
1. Appendices

A. Implementation Details for SegAD
This section describes implementation details for the final classifier (Boosted Random Forest) in SegAD and shows several
examples of generating defects for the VAD one-class benchmark. Models were trained with NVIDIA A2000. More details,
the code, segmentation maps, and trained models can be found in SegAD GitHub repository1.

A.1. Final Classifier

We use the same Boosted Random Forest (BRF) for all experiments with SegAD, except for the Ablation Study, which also
uses Random Forest (RF) and Boosted Tree (BT). Implementation by XGBoost [4] is used for all three of them. BRF in all
experiments uses 10 estimators and 200 parallel trees with a learning rate of 0.3 and binary:logitraw objective. Maximum
depth is set to 5 to avoid overfitting; for the same reason, we set the subsample ratio of columns when constructing each tree
(colsample bytree) to 0.6, the same as the subsample ratio per node (colsample bynode) and subsample. We also use the L1
regularization [11] with a value of 1. For RF, the learning rate is 1.0, the number of estimators is 1, and the number of trees
is 2000. For BT, the number of estimators is 2000, the number of trees is 1, colsample bytree is default.

A.2. Generating Defects

Generating defects for the one-class benchmark is not optimized and is used just as a demonstration that SegAD can work with
one-class tasks as well. In our case, it was sufficient to generate disturbances in the image, which caused anomaly detectors
fk to show higher anomaly scores in their output, which was sufficient to train SegAD. The code to generate defects can be
found in the SegAD GitHub repository. Several examples of generated defects can be seen in Fig. 1. Advanced strategies for
generating defects, which are described in [6, 12], can be investigated in future work.

Figure 1. Generated defects, from the left: part of the segment is blurred, small rectangle, thin rectangle. (VAD)

B. Implementation Details for Other Evaluated Methods
In this section, we describe implementation details and training parameters for other methods used in this paper. All models
use resolution 256× 256 and pretrained feature extractor WideResNet-50-2 by TorchVision [9] unless stated otherwise. No
augmentations were used. All existing augmentations were removed to have a more fair comparison and to avoid fitting a
specific problem. These removed augmentations include center crop for PatchCore, which improves results as long as defects
are close to the center of the image, e.g., for MvTec AD, see EfficientAD paper [2] for more details and random rotation for
DRA and DevNet which made their results worse for VAD. Models were trained without early stopping.

Wide ResNet. WideResNet-50-2, pretrained weights by TorchVision [9]. Trained with a batch size of 4, the learning rate
is 0.025, uses focal loss [7]. The optimizer is SGD with a momentum of 0.9.

PatchCore. Unofficial implementation by Akcay et al. [1]. The feature extractor uses layers 2 and 3. The coreset sampling
ratio is 0.01, and the number of neighbors is 9.

Reverse Distillation. Unofficial implementation by Akcay et al. [1]. The feature extractor uses layers 1, 2, and 3. Beta1
is 0.5, beta2 is 0.999. Anomaly maps are combined through addition. Trained for 200 epochs.

FastFlow. Unofficial implementation by Akcay et al. [1]. Trained for 200 epochs (similar as in EfficientAD paper [2]),
learning rate is 1e− 3, weight decay is 1e− 5.

EfficientAD. Unofficial implementation by Nelson2, the original code was not published. Trained for 70000 iterations
without an early stopping. 10% of the training dataset was used for normalization. Uses padding in convolutional layers. The

1https://github.com/abc-125/segad
2https://github.com/nelson1425/EfficientAD
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model size is medium.
DevNet. Official implementation by Pang et al. [8]. The feature extractor is ResNet18 by TorchVision [9]. For VAD, the

code was modified to use bad images from a separate folder instead of a testing set. For VisA, the code was modified to split
bad images from the test set with predefined seeds, the same as for SegAD (ours). The parameter n anomaly (number of bad
images used for training) was set to 1000 for high-shot, 100 for low-shot VAD, and 10 for VisA. Trained for 50 epochs.

DRA. Official implementation by Ding et al. [5]. The feature extractor is ResNet18 by TorchVision [9]. The code was
modified similarly to DevNet, with the same values for n anomaly. Trained for 30 epochs.

C. Additional details on VAD
This section shows the detailed scheme of the product from VAD and the list of defects with examples. This can be useful
for a better understanding of the complexity of the dataset.

Figure 2. Product (VAD). A - soldering dot, B - wire, C - pin, D - piezo, E - piezo border, F - membrane.

Examples Description

The wire is too close to the side of the soldering

The wire is on the top of the soldering

The wire is poorly shaped, too bent or too straight



The wire is not properly connected to the pin

The wire is out of soldering entirely

The end of the wire is out

Solder paste is on the wire

Soldering is not complete

Poor quality soldering

Poorly shaped soldering

Smaller solder balls pollution



Misplaced soldering paste

Plastic pollution

Metal pollution

Missing parts

Burned soldering or wires

The upper part of the wire is too long

Additional wires

Piezo is broken



Cracks in piezo

Various rare defects

Table 1. Defects in VAD.

D. Detailed results for VisA
In this section, we put the results for our supervised benchmark for VisA per class. It is worth noticing that the VisA paper
[13] already has two supervised benchmarks, which were not widely adopted by the anomaly detection community. Their
first supervised benchmark includes 60% of all images, good and bad, used for training and the rest for testing. VisA paper
already reports results of 99.7 Cl. AUROC with the supervised classifier used together with their method SPD. Such a high
result for a supervised method can be explained by the fact that VisA contains a low number of anomaly types per class (4.7
on average), so 60 bad images per class for training were sufficient to recognize the rest. Their second supervised benchmark
uses just 10 good and 10 bad images, and it also has not become too popular because anomaly detection methods usually try
to utilize many good images, which are much easier to get than bad for real-world problems. There are very few methods that
can tackle such problems successfully, such as PatchCore [10]. Our supervised benchmark for VisA is an attempt to fix these
problems. We have both a high number of good parts, as well as 10 randomly selected bad parts for training, in a similar way
to the popular supervised MVTec AD benchmark 3. Results per class are shown in Table 3.
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One-class Anomaly Detection

RD4AD 94.6 85.4 96.3 98.8 93.7 96.5 84.7 96.0 97.1 95.9 99.9 97.5 94.7
EfficientAD 98.3 92.3 96.0 100.0 98.5 99.1 96.7 98.6 99.9 98.4 98.3 99.4 98.0

Supervised Anomaly Detection

DRA 96.0 70.6 94.6 91.4 99.2 92.2 74.4 92.1 91.6 77.7 90.9 96.5 88.9
DevNet 94.7 78.2 97.4 91.9 98.3 92.1 72.3 94.4 89.5 73.4 95.7 94.3 89.3

SegAD (ours)

RD4AD + Ours 98.4 80.1 98.9 99.3 96.2 97.4 90.6 96.4 96.3 94.1 99.9 95.8 95.3
EfficientAD + Ours 98.7 89.8 98.6 99.9 98.7 99.6 98.0 99.5 99.7 98.4 99.4 99.2 98.3
All AD + Ours 99.1 90.1 99.1 99.9 98.6 99.6 98.4 99.2 99.9 98.1 99.8 99.4 98.4

Table 2. Results on VisA dataset, Cl. AUROC values for different classes. The best results are shown in bold. All AD means RD4AD and
EfficientAD.

Our method falls short with one class, capsules. This might be explained by some of the bad images having dark spots in
the background, which are not defects, but together with image-level labels they provide SegAD with misleading information
about the importance of the background. In any case, it shows that our method can sometimes make the results worse if
the training data has semantic differences from the testing data. The supervised method from the original VisA high-shot
supervised benchmark, mentioned in their paper, also shows lower results on the capsules class, 97.2 Cl. AUROC compared
to the average result of 99.7, which might also indicate a difference between test and training data.

3https://paperswithcode.com/sota/supervised-anomaly-detection-on-mvtec-ad
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E. Additional experiments with MVTec AD
This section shows the results of additional experiments with MVTec AD per class. The task is to investigate how our method
will work on another dataset, it is not a benchmark. 20 random bad images from the test set are selected for training SegAD
over ten different seeds for the selection process. 10% of good images from the training dataset are used to train SegAD as
well. MVTec AD includes 15 classes, 5 of which are textures and 10 are simple objects [3]. Training datasets consist of 242
good images per class on average (compared with 720 for VisA and 2000 for VAD), which leaves us with fewer good images
for training SegAD. EfficientAD + Ours shows worse results compared to EfficientAD. This displays that some anomaly
detectors might be not working with our method in some cases for reasons that require further investigation. Nevertheless,
other anomaly detectors show improvement.
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One-class Anomaly Detection

F 100.0 88.2 95.0 99.2 100.0 78.4 99.6 97.6 94.3 74.7 100.0 88.1 89.8 99.4 97.7 93.5
R 99.8 94.7 97.5 99.2 95.3 100.0 100.0 100.0 96.2 98.4 100.0 93.8 97.1 99.6 97.9 98.0
E 100.0 91.1 97.6 97.1 98.2 99.6 99.4 99.9 97.9 92.4 99.7 99.8 99.8 99.6 98.8 98.1

SegAD (ours)

F+O 99.7 71.6 94.4 96.9 97.5 98.2 99.4 96.6 95.2 74.9 99.9 99.2 95.4 98.5 99.4 94.5
R+O 99.6 95.7 97.9 98.6 99.7 100.0 100.0 100.0 97.5 95.7 100.0 97.3 95.9 99.0 98.4 98.4
E+O 99.5 88.6 95.9 95.6 98.1 99.5 98.5 99.2 97.3 90.4 99.9 95.2 96.7 99.1 96.3 96.7
A+O 100.0 92.5 98.3 98.5 99.6 100.0 100.0 99.5 98.2 95.2 100.0 96.3 99.3 99.0 99.3 98.4

Table 3. Results on MVTec AD dataset, Cl. AUROC values for different classes. The best results are shown in bold. M = Method, F =
FastFlow, R = RD4AD, E = EfficientAD, O = Ours, A = All AD (includes FastFlow, RD4AD, and EfficientAD).
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