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More on inference time calculations: We present two primary models: one trained with latent vectors and the other as
a VAE. While the latter works well with sketches from Vector-MNIST and Quick-Draw!, we use learned latent vectors (in
Tab. 1) for more complex datasets like FS-COCO and Sketchy (having ∼3000 and ∼600 number of stroke points, respec-
tively). For a fair comparison in Tab. 1, we evaluate against (i) the “Decoder only” model of Sketch-RNN and (ii) only the
decoder from CoSE. Methods like BézierSketch [1] and SketchODE [2] are trained in a per-sketch optimisation setting as
ours. We compute the inference time for all methods, as time taken to decode a sketch from its latent representation. We par-
ticularly emphasise on SketchINR’s scalability to very complex sketches in FS-COCO, where even per-sample optimisation
versions of BézierSketch and SketchODE fail considerably.
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