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In this supplementary material, we first present an ethics
declaration in Section A, followed by detailed implementa-
tion aspects in Section B, which covers our model architec-
ture, geometry and texture distillation, and the user study.
More experimental results are shown in Section C. Addi-
tionally, we include a short video summarizing the method
with video results, and an offline webpage for interactive
visualization of our editing results.

A. Ethics Declaration
In this paper, we present this ethics declaration to under-
line our commitment to responsible scientific inquiry within
the field of computer vision. Our work uses open-sourced
datasets, carefully chosen to ensure that they were collected
with the full consent of the participants involved. The pri-
vacy and rights of individuals are paramount in our re-
search, and we have taken steps to safeguard these by imple-
menting strict guidelines that govern the use of our research
outputs. We acknowledge the importance of diversity and
have selected our datasets with the aim of preventing bias,
ensuring that our methods are fair and inclusive across var-
ious demographics. Our research is purely academic, and
any head editing carried out is for the purpose of validating
the effectiveness of our methods. We explicitly state that
our research does not involve human experimentation and
that all human-derived data has been responsibly sourced
and vetted for ethical compliance. We affirm that our re-
search is intended solely for scientific advancement and to
test the robustness of our methods. There is no intention
to vilify or harm any individual or group. Our aim is to
contribute to the field of computer vision in a way that is
ethically sound, socially responsible, and cognizant of the
long-term implications of our work. We embrace open dis-
cussions about our ethical approach and are committed to
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transparency and ethical integrity in all aspects of our re-
search.

B. Implementation Details

B.1. Model Architecture

Our model follows the architecture of 3DMM-based
3DGAN [7] that contains a StyleGAN-based feature gen-
erator and a feature decoder. Specifically, the feature gener-
ator takes a modification code zg/n ∈ R1024 as input, and
has a mapping network and a feature synthesis network. A
mapping network is employed to transform the modification
code in Z space to the code w ∈ R14×512 in W space. The
mapping network consists of 3 fully-connected layers with
512 hidden sizes. Then the code w conditions the feature
synthesis network following the StyleGAN [4]. The fea-
ture synthesis network consists of 7 synthesis convolution
blocks, each of which contains 2 convolution layers and a
1× 1 convolution layer. The resolutions of 7 synthesis con-
volution blocks are 4, 8, 16, 32, 64, 128, 512 respectively.
The codes in (2i)-th and (2i + 1)-th row of code w modu-
late the weights of (i)-th synthesis block. The output of the
feature synthesis network is 256× 256× 32 neural feature
map. We pre-define the UV mapping between the vertices
of the 3DMM mesh and neural feature map, and rasterize
the neural feature map to the four axis-aligned plane (one
parallel to the positive face, two parallel to the side face,
one parallel to the top of the head) to generate the tri-plane
features. The two side planes are used to collect the features
in left-side and right-side faces which will be summed up to
generate the final side-plane feature. The modification fea-
ture of input query point x is collected by projecting x to
the tri-plane and summing up the bi-linear interpolated fea-
ture from the tri-plane. For geometry editing, the geometry
modification decoder takes the modification feature as input
and outputs a translation vector to shift the x to x′. The ge-
ometry modification decoder consists of 4 fully connected
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Figure A. We show some avatars sampled in the geometry modification learning.
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Figure B. We show 3DMM meshes sampled from different shape
coefficients β.
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Figure C. We show the 3DMM meshes sampled from different
poses of jaw θjaw and corrupted image generated by Next3D [7]
when the 3DMM mesh is sampled with θglobal.

layers with 256 hidden sizes and a translation head. For
texture editing, the texture modification decoder takes the
modification feature as input and outputs a blending weight
and modification color value to modify the original color
using Eq.(3). The texture modification decoder consists of
4 fully-connected layers with 256 hidden sizes and a blend-
ing weight head and a modification color head.

B.2. Geometry Distillation

As illustrated in Fig. B, we observe that the shape of the
head is distorted when the mean value β̄ of 3DMM shape
coefficient β is larger than 1.0, e.g., the two heads on the far
left deviate from the standard shape definition of the human
head. Furthermore, the increasing of the standard deviation
βn of 3DMM shape parameter β will lead to the asymme-
try in the shape, e.g., the shape of the first and third head
is asymmetrical. Therefore, we sample 3DMM shape pa-

rameters β from a normal distribution whose absolute mean
and standard deviation are randomly selected within [0, 1],
and sample the edit vector β∆ from the uniform distribution
U(−3, 3) to keep the β̄ within [-1,1] and β̄ small as possi-
ble.

For 3DMM pose coefficient θ sampling, we only sample
different pose coefficients of the jaw θjaw and keep the oth-
ers fixed to comply with the 3DMM pose range allowed by
Next3D [7], e.g., the generated face is corrupted with θglobal
since the face is assumed to always locate at the original
point without rotation as illustrated in Fig. C(b).

We show some pairs of volumetric avatars that are
sampled for geometry modification learning in Fig. A.
The proposed geometry distillation scheme can result in
a wide range of consistent geometry editing data across
expressions and viewpoints, which promotes expression-
dependent geometry modification learning. The geometry
editing data contains geometry modifications on various fa-
cial features across different genders, ages and sex, which
promotes the generalization ability of our method.

B.3. Texture Distillation

We show some pairs of volumetric avatars that are sampled
for texture modification learning in Fig. D. Our texture dis-
tillation scheme enables the generation of a diverse array
of texture editing data that is consistent across different ex-
pressions and viewpoints. This includes, for instance, par-
tial makeup on the first head, intricate makeup designs on
the second head head, and free-style makeup on the third
head in Fig. D. Such variety in texture edits greatly en-
hances the flexibility of our texture modification generator.
Furthermore, the texture editing data encompasses modi-
fications on a range of facial features, represented across
various genders, ages, and sexes, thereby substantially aug-
menting the generalizability of our method.

B.4. User Study

Our questionnaire contains 12 editing cases, 6 for geometry
editing and 6 for texture editing. These editing cases cover
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Figure D. We show some avatars sampled in the texture modification learning.
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Figure E. We show the face reenactment results on the edited avatars with our modification field.

the editing on 9 heads from the INSTA [8] and NeRFBlend-
Shape [3]. For each editing case, there are 4 questions fol-
lowing the AvatarStudio [6]:

• Which method better follows the given input edited im-
age?

• Which method better retains the identity of the input se-
quence in the video?

• Which method better maintains temporal consistency in
the video?

• Which method is better overall considering the above 3
aspects in the video?

Participants are shown an original image, an edited image,
and four videos rendered from four methods side by side,
and asked to select one of four methods to answer each
question.

B.5. Comparison to 3DMM-based Geometry Edit-
ing

Optimization-based 3DMM fitting typically requires dense
landmarks (better in 3D) and/or multi-view images to
achieve reconstruction quality. However, our goal is to
achieve single view-based volumetric avatar editing, where
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Figure F. We show hybrid editing results with geometry and tex-
ture editing.

Jaw--

Landmark Vis.3DMM Recon.

(a) Our Method

Landmark Vis.3DMM Recon.

(b) 3DMM Fitting (c) 3DMM Fitting & Weak Reg.
Edited Novel Views

2D Geometry Editing

Edited Novel Views Edited Novel Views

Projected
GT

Projected
GT

Figure G. We show a more thorough comparison with the 3DMM-
based geometry editing. The parametric regularization in 3DMM
fitting is tuned to enhance landmark alignment, albeit at the ex-
pense of introducing distortions to the resulting 3D geometry.

we only have access to one perspective view. The fitting is
error-prone, especially for out-of-domain cases in this set-
ting. As illustrated in Fig. G, 3DMM fitting with 2D land-
marks from a single image cannot well constrain the 3D
shape no matter with (b) regular regularization or (c) weak
regularization (for better landmark fitting). In contrast, (a)
our 3D editing uses the learned prior to faithfully guide the
editing from limited constraints.

B.6. Editing Efficiency and Model Complexity

Our method takes 75 seconds for geometry editing and 164
seconds for texture editing over a Next3D-based avatar on
an RTX 4090 GPU. The editing speed is largely determined
by the backbone architecture. Designing an efficient back-
bone for real-time editing is out of the scope of this paper
but an interesting future direction. Our model size is 234
MB. For avatar editing, it requires 9.1 GB GPU memory to
perform auto-decoding optimization.

Image identity similarity Geometry Texture

Roop PVP Next3D Ours Roop PVP Next3D Ours
Mean ↑ 0.8373 0.8704 0.8547 0.8845 0.7320 0.8476 0.8500 0.9147
Median ↑ 0.8447 0.8836 0.8680 0.8854 0.7828 0.8608 0.8674 0.9181
SD ↓ 0.0264 0.0400 0.0449 0.0448 0.1173 0.0407 0.0340 0.0310
RSD (%) ↓ 3.16 4.60 5.25 5.06 16.03 4.80 4.00 3.39

Table A. We show the mean, median, standard deviation(SD),
standard deviation (SD), and relative standard deviation (RSD)
of the quantitative comparisons with the PVP [5], Roop [1],
Next3D [7] on image identity similarity [2].
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Figure H. We inspect the efficacy of the segmentation-based loss
reweighting strategy.

B.7. Statistical analysis of quantitative comparisons

As shown in Tab. A, We show the mean, median, stan-
dard deviation (SD), and relative standard deviation (RSD)
of image identity similarity below. Our method surpasses
other methods in mean and median but also has a small de-
viation in SD and RSD.

C. More Experiments
C.1. Hybrid Editing

We show the hybrid editing results in Fig. F. We can edit
the geometry of the avatar while changing the texture with a
text prompt or makeup image. The rendered novel views are
consistent across multiple viewpoints and expressions and
present vivid appearances, e.g., clown makeup and enlarged
eyes on the first head, and ”Kratos” makeup and enlarged
lips and reduced nose give a fierce appearance on the second
head in Fig. F.

C.2. Face Reenactment

We show the results of face reenactment in Fig. E. Our ge-
ometry and texture modification seamlessly follow the ex-
pressions from the driving video, and present consistent re-
sults across various viewpoints and expressions. This pro-
vides great potential for the VR/AR and live broadcasts of
digital avatars.

C.3. Geometry Visualization on Geometry Editing

We visualize the normal of meshes extracted from the
volumetric avatar under various expressions in Fig. K.
Given a single edited image, our method faithfully mod-
ifies the geometry of the avatars with multi-view consis-
tency, e.g., the enlarged ears with consistent geometry
across multiple viewpoints in the last row of Fig. K. Fur-
thermore, our expression-dependent geometry modification
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Figure I. We inspect the efficacy of different loss terms in Eq. (5) when performing avatar editing.
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Figure J. We inspect the efficacy of the implicit latent space guid-
ance.

seamlessly adapts to different expressions, e.g., the enlarged
nose and lips present consistent results across multiple ex-
pressions in the second row of Fig. K.

C.4. Ablations

Segmentation-based Loss Reweighting Strategy We in-
spect the efficacy of the segmentation-based loss reweight-
ing strategy by replacing this strategy with averaging the
L2 loss of the whole image during auto-decoding optimiza-
tion. As depicted in Fig. H, the absence of the reweight-
ing strategy results in an inability to reconstruct fine-grained
makeup since these makeups occupy small regions that have
a negligible impact on the loss, e.g., the missing red eye
shadow on the left head and untouched color of eyes on
the right head in Fig. H. In contrast, our method can accu-
rately reconstruct the makeup from a single edited image
and present consistent results across multiple expressions.
Implicit Latent Space Guidance We ablate the implicit la-
tent space guidance by fully sampling a modification code
of 1024 dimensions from a standard normal distribution in-
stead of the concatenation of a teacher code and a reduced
modification code of 512 dimensions during training. We
take the training of the geometry modification generator as
an example. As shown in Tab. C, we quantitatively evalu-
ate the quality of novel view synthesis on the training data.
Specifically, we render images of the edited avatar under
novel viewpoints as ground truth, and apply the modifi-
cation fields from two methods to the original avatar, and
quantitatively compare the rendered modified images from
two methods with the ground truth. Our methods surpass
the method without the implicit latent space guidance in all
metrics. The implicit latent space guidance improves the

Method PSNR ↑ SSIM ↑ LPIPS ↓
# mod. code = 32+512 25.47 0.8508 0.0966
# mod. code = 128+512 27.69 0.8674 0.0803
# mod. code = 512+512 (ours) 27.75 0.8685 0.0798

Table B. We quantitatively inspect the efficacy of dimensions of
the modification latent code on avatar editing.

Method PSNR ↑ SSIM ↑ LPIPS ↓
W/o Code Guidance 21.30 0.7543 0.6066
Ours 35.42 0.9398 0.0308

Table C. We quantitatively inspect the efficacy of the implicit la-
tent space guidance on the novel view synthesis of edited avatars
in training.

convergences on training data. Then, we evaluate two meth-
ods in a novel geometry editing case where auto-decoding
optimization is performed to infer the modification field
from a single edited image. As illustrated in the Fig. J, the
method without the implicit latent space guidance fails to
generalize on the novel editing case and results in a blurred
and corrupted image. In contrast, our method can faithfully
render the image of the edited avatar under novel viewpoint
and expression.
Hyper-parameters. As shown in the Tab. B, we hereby
provide ablation over dimensions of modification latent
space. As illustrated in the Fig. I, we also show the impact
of loss weights of Eq. (5). (a-b): The fine-grained makeup
cannot be faithfully reconstructed without L2 or with a
weak L2. (c-d): Some color distortion occurs without reg-
ularization Lreg or global appearance constraint Llpips.

C.5. Limitations

As illustrated in Fig. L, We show hard cases by (a-b)
adding additional objects (e.g., add hat) and (c-d) changing
hairstyle (e.g. add fringe) in the following figure. As shown,
our method reconstructs rough but incomplete shapes. The
texture also looks blurry due to the missing of proper prior.
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