
p5 p15 p25 p50 p75 p95
1.2% 3.0% 3.8% 5.6% 8.0% 12.3%

Table 6. DriveTrack’s occlusion error on Kubric (synthetic).

A. Implementation Details

We implement DriveTrack in Python using the Waymo Open
Dataset SDK [21]. The dataset has separate tables for each data
feature, such as video, bounding boxes, and LiDAR data. Each
feature table is further partitioned into Parquet files for each
scene. We use Dask Distributed to merge the necessary tables
one scene at a time before processing the annotations, using
8 workers with 2 threads each.

We preprocess the scene video, depth maps, and 3D LiDAR
point clouds before building the individual annotation point
tracks. We use the Waymo SDK to convert the provided range
images to 3D point clouds, and then project the 3D point
clouds to the image plane to generate depth maps (§4.4). For
processing nearest-neighbor depth maps, we parallelize frames
across CPUs. Using 32 CPU cores, processing 200 depth maps
takes around 25 seconds. For depth maps generated using
CompletionFormer [27], we spawn a process for each available
GPU and use a multiprocessing queue to pass jobs to each
process. On 6 NVIDIA V100 GPUs, processing 200 depth
maps takes around 35 seconds.

After preprocessing the scene and caching the videos, depth
maps, and 3D point clouds, we process each annotation (object)
in parallel as described in (App. 4). In total using 32 CPU cores,
each annotation takes about 10 minutes to complete.

B. DriveTrack Annotations

B.1. Video animation

We recommend watching the supplementary video to see
several qualitative visualizations of DriveTrack’s annotations.
Our video includes 11 scenes, covering a variety of lighting
conditions, weather patterns, and occlusion configurations.
For each scene, we show 10 randomly-sampled points from
DriveTrack’s annotations; each point disappears whenever
DriveTrack labels it as occluded.

B.2. Examples

Fig. 10 visualizes the annotations computed by DriveTrack for
several scenes in the Waymo dataset [21]. The top two rows
illustrate how DriveTrack robustly detects different types of
occlusions, from both cars and signposts. The middle two rows
demonstrate a nighttime scene with vehicle occlusions. The
bottom two rows demonstrate occlusions from pedestrians in
the scene.

B.3. Pseudo-ground-truth evaluation

Assessing the quality of DriveTrack is challenging; in §5, we
do a proxy evaluation with vehicle speeds. App. B.1 and App.

B.2 show visual quality through figures and a supplementary
video. We also evaluated DriveTrack’s labeling workflow
against Kubric, a synthetic benchmark for which we have
ground truth. Using Kubric’s perfect bounding box annotations,
we found that the tracks generated by DriveTrack are 100%
accurate. To evaluate occlusion accuracy, we subsampled 50%
of the ground-truth depth map and used nearest-neighbor depth
completion to fill in the masked values. Table 6 shows percent
occlusion error at various percentiles.

B.4. Limitations

While most of DriveTrack’s annotations are high-quality, there
are a few edge cases where DriveTrack fails. Fig. 11 illustrates
one example, where DriveTrack fails to track a point on a
sliding door on a parked van. Due to the rigid body assumption,
DriveTrack selects points on the open door and then tracks
them through all frames. However, as the door closes, the
points should follow the door and eventually become occluded
once the door closes. Instead, DriveTrack leaves such points
dangling in open space.

A simple way to mitigate these errors is to filter out points
whose speeds deviate significantly from the annotated ones
(§4.5). A more robust method is to estimate surface normals
from the 3D point cloud, which would help better track the
depth contours of the vehicle. We leave this to future work.

Another source of labeling error stems from noisy bounding
box labels in the autonomous driving dataset. For instance, the
bounding box may not be perfectly centered around the target
vehicle in each frame of a track. For the Waymo dataset [21]
that we used to build DriveTrack, we found that most bounding
box labels are visually accurate. For other datasets, one proposal
is to smooth the bounding box tracks to suppress labeling error;
we leave this to future work.

C. Additional Fine-tuning Results

Fig. 12 shows additional results from fine-tuning TAPIR on
DriveTrack. Each row shows three frames from a scene in Driv-
eTrack, and visualizes tracking performance before and after
fine-tuning. Fine-tuning on DriveTrack consistently improves
tracking performance.

Fig. 13 shows the transfer potential of TAPIR on more scenes
from the DAVIS dataset. We find that fine-tuning in particular
improves the tracking accuracy of outliers.



Figure 10. Example annotations from DriveTrack on three scenes, spanning a variety of lighting and weather conditions. Each batch of two rows
corresponds to a new scene, spaced four frames apart on a 30-frame subsection of the scene video.



Figure 11. Example of a failure in DriveTrack’s annotations, highlighted by the magenta box. When the van door closes, the point selected on
the door frame becomes dangled in space instead of tracking the door as it closes.



Figure 12. Point tracks predicted by TAPIR before and after fine-tuning. The markers indicate the locations predicted by each model, and the
line segments lead to their respective ground-truth locations. • denotes points predicted as visible, and ⇥ denotes points predicted as occluded.



Figure 13. Point tracks predicted by TAPIR on scenes from DAVIS.


