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Our supplementary material includes more details on
requests, baselines as well as our evaluation metrics in Sec. |
and Sec. 2. Qualitative and more quantitative results of all
methods can be found in Sec. 3 and Sec. 4 Finally, we report
the limitations of our proposed GLOW in Sec. 5

1. More details about generic request

R2 Compared to R1, R2 takes one step further in terms of
relaxing the attack request. Specifically, R2 comes in a more
vague manner where users only specifies the target label c,,.
In terms of selecting ¢, R2 shares the same intuition with R1.
In short, we first find out the out-of-context ¢, ¢ SZ. Then
we compute the averaged distance of each c,, to existing s&
according to Eq.1 in our main paper, followed by ranking
each ¢, w.r.t. v4(c,). Finally, the ones with top 95%, 50%
and 5% distance are selected as the target label ¢, R2-5,
R2-50 and R2-95, respectively.

R3 As described in our main paper, R3 adds additional
restrictions on the object amount, e.g. show me two cars.
Without losing generalization, we design a special type of R3
where the request is always giving me two c,,. For instance,
give me two cars if car is our target label. Similarly, out-
of-context is explored to figure out ¢, in R3-5, R3-50 and
R3-95. In particular, the target labels of R3-5, R3-50 and
R3-95 are the same as R2-5, R2-50 and R2-95, respectively.

2. Baselines and evaluation metrics

Baselines In this section, we include one more baseline,
or TOG [3]+SAME Similar to TOG+RAND., attack plan
generated by TOG+SAME assign target labels to all objects.
The only difference lies in the mapping function g(s). Here
we enforce g(s?) = c,, meaning all objects share the same
target label c,.

We visualize the attack plan of different methods under
R2-5in Fig. 2. As can be found in this figure, TOG cares only
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Figure 1. We visualize the R1-5, R2-5 and R3-5 of the same
victim image and they share the same target label ¢, in our design.
While R1 assumes that the victim object (highlighted with a yellow
bounding box in each figure) is given, R2 relaxes the constraint by
only providing a target label. In contrast, R3 further restricts the
amount of target objects.

about the randomly selected victim object, which may lead to
context inconsistency in predictions. Though TOG+RAND.
is aware of this limitation and proposes to assign labels to
all objects, including the ones that are not victim objects.
It potentially suffers from the oc-occurrence inconsistency
as well since the target labels of these objects are randomly
selected. Both Zikui [2] and TOG+SAME are able to address
such inconsistency problems. Specifically, TOG+SAME
provides an ad-hoc way by enforcing all objects belonging
to the same target label c,. While Zikui [2] turns to a co-
occurrence matrix when looking for target labels of objects
that are not originally our victim.

Evaluation metrics We describe all criteria we have used
and then introduce our evaluation metrics based on them.
Note all the following evaluations are performed on predic-
tions of perturbed victim image.
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Figure 2. We visualize two examples of R2-5. From left to right, we have victim image I, image with the Og4 as well as the target class ¢,
victim object (top) and attack plan (bottom) with TOG [3], victim object (top) and attack plan (bottom) with TOG [3]+RAND., victim object
(top) and attack plan (bottom) with TOG [3]+SAME, victim object (top) and attack plan (bottom) with Zikui [2], victim object (top) and

attack plan (bottom) with GLOW.

a) Victim object is perturbed as target label while IOU
scores greater than 0.3 compared to GT.

b) Predictions pass the co-occurrence check. For instance,
if at least the labels of two predicted objects never co-occur

in co-occurrence matrix, this image is context-inconsistent.

c) Averaged weighted w,, on victim object. If combined
with other criteria, an attack is successful iff the averaged
wp, on victim objects is above 0.02.

 d) Overall layout recall reflects the percentage of images
whose maximum recall rate is above 0.5. Specifically, for
each prediction on the perturbed image, we compare it
with all annotated images I; € A. Then we find the best
match that has the maximum recall rate. For example,
when comparing predictions on perturbed I and Oy, an
object is regarded as recalled as long as its label is agreed

with the matched object in O, and the IoU score between
these two objects is above 0.5. After obtaining the recall
rate on each I;, we find the one with the highest recall
rate. If the recall rate is above 0.5, we believe this image
is layout-consistent.

* e) If we have the target label ¢, exists in predictions, this
victim image is successfully attacked.

* 1) One attack is successful if both ¢, exist and their amount
satisfies the request.

As for fooling rate (F) [1], criteria a) and b) are com-
bined. T to measure the consistency on victim objects and
we utilize c¢) as our criterion when combining with others.
To measure the overall layout consistency, we introduce R
that is technically obtained with d). We further design two
metrics, E and C, on R2 and R3 to report successful rates.
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Figure 3. Three examples of our user interface. Specifically, we provide both the attacked results, which include the bounding boxes, as well
as their closest pair in terms of layout similarity in COCO. Users will decide which attack result is more realistic based on their common
senses as well as the reference image. They are also allowed, though not encouraged, to choose “undecided” if the results are equally bad or
good. Please note that which methods these two results are from are anonymous to users.

And they are based on e) and f) respectively.

Human analysis As described in our main paper, we per-
form human analysis on the attacked results of all methods,
which provides a more reliable evaluation of how consistent-
wise realistic each attacked method is.

Specifically, we ask humans to perform a pair-wise com-

parison between two attacked results. Humans will decide
whether one result is more realistic according to context, or
they are equally well. We design a user interface and give
an example in Fig. 3. As a reference, the users believe that
results are equally good on the left-most example. While the
results on the right are better than those on the left for the
middle and right-most examples. As can be found in this fig-
ure, we provide both the attacked results, which only include
the bounding boxes, as well as their closest pair in terms of
layout similarity in COCO. After iterating out all baselines,
we report the percentage of cases where one method is be-
lieved to be superior to the other when they co-occur. Our
human analysis includes the annotation results from three
persons, each of them with a different background. Results
on Pascal can be found in Tab. 1 and Tab. 2. We also conduct
the same analysis on COCO and demonstrate our results in
Tab. 3, 4 and 5.
Experiment details In experiment, we set ) to 5. For each
victim image, we set the iteration number to 50 regardless of
the perturbation budgets. And the clip() is used to truncate
the accumulated per-pixel perturbation if it is greater than
the pre-defined perturbation budget. The weight ) is set to
0.5 empirically.

3. Qualitatively results

We visualize the victim object, the attack plan, and the final
predictions of all methods on one example victim image in
Fig. 4. As can be found in this figure, victim object selection

Methods | TOG [3] [3+RAND [34+SAME Cai[2] GLOW
TOG [3] - 57 52 31 22

[3]+RAND 39 - 21 15 .06

[3]+SAME 52 75 - 37 11
Cai [2] 64 81 63 . 37
GLOW 76 92 78 57 -

Table 1. Human analysis on Pascal under R1-5. We colored results
under white and black settings in red and blue respectively. The
bottom-left 0.76 means that 76% of GLOW results are voted to be
better than TOG [3] by humans.

Methods | TOG[3] [3+RAND [34+SAME Cai[2] GLOW
TOG [3] - 63 .60 31 32

[3]+RAND 39 - Al 14 18

[3]+SAME 56 72 . 15 24
Cai [2] 61 74 56 - 50
GLOW 76 86 68 69 -

Table 2. Human analysis on Pascal under R3-5. We colored results
under white and black settings in red and blue respectively.

or localization is very important, where different selections
would lead to various results. TOG, TOG+RAND., and
Zikui fail the task as NO refrigerator occurs in the final
prediction. Though TOG+SAME can turn multiple objects
into refrigerator in the final prediction, it fails the victim
object it selects. Our GLOW, in contrast, is able to both fool
the model’s prediction on localized victim objects, as well
as generate layout-consistent final predictions.

4. More quantitative results

4.1. cocol7val

We report the attack results on cocol7val with perturbation
budget set to 10 in Tab. 6, 7 and 8. We highlight the best
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Figure 4. We visualize the victim object, the attack plan, and final predictions of all methods on one example victim image. We are asked to
fool the model so that we have a refrigerator in our final prediction. Unlike other methods that select the victim by random, our GLOW
localizes the victim object w.r.t. the target label, as well as accounts for the center and size. Furthermore, GLOW is further able to generate

layout-consistent attack plans, leading to better attacks in general.

and second-best performances in bold and underline, respec-
tively.

Compared to perturbation budget 30, one most noticeable
observation we have is that the overall performance is much
worse, which is clearly reflected in F where the victim object
cannot be easily fooled with only a limited budget in white-
box setting. Failing to fool victim object in the white-box
setting leads to even worse performance under the black-box

setting.

Similarly, we observe the same trend as in perturbation
30 where simpler task, e.g. R2-95, gives better performance
compared to harder task such as R2-5. This, again, supports
our experimental design of different target label ¢, under the
same request.

Interestingly, we notice that GLOW can always give either
the best or second-best results compared to all baselines in



Methods ‘ TOG [3] [3]+RAND [3]+SAME Cai[2] GLOW
TOG [3] - 71 .70 .58 52
[3]1+RAND 32 - 40 .30 27
[3]1+SAME .68 97 - 42 28
Cai [2] .81 98 73 - 37
GLOW 91 .98 .80 .63 -

Table 3. Human analysis on COCO under R1-5. We colored results
under white and black settings in red and blue respectively.

Methods | TOG[3] [3+RAND [34+SAME Cai[2] GLOW
TOG [3] - 86 79 68 53
[3]+RAND 18 - 33 23 11
[3]+SAME 66 97 . 51 17
Cai [2] 83 98 73 - 29
GLOW 91 98 83 76 .

Table 4. Human analysis on COCO under R2-5. We colored results
under white and black settings in red and blue respectively.

Methods | TOG[3] [3+RAND [34+SAME Cai[2] GLOW
TOG [3] - 79 76 72 58
[3]+RAND 23 . 30 35 2
[3]+SAME 79 97 . 44 29
Cai [2] 83 94 71 - 32
GLOW 93 99 81 78 .

Table 5. Human analysis on COCO under R3-5. We colored results
under white and black settings in red and blue respectively.

all evaluation metrics. TOG+SAME is a strong counterpart
under a small budget. This is expected as a small budget
cannot fulfill attack plans generated with all methods and
TOG+SAME hacks the goal with simple ad-hocs. We would
like to argue that TOG+SAME is not generic as requests
cannot be always of the same target label c,. And it would
be de-generate to TOG+RAND. or Zikui [2] if multiple
various cps are given. Therefore, our claim that GLOW is
more generic and a better choice under both white-box and
black-box settings is still valid.

4.2. Pascal

We also report more results on Pascal in Tab. 9, 10 and 11.

Please note that in our main paper, the white-box models
are Faster-RCNN+YOLO and we turn to RetinaNet as our
black-box victim model. While in our supplementary, we

exploit both Faster-RCNN as our white-box victim models.

And DETR is our victim model when working on black-box
settings.

4.3. Dataset distribution

We also showcase the data distribution on two victim datasets
in Fig. 5. As can be found in this figure, the data distribution
is more balanced in cocol7val while Pascal has about 38%
of victim images with only two objects. We argue that this
can be one reason that our GLOW does not demonstrate
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Figure 5. We visualize the data distribution of cocol7val and
Pascal in this figure. As can be found in this figure, about 38% of
Pascal victim images have 2 objects while the number of instances
distribution is more balanced on cocol7val in comparison.

strong performance improvement over existing methods on
Pascal compared to cocol7val under R3. More specifically,
R3 requests to attack two object instances in victim images
where 38% of Pascal images share the same attack plan for
all methods, leading to a more challenging scenario where
the superiority of GLOW can be demonstrated with the re-
maining images on Pascal. Nevertheless, we still observe
that GLOW is the safest choice under R3 on Pascal such that
it outperforms existing methods with majority evaluation
metrics.

5. Limitations

More complex requests, such as turning the furthest brown
chair into lamb, require a high-level understanding of both
the scene and language. They are beyond the scope of
GLOW and will be discussed in future work.

Meanwhile, as discussed in our main paper, there is room
for improvement in the design of R3. Theoretically, GLOW
works with scenarios where objects are of the same or dif-
ferent categories. In experiments, we simulate the target
category selection process with automatic generation, where
word vector is utilized to measure similarities between se-
mantic labels. When it comes to instances with multiple
categories, additional heuristics are needed to avoid seman-
tic inconsistency, e.g. toilet and elephant, since none of
these criteria, including visual, contextual, or word simi-
larity, would guarantee contextual consistent combinations.
Moreover, delicate designs are requested for evaluation met-
rics and similarity measurement with the increasing number
of categories. Currently, our R3 provides the first trivial
towards multiple-object attacks. And we leave the principle
design and evaluation on more challenging requests with
various while consistent categories for future work.
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‘White-box (Faster-RCNN) Zero query black-box (Faster-RCNN — DETR)

Methods | RIS | RI50 | RI95 | RI5 [ R0 |  RI% Methods | RIS | RI50 [ Ri95 | RIS | RS0 |  RI95
[F ™R| F MR | F FR| F TR | F MR | F FiR [F ®™R| F WMR| F MR | F R | F FR | F FiR

TOG [3] 4307 | 54 a1 | 68 a7 |04 00 | 07 01 | .02 01 TOG [3] 93 32 |95 39 | 96 48 | 29 02 | 34 03 | 42 07
TOG+RAND | 37 .10 | 47 .14 | 55 .15 | 04 00 | 09 01 |.I5 02 TOG+RAND | 71 14 | 75 16 | 76 .13 | 26 01 | 35 03 | 39 06
TOG+SAME | 58 I8 | .66 .19 | 72 .19 | .09 .00 | .5 01 | 20 02 TOG+SAME | 95 21 | .98 35 | 97 35 |35 01 | 47 03 | 49 05
Zikui [2] 55 3 | .63 04 | 68 3 | 07 .00 | A3 01 | 17 0l Zikui [2] 92 a7 | 97 a6 | 98 a5 | 34 01 | 43 02 | 47 04
GLOW | 54 .7 | 61 21 | 67 21 |07 00 | .2 01 | .7 .01 GLOW | 92 46 | 96 54 | 96 56 | 34 02 | 39 04 | 45 08

Table 6. Performance of R1 under perturbation budget 10 on
cocol7val

White-box (Faster-RCNN)

Methods R2-5 ‘ R2-50 ‘ R2-95
T F+T E+R| T F+T E+R | T F+T E+R
TOG [3] 17 .19 .09 19 27 17 22 35 .19

TOG+RAND | .17 .16 .07 | .17 21 .09 | 21 27 .1
TOG+SAME | .18 .26 24 | .19 33 .26 | .22 40 .25

Zikui [2] 2125 A7 | 22 31 A9 | .24 37 18

Table 9. Performance of R1 with victim model F-RCNN on Pascal

White-box (Faster-RCNN)
Methods R2-5 ‘ R2-50 ‘ R2-95
T FT E+R| T FT E+R [ T FT E+R

TOG+RAND | .19 .36 06 | 20 42 12 | a7 34 12

TOG [3] 16 54 30 | .19 53 37 |1 45 .46

=}

TOG+SAME | 20 .56 22 1 .20 .57 35 |17 45 .36

Zikui[2] | 17 55 17 |19 53 19 | .16 43 .18

GLOW |36 .71 49 |35 .70 .53 | .33 56 .50

GLOW |32 35 26 |36 41 30 | 41 47 30

Zero query black-box (Faster-RCNN — DETR)

‘ Zero query black-box (Faster-RCNN — DETR)

TOG [3] 22 .02 00 | 28 .04 01 | 30 .06 .01
TOG+RAND | .19 .02 01 | 22 .04 .01 | 30 .07 .02

TOG+SAME | 23 .04 01 | 23 .08 02 | 28 a3 .03
Zikui [2] 28 .04 00 |29 06 .01 | .31 .11 .02

GLOW |32 .04 .01 |37 .08 01 |44 13 0

Table 7. Performance of R2 under perturbation budget 10 on
cocol7val

White-box (Faster-RCNN)

Methods R3S \ R3-50 \ R3-95
T F+T+C C+R | T F+T+C C+R | T F+T+C C+R
TOG [3] 17 .16 .05 .19 23 .08 | .22 28 09
TOG+RAND | .17 .14 .05 18 20 .08 | .22 24 .10
TOG+SAME | .18 .08 .08 .19 .10 10 22 12 .10
Zikui[2] | 21 .08 03 |21 a3 03 |24 14 04
GLOW ‘ 29 21 .07 | .31 .26 Jd0 | 33 28 .09

‘ Zero query black-box (Faster-RCNN — DETR)
TOG [3] 24 .00 .00 | .22 .01 .00 | .29 02 .01

TOG+RAND | 22 .00 00 | 23 .01 00 | 28 .02 01
TOG+SAME | 23 .00 00 | 24 .01 00 | 29 01 01
Zikui[2] | .28 .00 00 | 26 .00 00 | 31 .01 .00
GLOW | .28 .00 00 |32 .01 00 |36 .01 .00

Table 8. Performance of R3 under perturbation budget 10 on
cocol7val
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