished (Experi-
ments 5 and 6).

Composition-related and basic augmentations
are implemented with functions provided by
torchvision. Composition-related augmentations
are implemented with RandomResizedCrop and
RandomHorizontalFlip. Basic augmentations are
implemented with ColorJitter, RandomSolarize
and RandomPosterize. The implementation of Deep-
Augment [10] and AugMix [9] follows the open-sourced
code from GitHub [10].

4.2. Qualitative Analysis of Domain Generalization
Techniques

In Figure 10, we present the qualitative analysis of domain
generalization techniques outlined in Table 2 in the main
manuscript. Within each subfigure, we showcase the pre-
diction result of each finetuned model for the selected ex-
ample, each operating under chosen manual parameter set-
tings. This analysis reveals that digital augmentation helps
to improve the model performance on ImageNet-ES to some
extent (parameter 13 in Figure 10b), but sometimes adver-
sarially influences the model performance (parameter 8 in
Figure 10a or parameter 24 in Figure 10b). Adding real-
world perturbed images during finetuing proves beneficial
in fostering model generalization across environmental and
sensor domain as evidenced in Figure 10c. Furthermore,
including images from ImageNet-ES helps to prevent the
model degradation on environment and sensor domain (pa-
rameter 8 in Figure 10a or parameter 23, 24 in Figure 10b).



(a) Selected example 1 from ImageNet-ES (Class: n02129165)

(b) Selected example 2 from ImageNet-ES (Class: n03250847)

(c) Selected example 3 from ImageNet-ES (Class: n02802426)

Figure 10. Qualitative analysis of domain generalization techniques. Each subfigure depicts distinct parameter settings chosen from all
manual parameters, when the light is on. The columns correspond to each finetuning strategy. The images correctly classified by the model
are enclosed in green boxes, while those incorrectly classified are surrounded by red boxes.

5. Details on Evaluation Results of ImageNet-
ES

In Tables 7-17, we provide more details of Table 3 in the
main manuscript, the evaluation results of various mod-

els on ImageNet-ES: ResNet-50, DG version of ResNet-50,
ResNet-152, EfficientNet-B0, EfficientNet-B3, SwinV2-T,
SwinV2-B, OpenCLIP-b, OpenCLIP-h, DINOv2 (ViT-b)
and DINOv2 (ViT-g). Each table provides the test accu-
racy of each model, evaluated at auto exposure and dif-
ferent manual parameter settings, under different environ-



Table 7. Detailed evaluation results of ResNet-50 [6] on
ImageNet-ES.

Setting Parameter No. Environment
Light On Light Off Difference

Auto exposure - 34.4 30.0 4.4Average 32.2

Manual

1 49.1 49.3 0.2
2 8.3 11.3 3.0
3 0.6 1.6 1.0
4 79.0 78.7 0.3
5 62.3 66.7 4.4
6 16.5 21.3 4.8
7 57.9 50.5 7.4
8 77.0 76.7 0.3
9 74.0 75.0 1.0

10 71.8 75.3 3.5
11 26.4 31.0 4.6
12 2.6 4.3 1.7
13 78.1 76.7 1.4
14 78.2 78.1 0.1
15 40.8 46.4 5.6
16 18.9 12.9 6.0
17 69.3 63.8 5.5
18 79.3 76.9 2.4
19 79.3 80.1 0.8
20 53.1 62.4 9.3
21 9.5 14.1 4.6
22 67.6 59.0 8.6
23 79.3 78.5 0.8
24 67.7 73.1 5.4
25 1.6 0.7 0.9
26 33.5 21.8 11.7
27 73.5 68.8 4.7

Best 79.3 80.1 0.180.1

Worst 0.6 0.7 11.70.6

Average 50.2 50.2 3.750.2

ments (light on/off). The absolute value of difference be-
tween the test accuracy measured when light is on and off
is also provided.

6. More analysis on camera parameters

As additional analysis, Figures 11 and 12 further moti-
vate model-specific camera control. Compared to human-
friendly (Worst and Auto) settings, the model-friendly
(Best) setting provides different feature distributions (Fig-
ure 11) and more clearly clustered feature embeddings (Fig-
ure 12). Additionally, Figure 13 illustrates model perfor-
mance according to solution candidates of camera control,
revealing that the optimal parameters can vary with target
models (Figure 13a) and samples (Figure 13b). Camera
control can advance from aggregate-level to sample-wise
immediate control.

Table 8. Detailed evaluation results of DG version of ResNet-
50 [6] on ImageNet-ES. This model is trained with DeepAug-
ment [10] and AugMix [9] on ImageNet-21K

Setting Parameter No. Environment
Light On Light Off Difference

Auto exposure - 55.6 51.0 4.5Average 53.3

Manual

1 66.4 67.3 0.9
2 22.5 25.8 3.3
3 0.8 2.4 1.6
4 83.6 83.3 0.3
5 73.3 74.7 1.4
6 36.7 40.2 3.5
7 72.5 70.0 2.5
8 82.3 81.8 0.5
9 79.2 80.7 1.5

10 79.2 80.2 1.0
11 46.0 50.9 4.9
12 5.7 11.3 5.6
13 82.6 81.8 0.8
14 82.3 82.6 0.3
15 59.3 64.5 5.2
16 54.7 45.5 9.2
17 78.2 74.9 3.3
18 82.6 81.8 0.8
19 84.0 83.9 0.1
20 68.5 72.4 3.9
21 23.1 30.2 7.1
22 77.6 73.2 4.4
23 83.6 82.6 1.0
24 74.4 79.1 4.7
25 18.4 11.9 6.5
26 60.5 50.2 10.3
27 79.5 76.5 3.0

Best 84.0 83.9 0.184.0

Worst 0.8 2.4 10.30.8

Average 61.4 61.5 3.261.4

Figure 11. Feature distributions: Model-friendly (Best) vs.
Human-friendly (Worst, Auto)

Figure 12. Feature embeddings: Model friendly (Best) vs.
Human-friendly (Worst, Auto)



Table 9. Detailed evaluation results of ResNet-152 [6] on
ImageNet-ES.

Setting Parameter No. Environment
Light On Light Off Difference

Auto exposure - 42.6 39.6 3.0Average 41

Manual

1 57.7 59.1 1.4
2 10.3 14.8 4.5
3 0.5 1.7 1.2
4 82.6 82.7 0.1
5 69.7 71.8 2.1
6 22.7 26.1 3.4
7 64.0 56.2 7.8
8 81.2 80.5 0.7
9 77.7 78.8 1.1

10 76.3 78.8 2.5
11 32.0 38.4 6.4
12 3.1 6.1 3.0
13 81.7 80.2 1.5
14 80.5 81.5 1.0
15 47.8 54.1 6.3
16 23.0 15.2 7.8
17 72.9 68.0 4.9
18 81.3 80.3 1.0
19 81.4 82.4 1.0
20 61.1 69.1 8.0
21 13.4 18.6 5.2
22 73.1 64.6 8.5
23 83.3 81.6 1.7
24 72.8 77.2 4.4
25 1.6 0.7 0.9
26 39.7 24.8 14.9
27 77.1 72.6 4.5

Best 83.3 82.7 0.183.3

Worst 0.5 0.7 14.90.5

Average 54.4 54.3 3.954.3

(a) Model-wise solution space on ‘Light-on’

(b) Sample-wise solution space on ‘Light-on’
Figure 13. Solution space of camera parameter on ImageNet-ES
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Table 15. Detailed evaluation results of OpenCLIP-h [11] on
ImageNet-ES.

Setting Parameter No. Environment
Light On Light Off Difference
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Table 16. Detailed evaluation results of DINOv2 (ViT-b) [16] on
ImageNet-ES.

Setting Parameter No. Environment
Light On Light Off Difference

Auto exposure - 76.0 72.9 3.1Average 74.5

Manual

1 85.1 85.3 0.2
2 34.6 38.9 4.3
3 1.2 4.6 3.4
4 92.2 91.9 0.3
5 89.8 90.4 0.6
6 53.1 58.6 5.5
7 88.0 86.3 1.7
8 91.3 91.5 0.2
9 91.5 91.8 0.3

10 91.6 91.7 0.1
11 66.7 71.7 5.0
12 11.1 17.2 6.1
13 91.7 91.8 0.1
14 92.1 91.7 0.4
15 80.3 84.5 4.2
16 74.1 64.6 9.5
17 89.6 87.7 1.9
18 91.6 90.9 0.7
19 91.6 91.8 0.2
20 86.0 88.0 2.0
21 35.4 45.6 10.2
22 90.2 88.1 2.1
23 91.4 91.2 0.2
24 90.3 90.7 0.4
25 25.3 14.6 10.7
26 78.6 67.0 11.6
27 89.1 86.9 2.2

Best 92.2 91.9 0.192.2

Worst 1.2 4.6 11.61.2

Average 73.8 73.9 3.173.9



Table 17. Detailed evaluation results of DINOv2 (ViT-g) [16] on
ImageNet-ES.

Setting Parameter No. Environment
Light On Light Off Difference

Auto exposure - 85.5 83.1 2.4Average 84.3

Manual

1 90.4 91.0 0.6
2 49.8 52.8 3.0
3 1.3 7.0 5.7
4 93.7 93.6 0.1
5 94.0 93.8 0.2
6 68.5 72.6 4.1
7 92.2 90.5 1.7
8 93.6 93.3 0.3
9 93.6 93.8 0.2

10 93.5 94.2 0.7
11 77.8 83.9 6.1
12 15.0 25.1 10.1
13 94.0 93.8 0.2
14 93.8 94.1 0.3
15 88.5 90.3 1.8
16 83.0 76.6 6.4
17 92.2 91.1 1.1
18 93.7 93.1 0.6
19 94.0 94.2 0.2
20 92.2 93.1 0.9
21 48.8 61.9 13.1
22 92.4 91.7 0.7
23 93.9 93.8 0.1
24 93.9 94.0 0.1
25 44.6 26.4 18.2
26 84.7 78.9 5.8
27 92.1 90.9 1.2

Best 94.0 94.2 0.194.2

Worst 1.3 7.0 18.21.3

Average 79.5 79.8 3.179.6
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