
-Supplementary Material-

Active Prompt Learning in Vision Language Models

This supplementray material presents additional analy-
sis and explanation of our paper, “Active Prompt Learning
in Vision Language Models”, that are not included in the
main manuscript due to the page limitation. Appendix A
analyzes the reason why VLMs make imbalance during the
active learning pipeline. Appendix B addresses the method
details for generating the descriptions of each class. Ap-
pendix C describes the detailed experimental settings such
as datasets and active learning baselines. Also, Appendix D
shows the effectiveness of our method in large datasets. Ap-
pendix E addresses the phenomenon where PCB shows re-
duced effectiveness compared to zero-shot pretrained CLIP.
Last, Appendix F describes the additional results under not
only BADGE but also Entropy and Coreset with various ar-
chitectures of an image encoder.

A. Why Imbalane Occurs in VLMs

Biased knowledge of pretrained CLIP. Figure 6 indicates
the zero-shot accuracy of each class when using pretrained
CLIP for all the datasets. While pretrained CLIP has pow-
erful knowledge for some classes, it has weakness for the
other classes. For instance, in the case of Flowers102, pre-
trained CLIP has no knowledge in terms of stemless gentian

by showing zero accuracy. On the contrary, it has perfect
knowledge about moon orchid by indicating 100% accu-
racy. As such, we can conclude that imbalanced knowledge
of the pretrained CLIP causes imbalanced querying by ac-
tive learning algorithms.
Imbalanced dataset degrades the performance. Table 4
illustrates both accuracy and imbalance of labeled datasets
after the final round. For the Oxford Pets, Stanford Cars, and
FGVC aircraft datasets, where active learning algorithms
can be worse than random sampling, the imbalances of En-
tropy and Coreset are higher than that of random sampling.
It indicates that the large imbalance degrades the perfor-
mance even if these datasets consist of uncertain or diver-
sified data. As described in Section 4.3, Table 4 also shows
that getting informative data enhances the accuracy after
achieving a certain level of balance. For instance, despite
the imbalance of BADGE being greater than that of Coreset
paired with PCB, the accuracy of the combination of Core-
set and PCB is still lower than that of BADGE without PCB.

B. Details for Generating Descriptions
As extending Section 3.2, we delve into generating descrip-
tion methods in details. In the NLP community, few-shot

learning is one of the popular prompt engineering skills
for LLMs, which enhances the performance of whole tasks.

It adds a few question and answer pairs, which consist of
similar types of what we ask, into the prompt. To gen-
erate the best quality descriptions for each class, we also
leverage two-shot learning to LLM. Here, we show the full
prompt template to get the descriptions (Figure 7). Since
the text files for DTD, EuroSAT, and Oxford Pets are in-
cluded in [67], we simply use them. We obtain descrip-
tions for the remaining datasets through the use of GPT-
3, whenever feasible. However, there are instances, such as
with fine-grained datasets like Cars, where it proves im-
possible to generate descriptions for certain classes. Take,
for example, the class “Audi V8 Sedan 1994” within the
Cars dataset. When prompted, GPT-3 fails to provide any
description, whereas GPT-3.5-turbo produces the following
output: “[four-door sedan body style, Audi logo on the front
grille, distinctive headlights and taillights, sleek and aero-
dynamic design, alloy wheels, side mirrors with integrated
turn signals, V8 badge on the side or rear of the car, license
plate with a specific state or country, specific color and trim
options for the 1994 model year]”.

C. Experimental Settings

Datasets. We select seven publicly available image classifi-
cation datasets that have been previous utilized in the CLIP
model. Here are the details of each dataset.
• Flowers102 [41] consists of 102 different categoris of

flowers, each representing a distinct flower species, such
as roses, sunflowers, and daisies. There are 8,189 im-
age and label pairs in total. The distribution of images
across categories is imbalanced, similar to typical real-
world datasets, with a range of 40 to 258 samples.

• DTD [6], abbreviated from Describable Texture Dataset,
is designed for a texture classification task. This dataset
consists of 47 distinct classes, including the categories
like fabrics and natural materials. In total, DTD com-
prises 5,640 samples. Notably, when examining the per-
formance reported in [46], it becomes evdient that DTD
poses a challenging problem for pre-trained CLIP mod-
els, as the texture is not easily recognizable.

• Oxford Pets [42] consists of 37 different pet categories,
including various dogs and cats. This dataset contains
7,400 samples (4,978 dog images and 2,371 cat images).
Additionally, it provides both class and segmentation la-
bels for each image, though we use only the class labels
in this experiment.

• EuroSAT [17] comprises 10 distinct classes that represent
various land use and land cover categories. In total, this
dataset includes 27,000 satelite images, with 2,700 im-



Flowers102 DTD Oxford Pets EuroSAT Caltech101 Stanford Cars Aircraft
Method Acc Imbal Acc Imbal Acc Imbal Acc Imbal Acc Imbal Acc Imbal Acc Imbal

CLIP (zero-shot) 66.7 - 44.5 - 87.0 - 49.4 - 87.9 - 59.4 - 21.2 -
Random 92.92 24.31 58.77 6.77 78.30 7.17 77.62 9.50 89.55 48.52 65.96 8.09 30.69 6.02

Entropy [18] 94.80 20.54 59.18 6.64 76.81 7.31 75.46 10.87 91.67 15.03 66.68 10.69 25.80 17.11
+ PCB 96.16 13.41 59.73 5.62 80.44 3.01 80.80 2.40 92.41 9.83 67.18 7.75 26.78 11.75
+ PCB(AE) 96.33 14.86 60.07 6.34 80.87 4.85 81.72 2.53 93.14 12.16 66.42 10.13 27.09 12.38
+ PCB(AS) 96.94 13.59 59.50 4.94 80.94 2.76 80.75 3.93 93.48 11.47 68.93 9.34 27.58 14.23

Coreset [50] 88.65 30.72 50.39 39.92 76.70 18.58 68.09 37.87 88.78 48.52 61.75 24.53 24.32 21.58
+ PCB 91.30 21.24 55.77 15.50 76.84 8.74 77.50 2.07 89.96 22.08 63.63 13.44 25.38 14.27
+ PCB(AE) 91.70 21.59 57.09 16.34 78.60 8.97 79.28 1.00 90.29 20.33 62.08 14.38 26.19 14.27
+ PCB(AS) 92.33 21.50 56.38 14.98 79.50 9.86 79.28 1.13 91.70 22.11 65.75 12.51 26.22 13.74

BADGE [2] 96.33 17.89 58.98 5.90 80.03 5.71 79.79 5.47 92.54 13.19 68.07 5.77 31.25 6.87
+ PCB 96.12 13.07 60.28 5.39 80.22 1.51 81.98 1.73 92.21 11.73 68.50 4.91 31.35 6.46
+ PCB(AE) 96.35 12.69 61.92 4.56 81.93 2.45 80.70 1.20 92.52 12.77 67.70 4.94 31.80 6.04
+ PCB(AS) 96.71 12.47 62.33 3.55 83.16 2.43 81.50 1.47 93.85 12.54 70.70 4.52 32.27 4.98

Full data 97.9 - 74.7 - 89.3 - 94.5 - 94.4 - 80.8 - 43.4 -

Table 4. Final accuracy and imbalance on seven downstream tasks with the ViT-B/32 image encoder.
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Figure 6. Per class zero-shot accuracy from the pretrained CLIP with the ViT-B/32 image encoder for each dataset.

Prompt
Q: What are useful visual features for distinguishing a lemur in a photo?
A: There are several useful visual features to tell there is a lemur in a photo:
- four-limbed primate
- black, grey, white, brown, or red-brown
- wet and hairless nose with curved nostrils
- long tail
- large eyes
- furry bodies
- clawed hands and feet

Q: What are useful visual features for distinguishing a television in a photo?
A: There are several useful visual features to tell there is a television in a photo:
- electronic device
- black or grey
- a large, rectangular screen
- a stand or mount to support the screen
- one or more speakers
- a power cord
- input ports for connecting to other devices
- a remote control

Q: What are useful features for distinguishing a {CLS} in a photo?
A: There are several useful visual features to tell there is a {CLS} in a photo:
-
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Figure 7. Prompt template applied two-shot learning for gen-
erating descriptions.

ages allocated to each of the 10 classes. Notably, each
class contains an equal number of images, ensuring a bal-
anced distribution within the dataset.

• Caltech101 [11] is composed of 101 unique object cate-
gories, each corresponding to a different type of objects
or scenes. These categories encompass a wide range of
objects, such as various animals, vehicles, and more. The
dataset comprises a total of 9,000 images with varying
numbers of images allocated to each category. Notably,
it is considered a severely imbalanced dataset due to the
uneven distribution of images across its categories.

• Stanford Cars [27] consists of a collection of 16,185 im-
ages categorized into 196 different classes, with each
class typically representing a specific car make, model,
and year, e.g. 2012 Tesla Model S.

• FGVC-Aircraft [37] encompasses a total of 10,200 im-
ages depicting various aircrafts. This dataset is organized
into 102 distinct classes, and each class corresponds to



Method ImageNet-100 Food101 SUN397 UCF101

Random 61.96 68.14 60.73 71.55

Entropy 61.26 66.47 60.57 71.48
+ PCB 62.78 68.60 61.14 72.48

Coreset 61.20 63.76 55.68 63.47
+ PCB 62.06 65.13 58.21 70.50

BADGE 62.66 69.11 61.84 74.49
+ PCB 64.42 70.45 62.80 75.84

Table 5. Final accuracy with the ViT-B/32 CLIP image encoder
on four large scaled datasets.

a specific aircraft model variant. Notably, there are 100
images available for each of these 102 different aircraft
model variants. A class is named using the make, model,
and specific variant, e.g. Boeing 737-76J.

Active learning methods. To validate the effectiveness of
PCB, we select three representative active learning methods.
1. Entropy [18] selects the most uncertain examples with

the highest entropy value from logits in the prediction.
Specifically, a selected query set Q with size d is defined
as follows:

Q = argmax
Q⇢Du,|Q|=d

X

xi2Q

H (f(xi)) ,

where H(f(x)) denotes the entropy of a softmax output
f(x).

2. Coreset [50] queries the most diverse examples using
embeddings from the model (i.e. image encoder). More
precisely, it selects the examples that are the least rele-
vant to the queried dataset. For this purpose, the authors
proposed the K-Center-Greedy and Robust K-Center al-
gorithms, and we choose the former one.

3. BADGE [2] considers both uncertainty and diversity by
selecting the examples via k-means++ clustering in the
gradient space. The gradient embeddings for all exam-
ples are defined as follows:

gx =
@

@✓out
LCE(f(x; ✓t), ŷ(x)) (1)

where ✓t and ✓out refer to the parameters of the model
and the final layer at round t, respectively. ŷ(x) denotes
the pseudo label.

D. Large Dataset
Datasets. We select additional four large datasets that have
been previously utilized in the CLIP model. Due to limited
resources, we utilized the subset that consists of 16 samples
per class from the original dataset. Here are the details of
each dataset.
• ImageNet-100 is a subset from ImageNet [9], consisting

of randomly selected 100 categories. ImageNet is a sub-
stantial collection of images, with 1,281,167 designated

Model
Method N RN50 RN101 ViT-B/32 ViT-B/16

CLIP (zero-shot) 0 85.4 86.2 87.0 88.9
Random 37 74.65±0.50 79.08±1.39 78.30±0.74 84.36±1.34

BADGE [2] 37 75.06±0.50 80.77±1.31 80.03±1.19 85.54±1.30
+ PCB 37 76.51±1.83 80.94±0.42 80.22±1.69 86.22±0.71
+ PCB(AE) 37 76.77±0.65 83.02±0.89 81.93±0.88 87.23±0.35
+ PCB(AS) 37 80.09±0.85 83.48±2.13 83.16±0.18 88.10±1.49

BADGE [2] 148 86.48±0.12 89.10±0.16 88.28±0.33 91.74±0.23
+ PCB 148 86.70±0.07 89.19±0.21 88.03±0.33 91.92±0.81
+ PCB(AE) 148 86.54±0.55 89.52±0.17 88.30±0.34 91.72±0.07
+ PCB(AS) 148 87.74±0.32 90.16±0.12 89.29±0.15 92.64±0.14

Full data - 88.0 91.1 89.3 92.7

Table 6. Ablation study as increasing query size N on Oxford
Pets. It shows that the small amount of training set is the crucial
reason why finetuning methods underperform zero-shot CLIP.

for training, 50,000 set aside for validation, and 100,000
for testing purposes.

• Food-101 [4] consists of 101 food categories with 750
training and 250 test images per category, making a total
of 101,000 images. The labels for the test images have
been manually cleaned, while the training set contains
some noise.

• SUN397 [57] is the database for scene regonition, which
contains 397 categories and 130,519 images.

• UCF101 [53] is an extension of UCF50 and consists of
13,320 video clips, which are classified into 101 cat-
egories. These 101 categories can be classified into 5
types (Body motion, Human-human interactions, Human-
object interactions, Playing musical instruments, and
Sports). The total length of these video clips is over 27
hours. All the videos are collected from YouTube and
have a fixed frame rate of 25 FPS with the resolution of
320 × 240. In this work, the middle frame of each video
is used as an input to the image encoder.

Results. Table 5 presents further experimental results on the
four large datasets, following the outcomes shown in Ta-
ble 1. Due to limited resources, we conducted our ex-
periments without description augmentation, applying only
PCB, and all the experiments are conducted only once.
When comparing these results to the baselines, we ob-
served that using PCB has 1%–2% points performance im-
provement compared to only employing conventional active
learning techniques, and it is a similar trend to what was ob-
served in Table 1.

E. Larger Size of N for Oxford Pets
As shown in Table 1 and Table 2, zero-shot CLIP outper-
forms PCB combined with all the active learning algorithms
in the case of Oxford Pets. Here, Table 6 shows that in-
creasing query size N enhances the performance. The per-
formance when N is 4 times of the number of classes (i.e.
148) surpasses the performance when N is the number of
classes (i.e. 37) with 4%–7% points for all the architec-



tures of an image encoder. Moreover, PCB (AS) combined
with BADGE when N=148 almost reaches the performance
when training with all the data (Full data). Through this phe-
nomenon, setting an appropriate query size N is important
to achieve the performance that we expect, and it should be
determined by learning difficulty of the dataset.

F. Additional Results
Table 2 indicates the performance on various types of archi-
tectures of an image encoder under BADGE active learning.
To extend it, we conduct the experiment on various types of
architectures under not only BADGE but also Entropy and
Coreset, and summarize the results in Table 7. Regardless
of the architecture types of the image encoder, PCB com-
bined with BADGE still has the best performance among
the other baselines, but sometimes, PCB combined with En-
tropy beats combination of PCB and BADGE by a narrow
margin. It indicates that a subset P sampled through En-
tropy has many informative examples similar to a subset P
sampled through BADGE, where the size of P is 10% of
the whole dataset.



Final Accuracy (")
Model Method Flowers102 DTD Oxford Pets EuroSAT Caltech101 Stanford Cars Aircraft Avg Acc (")

RN50

CLIP (zero-shot) 65.9 41.7 85.4 41.1 82.1 55.8 19.3 55.9
Random 92.06±0.54 56.62±0.97 74.65±0.50 79.10±2.31 84.11±0.75 61.34±0.57 29.15±0.32 68.18

Entropy [18] 95.19±0.09 57.62±2.13 72.74±0.97 75.73±4.28 88.21±0.42 61.32±0.80 25.13±0.96 67.99
+ PCB 95.30±0.59 56.44±0.39 75.49±0.45 81.69±1.63 88.78±0.43 62.02±0.17 25.75±0.35 69.35
+ PCB(AE) 95.75±0.23 59.02±0.59 76.59±0.12 81.77±1.51 89.41±0.53 61.05±0.99 26.44±0.81 70.00
+ PCB(AS) 96.17±0.27 59.34±1.09 78.59±1.41 83.26±0.35 90.49±0.02 63.52±0.31 26.46±0.99 71.12

Coreset [50] 85.02±1.51 48.74±1.00 69.87±2.36 70.02±4.16 83.34±1.33 57.93±0.56 25.38±0.62 62.90
+ PCB 88.79±0.98 51.63±0.30 71.75±1.64 77.74±2.13 85.54±0.84 58.67±0.37 25.33±0.63 65.64
+ PCB(AE) 89.27±1.69 51.69±1.25 73.70±0.27 77.74±3.33 86.69±0.57 57.63±0.55 25.17±0.37 65.98
+ PCB(AS) 89.50±1.39 53.15±1.37 75.53±1.64 79.79±1.06 87.15±1.14 60.61±0.54 25.88±0.10 67.37

BADGE [2] 95.56±0.54 58.35±1.20 75.06±0.50 80.94±0.55 89.67±0.30 63.96±0.53 28.12±1.03 70.24
+ PCB 95.66±0.28 57.41±0.17 76.51±1.83 80.06±0.97 89.06±0.21 63.18±0.77 29.23±0.35 70.16
+ PCB(AE) 95.72±0.31 59.20±1.25 76.77±0.65 81.96±0.60 89.57±0.19 62.62±0.26 28.85±1.59 70.67
+ PCB(AS) 96.18±0.07 59.14±1.08 80.09±0.85 81.60±2.89 90.76±0.34 66.20±0.69 29.61±0.78 71.94

Full data 97.6 71.6 88.0 93.6 92.8 78.8 42.6 80.71

RN101

CLIP (zero-shot) 65.7 43.9 86.2 33.1 85.1 62.3 19.5 56.54
Random 92.87±0.43 58.29±1.24 79.08±1.39 77.21±4.13 87.55±0.75 70.02±0.36 32.76±0.29 71.11

Entropy [18] 96.26±0.11 57.17±1.54 78.63±0.99 74.88±1.26 91.02±0.48 70.09±0.16 27.49±0.69 70.79
+ PCB 96.26±0.25 58.81±1.39 80.14±1.27 79.91±2.06 91.62±0.30 70.87±0.45 28.11±0.38 72.25
+ PCB(AE) 96.47±0.39 59.81±1.34 82.65±0.99 81.23±1.26 92.16±0.90 70.14±0.56 27.96±1.63 72.92
+ PCB(AS) 96.49±0.17 60.70±1.09 83.64±1.02 82.43±1.35 92.86±0.20 73.62±0.67 28.68±0.83 74.06

Coreset [50] 87.90±0.92 52.23±1.76 74.02±1.81 66.62±0.54 87.23±1.18 65.83±0.43 26.37±0.42 65.74
+ PCB 91.08±0.37 54.75±2.93 76.43±1.61 75.39±1.94 89.36±0.28 66.97±0.75 27.28±0.33 68.75
+ PCB(AE) 91.61±1.30 56.38±1.55 77.11±1.86 76.99±0.65 89.90±0.06 65.38±0.62 27.72±0.39 69.30
+ PCB(AS) 91.80±0.28 57.31±2.07 81.14±0.24 78.49±1.99 90.11±0.30 69.11±0.73 28.31±0.78 70.90

BADGE [2] 96.26±0.07 59.93±1.25 80.77±1.31 78.23±2.22 91.35±0.32 71.43±0.97 32.56±0.64 72.93
+ PCB 95.79±0.38 60.20±1.89 80.94±0.42 79.55±1.37 91.75±0.44 71.35±0.39 32.62±1.48 73.17
+ PCB(AE) 96.49±0.26 62.59±0.84 83.02±0.89 81.50±0.69 92.51±0.32 71.42±0.77 32.76±0.76 74.33
+ PCB(AS) 96.47±0.18 62.17±1.04 83.48±2.13 81.14±1.57 92.87±0.18 74.04±0.39 32.84±0.85 75.43

Full data 97.8 74.2 91.1 92.9 94.7 83.7 46.0 82.91

ViT-B/16

CLIP (zero-shot) 70.4 46.0 88.9 54.1 88.9 65.6 27.1 63.0
Random 94.98±0.06 62.63±1.81 84.36±1.34 81.14±1.83 90.95±0.85 73.62±0.30 38.88±0.25 75.22

Entropy [18] 97.63±0.42 62.49±0.39 82.56±0.49 77.93±0.90 93.04±0.41 74.35±0.59 33.27±0.72 74.47
+ PCB 97.75±0.08 64.93±1.02 84.89±0.59 83.48±1.37 94.23±0.23 75.68±0.26 36.03±0.43 76.71
+ PCB(AE) 98.06±0.35 64.36±0.47 87.08±0.90 83.55±1.95 94.56±0.34 75.15±0.55 35.60±1.58 76.91
+ PCB(AS) 98.48±0.14 63.81±1.24 88.03±0.60 85.92±0.85 94.89±0.28 77.58±0.43 35.84±1.71 77.79

Coreset [50] 92.12±1.45 56.07±0.90 82.17±1.82 72.17±2.72 90.66±0.45 70.12±0.83 33.28±0.45 70.94
+ PCB 94.79±0.31 59.07±0.63 83.09±1.19 80.25±3.12 90.60±0.80 71.27±0.19 34.06±0.66 73.30
+ PCB(AE) 94.94±0.55 60.54±0.86 84.52±0.23 84.04±2.92 92.15±0.09 70.10±1.03 33.36±0.03 74.24
+ PCB(AS) 95.44±0.82 61.98±1.04 86.77±0.69 83.85±2.45 92.97±0.29 72.96±0.63 35.24±0.49 75.60

BADGE [2] 97.97±0.41 62.84±2.17 85.54±1.30 82.22±1.94 93.77±0.51 76.55±0.78 39.64±0.14 76.93
+ PCB 98.32±0.21 64.89±1.45 86.22±0.71 81.53±3.11 93.75±0.28 76.36±0.27 40.20±0.30 77.32
+ PCB(AE) 98.21±0.21 65.25±1.28 87.23±0.35 84.04±2.92 94.51±0.29 75.84±0.44 39.93±0.21 77.86
+ PCB(AS) 98.19±0.17 64.95±1.47 88.10±1.49 83.85±2.45 95.12±0.26 78.19±0.48 40.56±0.51 78.42

Full data 99.0 77.7 92.7 95.1 95.3 85.3 53.6 85.53

Table 7. Various architectures of an image encoder as an extension of Table 2. We include both all the conventional active learning
algorithms and PCB combined with them in terms of various architectures of the image encoder.
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