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In this supplementary material, we first describe the im-
plementation details needed to reproduce our work (Sec. A),
extending those included in Sec. 4.1. Then, we explain the
details of our evaluation protocol (Sec. B), which is specifi-
cally built to enable a more fine-grained analysis (Sec. C.1).
Sec. 4.2 from the main paper is complemented with addi-
tional experiments in Sec. C. In particular, we give more
insights on the effects of the attention horizon (Sec. C.2),
the diffusion noise schedule (Sec. C.3), and the classifier-
free guidance strength (Sec. C.4). Finally, we show and
discuss more qualitative examples (Sec. D).

A. Further implementation details

All values are reported as X/Y for Babel/HumanML3D, or
as Z if values are equal for both. Note that motion sequences
are downsampled to 30/20 fps.

State-of-the-art models. TEACH is used off-the-shelf 1

with the originally proposed alignment and spherical lin-
ear interpolation, and without them (TEACH B). Double-
Take is used off-the-shelf 2 from their original repository,
with the parameters handshake size and blending length set
to 10/20f (frames), and 10/5f, respectively. To fulfill the
constraints of their method, the handshake size needs to be
shorter than half the shortest sequence we want to gener-
ate, which is 30f (1s) for Babel. Since DoubleTake uses the
original Motion Diffusion Model [8], whose training dis-
carded very short sequences, it underperforms in our more
comprehensive evaluation protocol (see Sec. B). For a fairer
comparison, we also evaluate it using our diffusion model
with absolute positional encodings (APE), and call it Dou-
bleTake*. DoubleTake* uses the same handshake size and
blending length as DoubleTake. DiffCollage and MultiDif-
fusion were implemented manually, and utilize our model

1https : / / github . com / athn - nik / teach / commit /
f4285aff0fd556a5b46518a751fc90825d91e68b

2https://github.com/priorMDM/priorMDM/commit/
8bc565b3120c08182f067e161e83403b0efe7cc9

as well for the same reasons mentioned earlier. We set their
sampling parameter transition length to 10/20f. For Dou-
bleTake, DiffCollage, and MultiDiffusion, we use classifier-
free guidance with weights 1.5/2.5 during sampling.

FlowMDM. Our diffusion model uses 1k steps and a
cosine noise schedule [4]. FlowMDM is trained with the
x0 parameterization [9], and an L2 reconstruction loss. De-
noising timesteps are encoded as a sinusoidal positional en-
coding that goes through two dense layers into a 512D vec-
tor. Textual descriptions are tokenized and embedded with
CLIP [5] into 512D vectors. Poses of 135/263D are en-
coded by a dense layer into a sequence of 512D vectors.
If the APE is active, a sinusoidal encoding is added to the
embedded poses at this stage. Then, the embedded poses
are taken as the keys and values of a Transformer. Embed-
ded poses are concatenated to the sum of the timesteps and
text embeddings, and fed to a dense layer. The resulting
512D vectors are the queries. If the relative positional en-
coding (RPE) is active, rotary embeddings [7] are injected
to the queries and keys at this stage. The output of the
Transformer is added to the embedded poses with a resid-
ual connection. 8 Transformers are stacked together. A final
dense layer converts the pose embeddings back to a vector
of 135/263D, which are the denoised poses. A dropout of
0.1 is applied to the APE, and to the inputs of the Trans-
formers. The attention span of the Transformers is capped
within each subsequence during the APE stage, and within
the attention horizon H=100/150f during the RPE stage. We
train with blended positional encodings (BPE), i.e., RPE
and APE are alternated randomly at a frequency of 0.5. We
use Adam [3] with learning rate of 0.0001 as our optimizer,
and train for 1.3M/500k steps in a single RTX 3090 (about
4/2 days). During BPE sampling, the binary step schedule
transitions from absolute to relative mode after 125/60 de-
noising steps (out of 1k steps). Classifier-free guidance with
weights 1.5/2.5 is used during sampling.
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B. Evaluation details

Generative models are difficult to evaluate and compare due
to the limitations of the metrics (discussed in Sec. 4.1) and
the stochasticity present during sampling. To alleviate the
latter, we run all our evaluation 10 times and provide the
95% confidence intervals. However, we still face another
issue in our task: the randomness in the combinations of
textual descriptions. The generation difficulty for the com-
bination ‘sit down’→‘stand up’→‘run’ is not the same as
for ‘sit down’→‘run’→‘stand up’. The evaluation protocol
from [6] includes 32 evaluation sequences of 32 randomly
sampled textual descriptions from the test set. The gener-
ated motion needs to perform sequentially the 32 actions
from each evaluation sequence. However, these descrip-
tions are sampled differently in each evaluation run, which
hinders reproducibility. In order to ensure proper replica-
tion and a fair comparison in future works, we propose a
more thorough and fully reproducible evaluation protocol
that enables a more fine-grained analysis based on scenar-
ios (analysis provided in Sec. C.1):

Babel. We built two scenarios with in-distribution
(50%) and out-of-distribution (50%) combinations. For the
in-distribution scenario, we first selected test motion se-
quences showcasing at least three consecutive actions (i.e.,
textual descriptions) with a total duration of 1.5s. Then, we
randomly sampled from them to build 32 sets of 32 combi-
nations of textual descriptions. For the out-of-distribution
scenario, 32 sets were built by autoregressively sampling
32 textual descriptions so that consecutive actions did not
appear together neither in the training nor in the test set.

HumanML3D. Since annotations in HumanML3D do
not include consecutive actions, we cannot build in- and
out-of-distribution scenarios. However, this dataset con-
tains a great variability of sequence lengths (3-10s). There-
fore, we decided to build four scenarios by varying the
length of the subsequences included. More specifically, we
created three sets of 6, 8, and 18 combinations (9.4, 12.5,
28.1%) by sampling 32 short (3-5s), medium (5-8s), and
long (8-10s) test motions, respectively. Ratios were set so
that all together preserved the proportion of short, medium,
and long subsequences in the original test set. This is impor-
tant to keep the validity of statistical measures like FID. Ad-
ditionally, we included another scenario with 32 sets (50%)
of 32 random motion sequences from the test set.

We share the list of evaluation combinations for both the
human motion composition and extrapolation tasks in our
public code repository3. Note that a combination consists
of a list of textual descriptions and their associated dura-
tions. The 32 textual descriptions used for the extrapolation
experiments from Sec. 4 are enumerated in Tab. A.

3https://barquerogerman.github.io/FlowMDM/

Babel HumanML3D

walk forward a person walks in a curved path to the left.
swim movement a person stands still and does not move.
stretch arms a person walks straight forward.
walk a person does jumping jacks.
stand a person start to dance with legs.
step backwards person walking in an s shape.
t-pose a person walks to his right.
throw the ball a person slowly walked forward.
run the person is standing still doing body

stretches.
circle right arm backwards the person is dancing the waltz.
wave right the person is clapping.
ginga dance walking side to side.
forward kick a person stayed on the place.
look around person is jogging in place.
steps to the right a person walks backward for 3 steps.
side steps person is running in a circle.
hop forward the person is waving hi.
dance with arms a person walks in a circular path.
jog swinging arms up and down.
walk slowly a man walks counterclockwise in a circle.
jump jacks series the person is walking towards the left.
run in half a circle the person is walking on the treadmill.
walk a few steps ahead the man is moving his left arm.
move head up and down the person is doing basketball signals.
rotate right ankle a person remained sitting down.
play guitar a person hits his drums.
jump forward person is doing a dance.
move both hands around chest a person takes some steps forward.
swing back and forth a person slowly walks forward five steps.
wave a person jumps in place.
shake it this person appears to be painting.
walk in circle a person wiping a surface with something.

Table A. Extrapolated motions for Babel and HumanML3D.

C. More experimental results

C.1. Fine-grained comparison

Tab. B shows the comparison of FlowMDM with the state
of the art in both in-distribution and out-of-distribution sce-
narios. We observe that, while all methods maintain similar
performance in both scenarios for the subsequence gener-
ation, they generate less realistic and more abrupt transi-
tions in the out-of-distribution case. FlowMDM performs
the best at most metrics in both scenarios, with an important
gap with respect to the previous state of the art regarding
transition smoothness. Tab. C shows the scenario-wise re-
sults for HumanML3D, where FlowMDM also performs the
best in most metrics and scenarios. Interestingly, MultiDif-
fusion is, after ours, the most stable method in terms of tran-
sition smoothness across scenarios (PJ and AUJ), whereas
DiffCollage and DoubleTake show severe transition degen-
eration in combinations of long sequences. Such degenera-
tion is mostly due to their methodological need to pad the
motion sequence during sampling. When dealing with long
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Subsequence Transition
R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT 0.715±0.003 0.00±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00

In-distribution

TEACH B 0.727±0.004 2.26±0.03 8.20±0.12 3.35±0.01 2.77±0.05 6.32±0.07 1.03±0.00 2.20±0.01

TEACH 0.665±0.003 2.09±0.03 8.06±0.09 3.73±0.02 2.78±0.06 6.31±0.07 0.07±0.00 0.42±0.01

DoubleTake* 0.620±0.006 3.04±0.06 7.49±0.07 4.19±0.02 3.04±0.12 6.21±0.06 0.28±0.00 1.01±0.01

DoubleTake 0.682±0.008 1.52±0.03 7.90±0.07 3.67±0.04 3.47±0.08 6.16±0.07 0.17±0.00 0.62±0.01

MultiDiffusion 0.724±0.008 2.00±0.05 8.36±0.10 3.38±0.02 6.33±0.13 5.91±0.06 0.17±0.00 0.65±0.01

DiffCollage 0.690±0.006 1.92±0.07 7.92±0.09 3.67±0.02 4.25±0.15 6.19±0.07 0.19±0.01 0.82±0.02

FlowMDM (Ours) 0.726±0.006 1.36±0.05 8.47±0.10 3.40±0.03 2.26±0.08 6.60±0.08 0.05±0.00 0.11±0.00

Out-of-distribution

TEACH B 0.680±0.006 1.75±0.04 8.15±0.11 3.51±0.01 3.53±0.06 6.04±0.10 1.14±0.01 2.49±0.01

TEACH 0.644±0.004 2.06±0.03 7.94±0.12 3.70±0.01 4.08±0.08 6.00±0.09 0.07±0.00 0.46±0.00

DoubleTake* 0.572±0.007 3.78±0.07 7.53±0.12 4.15±0.02 3.83±0.09 6.12±0.07 0.28±0.00 1.07±0.02

DoubleTake 0.654±0.009 1.65±0.07 8.06±0.08 3.66±0.02 2.98±0.06 6.03±0.07 0.17±0.00 0.66±0.01

MultiDiffusion 0.681±0.009 2.11±0.06 8.35±0.08 3.47±0.03 6.97±0.12 5.67±0.05 0.19±0.00 0.71±0.01

DiffCollage 0.652±0.004 1.60±0.07 7.91±0.09 3.74±0.01 4.65±0.19 6.00±0.09 0.20±0.00 0.86±0.01

FlowMDM (Ours) 0.679±0.004 1.26±0.06 8.16±0.08 3.50±0.03 3.17±0.12 6.44±0.09 0.07±0.00 0.17±0.00

Table B. Scenario-wise comparison in Babel. Symbols ↑, ↓, and → indicate that higher, lower, or values closer to the ground truth (GT)
are better, respectively. Evaluation is run 10 times and ± specifies the 95% confidence intervals.

Subsequence Transition
R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT 0.796±0.004 0.00±0.00 9.34±0.08 2.97±0.01 0.00±0.00 9.54±0.15 0.04±0.00 0.07±0.00

Short

DoubleTake* 0.649±0.012 3.03±0.18 9.52±0.11 3.72±0.05 3.56±0.14 8.92±0.14 0.13±0.01 0.79±0.05

DoubleTake 0.704±0.022 4.85±0.20 10.01±0.15 3.25±0.09 4.40±0.24 8.88±0.17 0.09±0.00 0.73±0.02

MultiDiffusion 0.717±0.011 5.49±0.15 10.14±0.17 3.23±0.07 4.66±0.27 8.68±0.08 0.10±0.00 0.92±0.02

DiffCollage 0.705±0.012 4.69±0.18 9.73±0.14 3.30±0.04 4.81±0.32 8.49±0.12 0.15±0.01 1.13±0.10

FlowMDM (Ours) 0.714±0.015 4.75±0.26 9.90±0.20 3.31±0.06 3.17±0.17 9.03±0.14 0.04±0.00 0.59±0.04

Medium

DoubleTake* 0.644±0.009 2.18±0.08 9.18±0.12 3.72±0.04 3.34±0.30 8.73±0.12 0.14±0.00 0.70±0.03

DoubleTake 0.642±0.014 2.34±0.05 9.59±0.09 3.79±0.05 5.42±0.30 8.61±0.11 0.12±0.00 0.83±0.02

MultiDiffusion 0.673±0.007 3.22±0.10 9.91±0.07 3.54±0.04 6.24±0.34 8.11±0.12 0.10±0.00 1.14±0.01

DiffCollage 0.661±0.010 2.03±0.07 9.38±0.10 3.60±0.04 4.95±0.27 8.13±0.09 0.14±0.00 0.66±0.05

FlowMDM (Ours) 0.669±0.012 3.18±0.15 9.68±0.08 3.55±0.04 4.18±0.43 8.52±0.07 0.04±0.00 0.86±0.03

Long

DoubleTake* 0.616±0.006 2.51±0.09 8.77±0.08 4.09±0.03 3.38±0.18 8.50±0.11 0.89±0.02 3.52±0.07

DoubleTake 0.605±0.006 4.07±0.13 8.19±0.11 4.18±0.01 8.45±0.33 7.79±0.12 0.81±0.02 3.04±0.07

MultiDiffusion 0.569±0.012 5.02±0.15 8.07±0.07 4.49±0.05 8.56±0.32 7.91±0.10 0.23±0.01 1.16±0.01

DiffCollage 0.557±0.008 5.79±0.13 7.75±0.09 4.61±0.02 9.00±0.36 7.75±0.09 0.38±0.01 5.04±0.14

FlowMDM (Ours) 0.666±0.012 1.93±0.08 8.81±0.09 3.81±0.04 2.85±0.22 8.54±0.11 0.08±0.00 0.45±0.03

All

DoubleTake* 0.655±0.007 0.84±0.04 9.29±0.10 3.92±0.03 1.91±0.12 8.79±0.11 0.51±0.01 2.11±0.05

DoubleTake 0.621±0.006 1.49±0.07 8.91±0.04 4.13±0.02 4.75±0.13 8.39±0.06 0.47±0.01 1.84±0.03

MultiDiffusion 0.632±0.003 1.17±0.04 9.29±0.09 4.05±0.02 4.42±0.16 8.37±0.08 0.17±0.00 1.06±0.01

DiffCollage 0.615±0.007 1.73±0.07 8.73±0.05 4.18±0.04 4.98±0.24 8.09±0.06 0.26±0.00 2.71±0.12

FlowMDM 0.695±0.008 0.30±0.02 9.55±0.08 3.58±0.02 1.49±0.06 8.78±0.11 0.06±0.00 0.50±0.01

Table C. Scenario-wise comparison in HumanML3D.

sequences, sequences might be extended beyond the max-
imum sequence length at training time. Therefore, given
that the APE does not extrapolate well, the generation in
the padded motion, or transition, tends to degenerate. Our

method naturally avoids this limitation.
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Subsequence Transition
H (frames) Inf. PE R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT - 0.715±0.003 0.00±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00

50 R 0.641±0.004 1.03±0.04 7.99±0.11 3.92±0.03 2.04±0.06 6.30±0.05 0.04±0.00 0.15±0.00

100 R 0.635±0.004 0.85±0.02 8.25±0.12 3.98±0.02 2.14±0.04 6.44±0.09 0.04±0.00 0.15±0.00

150 R 0.641±0.005 0.99±0.04 8.24±0.15 3.88±0.03 2.43±0.06 6.43±0.06 0.04±0.00 0.15±0.00

200 R 0.601±0.005 1.48±0.04 7.85±0.14 4.17±0.02 3.18±0.09 6.16±0.05 0.04±0.00 0.19±0.00

50 B 0.698±0.006 1.07±0.03 8.19±0.11 3.44±0.02 2.34±0.06 6.24±0.07 0.06±0.00 0.13±0.00

100 B 0.702±0.004 0.99±0.04 8.36±0.13 3.45±0.02 2.61±0.06 6.47±0.05 0.06±0.00 0.13±0.00

150 B 0.704±0.004 1.24±0.03 8.34±0.12 3.43±0.02 2.54±0.08 6.40±0.08 0.06±0.00 0.13±0.00

200 B 0.694±0.006 1.13±0.02 8.25±0.13 3.42±0.02 3.31±0.08 6.38±0.09 0.06±0.00 0.14±0.01

Table D. Attention horizon effect in Babel. All models correspond to FlowMDM, trained with BPE. Inf. PE indicates the type of positional
encoding used during sampling: B for BPE, and R for only RPE. Symbols ↑, ↓, and → indicate that higher, lower, or values closer to the
ground truth (GT) are better, respectively. Evaluation is run 10 times and ± specifies the 95% confidence intervals.

Subsequence Transition
H (frames) Inf. PE R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT - 0.796±0.004 0.00±0.00 9.34±0.08 2.97±0.01 0.00±0.00 9.54±0.15 0.04±0.00 0.07±0.00

50 R 0.583±0.005 1.08±0.07 9.03±0.15 4.30±0.02 1.88±0.06 8.85±0.10 0.04±0.00 0.70±0.01

100 R 0.591±0.005 1.07±0.03 9.02±0.13 4.29±0.02 1.51±0.08 8.90±0.08 0.04±0.00 0.56±0.01

150 R 0.554±0.007 1.06±0.06 9.02±0.11 4.54±0.02 1.12±0.04 9.00±0.10 0.05±0.00 0.53±0.01

200 R 0.528±0.004 1.37±0.04 8.87±0.07 4.68±0.01 1.72±0.05 8.97±0.09 0.03±0.00 0.97±0.01

50 B 0.671±0.004 0.25±0.01 9.37±0.14 3.66±0.02 1.27±0.04 8.79±0.08 0.06±0.00 0.52±0.01

100 B 0.684±0.003 0.36±0.02 9.55±0.09 3.61±0.02 2.04±0.11 8.59±0.06 0.06±0.00 0.56±0.01

150 B 0.685±0.004 0.29±0.01 9.58±0.12 3.61±0.01 1.38±0.05 8.79±0.09 0.06±0.00 0.51±0.01

200 B 0.658±0.006 0.47±0.03 9.37±0.13 3.77±0.02 2.27±0.07 8.69±0.08 0.06±0.00 0.68±0.01

Table E. Attention horizon effect in HumanML3D. All models correspond to FlowMDM, trained with BPE. Inf. PE indicates the type of
positional encoding used during sampling: B for BPE, and R for only RPE.

C.2. On the attention horizon

In Tabs. D and E, we show the effect of the attention hori-
zon when using RPE for either a purely relative inference
schedule, or our proposed BPE inference schedule. We ob-
serve how increasing it too much (H=200) makes the net-
work perform worse at transition generation in both datasets
(FID and AUJ), and also in subsequence generation for Hu-
manML3D (R-prec and MM-Dist). Conversely, when de-
creasing it too much (H=50), the capacity to model long-
range dynamics becomes limited, thus reducing the accu-
racy of the generated subsequences (R-prec and MM-Dist).
As the performance with H of 100 and 150 is similar in
both datasets, we chose values that are closest to the aver-
age sequence length in each dataset, i.e., 100/150f for Ba-
bel/HumanML3D.

C.3. On the diffusion schedule

The discussion and the BPE design in Sec. 3.2 are moti-
vated by the low-to-high frequencies decomposition during
the denoising stage of diffusion models. However, the de-
noising process depends on how the noise is injected, or
the noise schedule. The linear and the cosine (our choice)
noise schedules are the most common schedules. The lin-
ear schedule destroys the motion very fast, reaching a non-
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Figure A. Diffusion noise schedules. The cosine noise schedule
destroys the motion signal slower and in a more evenly distributed
way than the linear schedule. As a result, FlowMDM is able to
exploit better the low-to-high frequencies decomposition along the
denoising chain and generate better subsequences and transitions.
The faster motion destruction in the linear schedule translates to
needing more APE steps to reconstruct global dependencies inside
subsequences (black arrows ↔).

recognizable state after going through the 75% of the dif-
fusion steps [4]. Instead, the cosine schedule destroys
the motion signal slower and in a more evenly distributed
way. Fig. A shows the performance of FlowMDM during
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Figure B. Classifier-free guidance. In line with prior works, we
also observe an accuracy improvement (R-prec) when increasing
the strength (i.e., weight) of the classifier-free guidance (CFG).
However, above certain values, the performance degrades, espe-
cially in terms of smoothness (AUJ). This is caused by the mis-
alignment of CFG directions on each side of the transition.

BPE sampling with both schedules. First, we observe that
FlowMDM benefits from the steadier noise injection of the
cosine schedule, achieving better performance in all realism
and accuracy metrics (R-prec and FID). Second, we iden-
tify a displacement in the accuracy (R-prec) and smooth-
ness (AUJ) curves (see black arrows). Given that with the
linear schedule global dependencies start being recovered
later, more APE steps are needed to achieve the accuracy
and smoothness reached with the cosine schedule.

C.4. On the classifier-free guidance

The classifier-free guidance is an important add-on for dif-
fusion sampling that intensifies the conditioning signal, thus
improving the quality and accuracy of the generated sam-
ples [2]. It is implemented by first computing the condi-
tionally denoised motion xc, and the unconditionally de-
noised motion x. Then, the denoised sample is computed
as x + w(xc − x). If w=1, the classifier-free guidance is
deactivated. When generating motion from single textual
descriptions with classifier-free guidance, we keep steer-
ing the denoising toward motions matching better the tex-
tual description. However, when building human motion
compositions with our method, two different conditions co-
exist in the neighborhoods of the transitions. There, the
classifier-free guidance pushes the denoising towards dis-
par directions. As a result, if w is too high, the transi-
tion will become sharper, and if w is too low, subsequences
might not be accurate enough. Fig. B shows these effects for
FlowMDM. We notice a sweet point around w=1.5/2.5 for
Babel/HumanML3D, where FlowMDM reaches the max-
imum accuracy and quality for subsequences and a good
trade-off for quality and smoothness of transitions.

D. Qualitative results
Figs. C and D show six human motion compositions (A
to F), and two extrapolations (G and H) for Babel and Hu-
manML3D, respectively. The compositions are subsets of
the evaluation combinations composed of 32 actions, so the
beginning and end of these can contain partial transitions to-
ward other actions. Note that we can represent the motions
from Babel with SMPL body meshes thanks to its motion
representation including the SMPL parameters [1]. For Hu-
manML3D, we use skeletons, as its motion representation
only includes the 3D coordinates of the joints.

Discussion. The hands trajectories and the jerk color
indicators in Figs. C and D highlight that FlowMDM gener-
ates the smoothest transitions between subsequences. No-
tably, state-of-the-art methods exhibit frequent smoothness
artifacts (black segments) in the boundaries of their transi-
tions. We notice that the compositions produced by TEACH
lack realism due to the use of a naive spherical linear inter-
polation, disrupting the motion dynamics. This becomes
more apparent in extrapolations G and H of both datasets,
where the periodicity of the movement is clearly compro-
mised. On the other side, DoubleTake, DiffCollage, and
MultiDiffusion share two significant limitations. Firstly,
they adhere to a predetermined transition length, which may
not fit all situations. For example, in Babel-A, the ‘picking’
actions occur very rapidly due to the insufficient length for
generating a natural transition. By contrast, our approach is
able to leverage more transitioning time from either tran-
sition side if needed, without artificial constraints. Sec-
ondly, the denoising process in these methods only consid-
ers a small portion of the neighboring subsequences, lead-
ing to poor performance in dynamic motion extrapolations.
For example, in HumanML3D-G, they all generate erratic
jumping jacks. While our method also independently gener-
ates the low-frequency motion spectrum, it effectively recti-
fies inconsistencies in later stages, yielding realistic and pe-
riodic motion. In the case of Babel-H, where successfully
extrapolating the ‘hop forward’ action requires synchroniz-
ing each subsequence with the whole neighboring motion,
our model is the only one able to generate a smooth, coher-
ent, and realistic extrapolation.

Limitations. However, FlowMDM is not without
its imperfections. We noticed that our method struggles
with very complex descriptions, such as the first one in
HumanML3D-B. Instead of executing the intricate descrip-
tion that includes ‘walk backwards, sit, stand, and walk for-
ward again’, it only walks backwards. Given that the par-
tial execution of actions is also observed in other methods,
we consider it a challenge associated with the broader text-
to-motion task. Indeed, our model could theoretically also
benefit from improved conditioning schemes such as using
better text embeddings. Another acknowledged limitation
of our model, discussed in Sec. 5, is the independent gen-
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Figure C. Qualitative examples (Babel). A-F feature six human motion compositions, and G-H two human motion extrapolations. Ac-
cording to the scenarios defined in Sec. B, A, B, C belong to in-distribution combinations, and D, E, F to out-of-distribution combinations.
Solid curves match the trajectories of the global position (blue) and left/right hands (purple/green). Darker colors indicate instantaneous
jerk deviations from the median value, saturating at twice the jerk’s standard deviation in the dataset (black segments). Abrupt transitions
manifest as black segments amidst lighter ones.

eration of low-frequency components. In Babel-B, for ex-
ample, a slight mismatch between the sitting and standing
positions is observed. Nonetheless, in contrast to DiffCol-
lage, MultiDiffusion, and DoubleTake which also exhibit
this effect, FlowMDM produces a smoother result.
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