
Supplementary Material
What Sketch Explainability Really Means for Downstream Tasks ?

Hmrishav Bandyopadhyay1 Pinaki Nath Chowdhury1 Ayan Kumar Bhunia1

Aneeshan Sain1 Tao Xiang1,2 Yi-Zhe Song1,2

1SketchX, CVSSP, University of Surrey, United Kingdom.
2iFlyTek-Surrey Joint Research Centre on Artificial Intelligence.

{h.bandyopadhyay, p.chowdhury, a.bhunia, a.sain, t.xiang, y.song}@surrey.ac.uk

Differentiable Rasterisation for P-SLA We differentiably
render vector sketches V ∈ RT×5 (differentiably convert
vector → raster) by (i) calculating the minimum distance
of each pixel in a blank canvas (X ∈ RH×W×3) from
any stroke in V, and (ii) colouring all pixels by their dis-
tance, controlled with threshold hyperparameters. Essen-
tially, these hyperparameters control how thick the rendered
strokes are (Fig. S2), by regulating pixels’ colour based on
how far they sit from the stroke.

We simplify the first problem by calculating the distance
of each pixel (px, py) from linear segments of vector strokes
(vt−1, vt) i.e., consecutive points in V (Fig. S1). Next, we
find the minimum of these distances from all such line seg-
ments to get the minimum distance from all strokes in V.
Now, the distance of pixel coordinate pxy = (px, py) from
line segment (vt−1, vt) is:
dist(pxy , vt−1, vt) =
|(pxy , vt)|, if ∠pxy vt vt−1 > π

2

|(pxy , vt−1)|, if ∠pxy vt−1 vt >
π
2

|(pxy , vt)× (vt, vt−1)| ÷ |(vt, vt−1)|, otherwise
(1)

where (i) |(A,B)| denotes the euclidean distance between
coordinate points A and B, (ii) (A,B) × (C,D) denotes
cross product between vectors (A,B) and (C,D), and (iii)
∠ABC denotes the angle formed by coordinates A, B, and
C with B as the vertex.

Figure S1. Calculation of minimum distance of pixel-coordinate
pxy = (px, py) from vector sketch V ∈ RT×5 where T = 5

This equation is implemented as the distance of pixel co-
ordinate pxy = (px, py) from line segment (vt−1, vt)
in Algorithm 1. For each coordinate pxy , we com-
pute the minimum distance as distmin(pxy,V) =

min
t=2,...,T

(dist(pxy, vt−1, vt)) over all vector points in V

to check whether this distance is under a given threshold.
However, not all consecutive points in V are connected. At
the end of one stroke (say, vt−1) and the beginning of the
next (vt), the pen is lifted and moved to the new coordinate
without drawing on the canvas. This motion is indicated
with a pen-up state (q1t−1 = 0). To prevent joining these
points in (vt−1, vt) in the final raster sketch, we exclude
them from the minimum distance calculation by offsetting
the distance value dist(pxy, vt−1, vt) with a large number
(106). Then, we calculate the minimum distance as :

distmin(pxy,V) = min
t=2,...,T

(
dist(pxy, vt−1, vt)

+ (1− q1t−1)10
6
) (2)

The colour (1→black, 0→white) of a pixel X(px, py) is de-
termined by the minimum distance distmin((px, py),V)
where pxy = (px, py), as:

X(px, py) = σ(2− 5 · distmin((px, py),V)) (3)

where σ represents the sigmoid function and X ∈ RH×W×3

represents the raster sketch image. Here, σ acts like a soft-
threshold to convert distmin to either ∼1 (black colour
pixel) or ∼0 (white colour pixel). We control stroke thick-
ness in Fig. S2 with the threshold hyperparameters empiri-
cally set to 2 and 5.

Figure S2. Modulating stroke thickness by a soft-threshold on the
minimum distance distmin of each pixel from any stroke.



Additional Results on Adversarial attacks
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SLA: Avoiding degenerate solutions We use ωi ∈ RH×W

as a binary mask (1 for stroke pixels, 0 for background).
In SLA, we accumulate raster strokes Si ∈ R3×H×W to
form the sketch X =

∑
i ωiSi. Here ωi helps us select only

stroke pixels (non-zero pixels which contain the stroke) for
the summation. While background pixels (0 by default) do
not change the final sketch in the summation, they lead to
X =

∑
i Si =⇒ ∂X

∂Si
= 1 for all i. Thus, to obtain

gradient of the output Fθ(X) with respect to any stroke Si,
we compute ∂Fθ(X)

∂Si
= ∂Fθ(X)

∂X · ∂X
∂Si

= ∂Fθ(X)
∂X . This term

is independent of i, implying all strokes have same attri-
bution (degenerate solution). We infer it arises as 0 pixels
are summed up same as non-zero pixels, and have the same
gradients as them. Weight ωi helps us prevent this degener-
ate solution by only including necessary pixels (i.e. stroke
pixels) in the summation.
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SLA vs. P-SLA A good attribution algorithm should be
faithful and human interpretable [73]. While SLA captures
stroke-level attributions, P-SLA captures attributions for co-
ordinates of a stroke. Being more fine-grained, P-SLA out-
performs SLA on robust SBIR (Tab. 1), noisy stroke re-
moval (Tab. 2), and adversarial attack (Tab. 3). Despite
being faithful, P-SLA is less human-interpretable (Fig. 4).
Consequently, humans prefer SLA (better MOS scores)
over more accurate P-SLA for noisy stroke removal.

Qualitative Results We include some qualitative results for
Robust SBIR (Table 1) and Noisy Stroke Removal (Table 2)
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Future Directions We introduce fine-grained attributions in
sketch-based networks with a plug-and-play explainability
toolbox. While we use vanilla gradient-based attributions as
a design choice for simplicity, strokes can be attributed with
more intricate attribution algorithms [1–4] in future works.
Specifically, SLA and P-SLA can be paired with any pixel-
attribution algorithm (like Guided Integrated Gradients [2]),
where, from attributions of all pixels only those for pix-
els containing the stroke (X(px, py)) can be selected. We
emphasise that selecting an optimal attribution algorithm is
out-of-scope of this paper, as here we primarily demonstrate
the applicability of fine-grained attributions in downstream
sketch tasks.



Algorithm to compute dist(·)

Algorithm 1: Compute dist(·)
Function dist(px, py, vt−1, vt):

(xt−1, yt−1, q
1
t−1, q

2
t−1, q

3
t−1)← vt−1 ;

(xt, yt, q
1
t , q

2
t , q

3
t )← vt ;

δx← xt − xt−1 ;
δy ← yt − yt−1 ;
norm← px · px+ py · py ;
u′ ← ((px − xt−1) · δx+ (py − yt−1) · δy ;
u← u′/norm ;
if u > 1 then

u← 1 ;
end
else if u < 0 then

u← 0
end
x← xt−1 + u · δx ;
y ← yt−1 + u · δy ;
∆x← x− px ;
∆y ← y − py ;
return (∆x ·∆x+∆y ·∆y)1/2
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