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Supplementary Material

In the supplementary materials we first provide addi-
tional mathematical background in Sec. 1. Sec. 2 contains
complete derivations for the generalization to the HS norm
(Lemma 4.1, Thm. 4.2). Detailed analysis for the hybrid
formulation is included in Sec. 3. We then detail datasets and
splits used for evaluation, followed by further experimental
details in Sec. 4. Additional experiment results is provided
at Sec. 5. Ablation studies concerning our design choices
are provided in Sec. 6. Finally, we present runtime analysis
in Sec. 7, additional visualization of the basis embedding
in Sec. 8 and additional qualitative results in Sec. 9.

1. Mathematical Background
1.1. Elastic Energy

We defer to Hartwig et al. [6] for a complete definition of
the previously described elastic energy [1, 6, 7]. For all our
experiments, we use the same elastic energy hyperparameters
as Hartwig et al. [6], including a bending weight of 10−2.
We can then solve the generalized eigenvalue problem for
the Hessian of the elastic energy at the identity to obtain the
basis functions Ψ.

Hess WS [Id]vλ = λMvλ

1.2. Problem Setting

In the non-rigid correspondence literature, descriptors Di

are commonly characterized as functions over the shapes Si.
In the discretized setting, many operations reduce to matrix-
vector products. However, to derive the proper operations
weighted by the non-uniform weight matrices M in the regu-
larization of the functional map, we utilize the more general
Hilbert space setting.

We assume that all functions on the spaces F(Si) are L2

integrable:

L2(Ω) :=

{
f : Ω → R |

∫
Ω

|f(x)|2 dx < ∞
}

Then the inner product on each space F(Si) is given by
⟨·, ·⟩M in the space induced by M :

⟨x, y⟩M =

∫
Ω

x(t)y(t) dM(t)
?
= xTMy

where in the last step we emphasize that the discretized
operations reduce to matrix-vector multiplications in the
finite-dimensional setting.

We use the definition of the Hilbert-Schmidt norm for a
general operator A between (unweighted) Hilbert spaces [6,
Sec 3.4]:

Table 1. Summary of notations used in this work.

Symbol Description
S1,S2 3D shapes (triangle mesh) with n1,2 verts
Mi mass matrix on shape i
Di vertex-wise descriptors for shape i
∆i Laplacian operator applied to shape Si

WS [·] Elastic energy associated with Si

Φi eigenbasis of Laplacian matrix ∆i

Ψi eigenbasis of Elastic Hessian HessWS [I]
Cij functional map between shapes Si and Sj

P ij point-wise map between shapes Si and Sj

k the total spectral resolution
|| · ||{2,F,HS} the L2, Frobenius, and HS norms

∥A∥HS :=
√

tr(A∗A)

When A : F(S1) → F(S2) (the spaces under the
anisotropic metric), we have the following equivalence with
the Frobenius norm [6]:

∥A∥2HS : = tr(M−1
k,1A

TMk,2A) (1)

= tr(
√
M−1

k,1A
T
√
Mk,2

√
Mk,2A

√
M−1

k,1)

=

∥∥∥∥√Mk,2A
√

M−1
k,1

∥∥∥∥2
F

2. Generalization to the Hilbert-Schmidt Norm
2.1. Derivation of Eq. (2) for General Hilbert Spaces.

Proof of Thm. 4.1. The data term can be interpreted as the
difference of the descriptor functions D1, D2 ∈ F(S2) after
D1 was transferred to F(S2) via the functional map C. We
denote the first k eigenfunctions by Ψk,i and the coefficients
of Di projected into the basis spanned by these eigenfunc-
tions by DΨi := Ψ†

k,iDi. We then have the following:

∥CDΨ1 −DΨ2∥Mk,2

=
√
⟨CDΨ1 −DΨ2 , CDΨ1 −DΨ2⟩Mk,2

=
√

tr((CDΨ1 −DΨ2)
TMk,2(CDΨ1

−DΨ2
))

where we use the definition of the inner product Sec. 1.2, the
cyclicity of the trace. The identity then follows by splitting
Mk,2 =

√
Mk,2

√
Mk,2 and applying the definition of the

Frobenius norm again, and using that Mk,2 is symmetric.



As previously established [3], the energy in Eq. (2) can
be solved for C in closed form by solving k different k × k
linear systems (for each row of C). In our case, the mass
matrices M prohibit this, requiring an expansion to a k2×k2

system. This expansion is detailed below.

Proof of Thm. 4.2. Let S1 and S2 be Hilbert spaces defined
on two shapes associated with mass matrices Mk,1 and Mk,2,
respectively, which induce the inner product on each space.
Let Λ1 and Λ2 be the diagonal matrices of eigenvalues of the
respective linear operator on S1 and S2, and let C: F(S1) →
F(S2) be a linear map between the function spaces. The
weighted linear operator commutativity regularization term
can be expressed using the Hilbert-Schmidt norm as follows:

||(CΛ1 − Λ2C)||2HS

= tr(M−1
k,1(CΛ1 − Λ2C)TMk,2(CΛ1 − Λ2C))

=

∥∥∥∥√Mk,2 (CΛ1 − Λ2C)
√
M−1

k,1

∥∥∥∥2
F

=

∥∥∥∥√Mk,2CΛ1

√
M−1

k,1 −
√
Mk,2Λ2C

√
M−1

k,1

∥∥∥∥2
F

where we apply the definition of the HS-norm Eq. (1), the
definition of the Frobenius norm, and multiply out the terms.

Now, we can use the definition of the Kronecker product
for matrices E, F , G:

vec(EFG) =
(
GT ⊗ E

)
vec(F )

to expand and rearrange this into the form ||ζx||F for a
matrix ζ and vector x := vec(C):

∥
√
Mk,2 (CΛ1 − Λ2C)

√
M−1

k,1∥
2
F

= ∥((Λ1

√
M−1

k,1)⊗
√
Mk,2 −√

M−1
k,1 ⊗ (

√
Mk,2Λ2))vec(C)∥2F

2.2. Solving the Combined Optimization Problem

To solve E(C) for a vectorized functional map C, Edata must
be expanded similarly. Using Sec. 2.1 we have:

∥
√

Mk,2(CDΨ1
−DΨ2

)∥
F

= ∥vec(
√
Mk,2CDΨ1

)− vec(
√

Mk,2DΨ2
))∥

2

= ∥((
√

Mk,2DΨ1
)T ⊗ I)vec(C)− vec(

√
Mk,2DΨ2

)∥
2

Where we use the fact that the Frobenius norm of a matrix is
just the L2 norm of its stacked column vectors and the defi-
nition of the Kroeneker product. Combining the expanded
forms of Edata and Ereg and observing the first variation of
E(C) yields a k2 × k2 linear system which can be solved
for C:

(ATA+ λζT ζ)vec(C)−AT vec(B) = 0

Here, we made the following substitutions for readability:

A = (
√
Mk,2DΨ1

)T ⊗ I

B =
√

Mk,2DΨ2

ζ = (Λ1

√
M−1

k,1)⊗
√

Mk,2 −
√
M−1

k,1 ⊗ (
√
Mk,2Λ2)

3. Hybrid Formulation
3.1. Basis Non-orthogonality

Figure 1. Matrix of inner product between hybrid basis Mktotal =
[ΦΨ]TM [ΦΨ], with ktotal = 30+ 30. We show the heatmap of the
resulting matrix from three animal shapes of the SMAL dataset.

To better understand the non-orthogonality between the
bases, we study the inner product matrix of the hybrid basis
induced by the mass M on the shape in Fig. 1. The matrix
exihibits block form and is defined as the mass matrix in the
reduced hybrid basis:

Mktotal =

[
I M12

M21 MkElas

]
(2)

The top-left block clearly depicts an identity matrix as we
know the LBO eigenfunctions are orthogonal. The bottom-
right block corresponds to the spectral mass matrix MkElas

for the elastic basis [6]. Deviation from the identity matrix
is expected as the elastic basis is non-orthogonal. Inter-basis
regions (M12 and M21) have non-zero entries, indicating
e.g. the first 30 LB bases and the first 30 Elastic bases are
mutually non-orthogonal. However, we observe that the cross
region blocks are sparse. Approximately 90% of the cross
region blocks have values below 0.1.
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Figure 2. Point-to-point Map recovery accuracy from ground truth hybrid functional maps without any assumptions (Naive) and with zero
cross region assumptions (Ours) between two representative pairs of shapes from the SMAL dataset, showcasing both near-isometric and
non-isometric scenarios. We use k = 40 + 20 as the spectral resolution.

3.2. Starting Assumptions

In Sec. 4.2, we make the assumption that the off-diagonal
blocks of both the hybrid functional map and reduced hybrid
mass matrix Mktotal contain no off-diagonal blocks to sepa-
rate the hybrid Fmap optimization. To see that such assump-
tions are plausible, we conduct an experiment on how well
a functional map can represent an underlying ground truth
correspondence by recovering the point-to-point map from a
hybrid functional map via standard nearest neighbor search.
This experiment is carried out both without any assumptions
(Naive) and with the assumptions of zero off-diagonal blocks
(Ours). Results can be seen in Fig. 2. As can be observed,
even though the optimal naive map exhibits ”leakage”,with
mild assumptions and less parameters one can solve for a
block-diagonal map representing the same level of accuracy,
outperforming the baseline LB and Elastic Basis in overall
detail alignment and coarse global alignments.

3.3. Optimization Block Matrix Formulation

As demonstrate in Fig. 2, we observe that inter-basis match-
ings in a hybrid map do not improve performance. In addi-
tion, such a map is harder to regularize (Sec. 6.1) and more
expensive to compute. We, therefore, impose the constraint
C21 = C12 = 0 and show that this is equivalent to solving
the optimization problems in Eq. (2) separately.

Theorem 3.1. Let the off-diagonal blocks in the hybrid func-
tional map Eq. (4) and the mass matrix in the reduced
hybrid basis Eq. (2) be zero, i.e., there are no inter-basis
matchings, and the bases are considered as if mutually or-
thogonal. In hybrid function space, the energy in Eq. (2) can
then be equivalently formulated as two separate optimization

problems:

C11
∗ = argmin

C
ELB(C) C22

∗ = argmin
C

EElas(C)

C∗ =

(
C11

∗ 0
0 C22

∗

)
Proof of Thm. 3.1. In the following we use ktotal as the total
basis size, kLB as LB basis size, kElas as the non-orthogonal
elastic basis size. The block matrix representation of the
functional map C in the hybrid vector space is given by

C =

(
C11 0
0 C22

)
,

where C11 and C22 represent the functional maps within
the same basis types, and off diagonal blocks are fixed to
zero as per our starting assumptions.

By our second assumption, the spectral mass matrix in
the reduced hybrid basis assumes zero off diagonal blocks
and is similarly given by

Mktotal =

[
I 0
0 MkElas

]

We denote the hybrid basis as Θi := [Φi Ψi]. The orthog-
onal projector operator [6] of the hybrid basis, is given by
Θ†

i := M−1
ktotal,i

ΘT
i Mi. Therefore the orthogonal projector

can be written to block form:

Θ†
i =

[
ΦT

i Mi

M−1
kElas,i

ΨT
i Mi

]
=

[
Φ†

i

Ψ†
i

]
Then we have for the descriptor projecting to the hybrid

basis as:

DΘi
:= Θ†

iDi =

[
Φ†

iDi

Ψ†
iDi

]
=

[
DΦi

DΨi

]



We let Σi := diag(λ1, ...λkLB
, γ1, ..., γk) the diagonal

matrix of combined eigenvalues from ∆i and HessWS [Id],
respectively. Then, both the data and regularization terms
in Eq. (2) can be expanded:

E(C) = ∥CDΘ1 −DΘ2∥2Mktotal,2
+ λ∥CΣ1 − Σ2C∥2HS

We can express the data term in the block matrix format:

Edata(C)

= ∥CDΘ1
−DΘ2

∥2Mktotal,2

=

∥∥∥∥[ C11DΦ1 −DΦ2√
MkElas,2(C

22DΨ1
−DΨ2

)

]∥∥∥∥2
F

Due to the additivity of the Frobenius norm, the two terms
can be minimized separately. A similar condition holds for
the regularization term as:

Ereg(C)

=||C Σ1 − Σ2 C||2HS

=

∥∥∥∥∥
[

C11Λ1 − Λ2C
11√

MkElas,2(C
22Γ1 − Γ2C

22)
√
M−1

kElas,1

]∥∥∥∥∥
2

F

Now, the optimization problem decouples into two sepa-
rate problems, one for each basis type. These can be solved
independently to obtain the optimal functional maps C∗

11 and
C∗

22 within the LBO and elastic bases, respectively.

C11
∗ = argmin

C11
ELB(C

11)

C22
∗ = argmin

C22
EElas(C

22)

Estimating a hybrid functional map in this manner is an
effective regularization which aids computational efficiency,
however the two bases are not separated everywhere. The
notion of ”hybrid” is conceptually important and essential
for the rest of optimization stages, including point map con-
version and the training of neural network feature extractors
as seen in Sec. 6.

3.4. Point-to-Point Map Conversion

In order to obtain a point-to-point map P from a general
functional map C between non-orthogonal bases, the follow-
ing minimization objective is considered [6]:

min
P∈{0,1}m×n

∥CM−1
k,1Ψ

T
1 −M−1

k,2Ψ
T
2 P

T ∥2Mk,2

s.t. PT1 = 1

This formulation can be solved efficiently by considering
the nearest neighbor in

√
Mk,2CM−1

k,1Ψ
T
1 for every point

in
√
M−1

k,2Ψ
T
2 . For a hybrid functional map, the above ob-

jective cannot be decoupled, and the search yields a single
point-to-point map based on the embeddings in the hybrid
space, as illustrated in Fig. 3. Note that the block structure as-
sumption can still be taken advantage of for efficient matrix
multiplications prior to nearest neighbor search.

4. Implementation Details
4.1. Datasets

We evaluate our method across near-isometric, non-
isometric, and topologically noisy settings. Splits are chosen
based on standard practices in the recent literature [2, 4].

Near-isometric: The FAUST, SCAPE, and SHREC’19
datasets represent near-isometric deformations of humans,
with 100, 71, and 44 subjects, respectively. We follow the
standard train/test splits for FAUST and SCAPE: : 80/20 for
FAUST and 51/20 for SCAPE. Evaluation of our method
on SHREC’19 is conducted with a model trained on a com-
bination of FAUST and SCAPE inline with recent meth-
ods [2, 4, 8]. We use the more challenging re-meshed ver-
sions as in recent works.

Non-isometric: The SMAL dataset features non-isometric
deformations between 49 four-legged animal shapes from
eight classes. The dataset is split 5/3 by animal category as
in Donati et al. [4], resulting in a train/test split of 29/20
shapes. We further evaluate the large animation dataset De-
formingThings4D (DT4D-H) [9], using the same inter- and
intra-category splits as Donati et al. [4].

Topological Noise: The TOPKIDS dataset [10] consists of
shapes of children featuring significant topological variations
and poses a significant challenge for unsupervised functional
map-based works. Considering its limited size of 26 shapes,
we restrict our comparisons to axiomatic and unsupervised
methods and use shape 0 as a reference for matching with
the other 25 shapes, following recent methods [2, 4, 5].

4.2. Experimental Details

In this section we provide additional details regarding the
evaluation of our proposed hybrid basis from Sec. 5, includ-
ing the axiomatic, supervised, and unsupervised settings.
Unless otherwise mentioned, implementations and parame-
ters are left unaltered for the hybrid adaptation.

We first provide general details regarding learning and
then the individual adaptations for each method. Learned
methods (GeomFMaps [3] and ULRSSM [2]) are trained
with PyTorch, using DiffusionNet as the feature extractor
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LB Basis Embedding
Global structure; lacks 
local curvature details.

Hybrid Basis Embedding
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detailed curvature  
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Figure 3. Characterization of different basis functions by visualizing them as scalar surface functions (bottom), and as 3d coordinate
embeddings (top). While the elastic basis lacks global structure, it naturally extends the smooth approximation of the LBO basis to
incorporate geometric details (creases) when hybridized.

and WKS descriptors as input features, except for the SMAL
dataset where we use XYZ signal with augmented random
rotation as in recent methods [2, 8]. The dimension of the
output features is fixed at 256 for all experiments.

For unsupervised learned methods, we propose the fol-
lowing linear annealing scheme for learning in a hybrid basis,
as mentioned in Sec. 4.3.

Ltotal = αLLB+µ β LElas

α =
1

2
· k2

(kLB)2
β =

1

2
· k2

(kElas)2

Where k is the total spectral resolution. The parameters
α and β ensure the losses are normalized w.r.t. the number
of entries in the functional map similar to the approach of Li
et al. [8]. We increase µ over the first 2000 iterations so that
the less-robust elastic basis functions do not adversely affect
feature initialization.

In the following, C represents the block-functional map’s
elastic part for clarity. Without loss of generality we let
C12 : F(S1) → F(S2).

Hybrid GeomFMaps. We use 30 total eigenfunctions as
in the original work. For the hybrid adaptation, 20 LBO and
10 Elastic basis functions are used as the spectral resolution.
To compute the functional map, we use the standard regular-
ized functional map solver and set λ = 1× 10−3 as in the
original work [3]. For the hybrid adaptation, we empirically
set λ = 5× 10−4 for the elastic solver.

GeomFMaps is supervised using a functional map con-
structed from the ground-truth correspondences. We thus
adapt the elastic loss as follows (note here C refers to
F(S1) → F(S2) as the original work [3]):

LElas = ∥C − Cgt∥2HS = ∥
√
Mk,2(C − Cgt)

√
M−1

k,1∥
2
F

Hybrid ULRSSM. The ULRSSM baseline [2] uses a spec-
tral resolution of k = 200. We keep the total spectral res-
olution fixed at k = 200, using 140 LBO and 60 Elastic
eigenfunctions.

For the functional map computation, we use the Resol-
vent regularized functional map solver [12] for LB map
block setting λ = 100 as in the original work. Our adapted
variant is weighted empirically with λ = 50 for the elastic
block. ULRSSM regularizes the functional map obtained
from Eq. (2) with 3 losses: bijectivity, orthogonality, and
a coupling loss with the point-to-point map. The loss for
the LBO functional map block LLB is kept the same as the
baseline method while we adapt the bijectivity, orthogonality,
and coupling terms for the elastic block in the HS-norm.

While the bijectivity loss is left unchanged, we adapt the
Lorth term using the adjoint C∗ as follows, similar to Hartwig
et al. in their adapted ZoomOut [6]:

Lorth = ∥C∗
12C12 − I∥2HS + ∥C∗

21C21 − I∥2HS

= ∥C∗
21C21 − I∥2F + ∥C∗

12C12 − I∥2F
We note that concerning the respective bijectivity and or-

thogonality losses, the operators C12C21−I and C∗
21C21−I

map to and from the same function space, thus the HS-norm
is equivalent to the standard Frobenius norm and requires no
non-uniform weighting.

The Lcouple term is given by:

Lcouple =
∥∥∥C12 −Ψ†

2Π21Ψ1

∥∥∥2
HS

+
∥∥∥C21 −Ψ†

1Π12Ψ2

∥∥∥2
HS

=

∥∥∥∥√Mk,2(C12 −Ψ†
2Π21Ψ1)

√
M−1

k,1

∥∥∥∥2
F

+

∥∥∥∥√Mk,1(C21 −Ψ†
1Π12Ψ2)

√
M−1

k,2

∥∥∥∥2
F

For the definition of the point-to-point maps Π21 and Π12

we refer readers to the original method [2].
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Figure 4. Additional qualitative results for the best and worst predictions of ULRSSM in the proposed hybrid basis (our method).

Empirically, we set λbij = λorth = λcouple = 1.0 for the
LB part following the original work. We keep these parame-
ters the same for the elastic block except setting λorth = 0.0
as we observed the orthogonality constraint adversely affects
the method’s performance.

Hybrid SmoothShells. To demonstrate how the proposed
hybrid basis can be used in an axiomatic method, we adapt
the method SmoothShells [5] with the minimally needed
changes.

The initialization of SmoothShells consists of a low-
frequency MCMC alignment. We keep this step as-is and
do not replace the LBO smoothing with the hybrid eigen-



functions because the elastic eigenfunctions cannot achieve
low-frequency smoothing by design. We fix the random seed
and re-run the baseline Smooth Shells and the hybrid version
with the same MCMC initialization to rule out noise.

The main idea of Smooth Shells [5] is to achieve a coarse-
to-fine alignment by iteratively adding higher-frequency
LBO eigenfunctions to the intrinsic-extrinsic embedding.
Instead of only adding LBO eigenfunctions in a new itera-
tion, we add a ratio of LBO and elastic eigenfunctions. As
in the other adaptations, we keep the total number of basis
functions k = 500 fixed. We then empirically replace the
highest 200 LBO eigenfunctions with elastic eigenfunctions,
modifying the product embedding to be:

Xk :=
(
Φ1,k,Ψ1,k, Xk,n

S1

k

)
∈ Rn1×(k+6)

Yk :=
(
Φ2,k,Ψ2,k, Yk,n

S2

k

)
∈ Rn2×(k+6)

where we use our notation of the LBO and elastic basis
functions. Xk,Yk are the product embeddings for shape
S1 and S2 with Xk, Yk the respective smoothed cartesian
coordinates, and nk the outer normals on each shape. The
rest of the optimization follows directly from [5].

5. Additional Experiments
5.1. Hybrid ZoomOut Refinement

Geo.err. (×100) FAUST SMAL
200 LB 2.1 7.6
200 Elastic 2.0 5.9

100+100 Hybrid 1.6 5.1

Table 2. Results of applying the proposed hybrid basis to
ZoomOut [6, 11], compared to pure LB and pure elastic bases. We
initialize each method with a prediction from Hybrid GeomFmaps
(from Tab. 1) and carry out the spectral upsampling from k = 30
to k = 200, particularly, we upsample from k = 20 + 10 to
100 + 100 for Hybrid ZoomOut. We demonstrate results on both
near-isometric (FAUST) and non-isometric (SMAL) datasets.

We provide experimental results for ZoomOut (see
Tab. 2) when refining a Hybrid GeomFMaps correspondence
prediction to k = 200 in both near-isometric (FAUST) and
non-isometric (SMAL) settings. It’s worth note that the per-
formance of hybrid ZoomOut algorithm relies on good ini-
tialization, similar to the original method [6, 11] and the
performance on poor initializations varies largely.

6. Further Ablation Studies
In this section, we present the results of several ablation
studies, focusing on key design choices: separating the op-

timization problems from Thm. 3.1, the ratio of the hybrid
basis, and our training strategies.

6.1. Hybridization and Separation.

We argue that the proposed hybrid notion is conceptually
important; it is essential for optimization and training stages,
including point map conversion and training learned features.
Preventing inter-basis matchings by setting the off-diagonal
blocks of a hybrid functional map to 0 serves as a strong
regularization, which is also computationally efficient (see
Fig. 5). The proposed hybrid formulation generally raises
questions on the perspective of hybridization and which
components of a hybrid FM architecture could be optimized
separately. To further support our design decisions, we pro-
vide ablation experiments for this regularization effect and
analyze why training two entirely separate networks is not
optimal.

Separating the Optimization As detailed in Thm. 3.1,
setting the off-diagonal blocks of the hybrid functional map
to 0 is equivalent to solving the optimization problems sepa-
rately. Here, we show this is both important computationally
and in terms of regularization.

To demonstrate its regularization effect, we conduct an
experiment in ULRSSM on the FAUST dataset comparing
solving a hybrid functional map with our proposed method
against naively via a single solve. This experiment is con-
ducted with the orthogonalized elastic basis as a proof-of-
concept, as solving a full-dimensional (k = 200) hybrid
functional map from the k2 × k2 system would be pro-
hibitively expensive.
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Figure 5. Ablation study concerning separate optimization of the
block matrix on FAUST with Hybrid ULRSSM. The y-axis depicts
validation error, while the x-axis shows training steps. Separating
the optimization problems primarily leads to faster convergence.

Results. The results of this ablation are depicted in Fig. 5.



We observe that solving the two maps separately yields no-
tably faster convergence compared to the naive approach
with a marginal performance advantage. This suggests that a
block-diagonal functional map is desirable; restricting inter-
basis matches leads to faster convergence. Separately solving
the optimization problems can be interpreted as a strong reg-
ularization of the off-diagonal blocks, reducing the search
space.

Separating the Networks. During the training of a deep
hybrid FM, features are updated by gradients passed through
both map solves. Tab. 3 includes an additional experiment
where we instead train two entirely separated feature net-
works, only concatenating features during inference to ob-
tain correspondences. The performance falls behind our ap-
proach, showing that we separate only where meaningful.

Geo.err.(×100) Hybrid ULRSSM Hybrid GeomFmaps
Separate Network 3.9 10.9

Ours 3.3 7.6

Table 3. Ablation study on whether separating neural networks for
feature training is effective to our proposed framework. Instead
of using one shared weight neural network as feature extracor,
consider training two completely separate networks and concatenate
the features only at test time. Note that under this scheme, our
annealing training strategies in Sec. 6.3 are no longer meaningful.
Experiment conducted on SMAL dataset with our two adapted
learning methods. Best result is reported.

6.2. Basis Ratio

To further validate the effectiveness of our choice of hy-
bridizing between the LB (Laplace-Beltrami) and Elastic
eigenfunctions, we conduct extensive ablation experiments
showcasing the performance of different ratios of hybridized
basis.

In all these experiments, we again fix the total number
of basis functions used as k while replacing the highest fre-
quency LB basis with the Elastic eigenfunctions correspond-
ing to the smallest eigenvalues. This follows the intuition that
the low-frequency LB basis functions enable coarse shape
alignment while failing to capture fine details, while optimiz-
ing in the hybrid basis enables alignment to thin structures
and high curvature details better than in the pure LBO basis.
We conduct two ablations to demonstrate such a choice; both
experiments were carried out on the SMAL dataset for its
challenging non-isometry and practical relevance as a stress
test.

Point-to-Point Map Recovery For ground-truth map re-
covery, a functional map is obtained by projecting ground-
truth point-to-point correspondences into the spectral do-
main. Subsequently, the point-to-point correspondences are
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Figure 6. Point-to-point correspondence recovery in a hybrid basis,
using a varying ratio of LBO and elastic eigenfunctions. We present
several different total spectral resolutions k. Units are in geodesic
distance (×100).

reconstructed using a nearest neighbor search, upon which
the discrepancy with the ground-truth point-to-point map can
be measured by geodesic error. This simple experimental
scenario enables a convenient way to measure the expressive-
ness of a functional map; In Fig. 6, we consider the hybrid
basis composed with a varying ratio of LBO and elastic
basis functions and a different number of total basis func-
tions: k = 30, 60, and 200. We measure the mean geodesic
error between the ground-truth point-to-point map and the
recovery from the hybrid functional maps.
Results. The hybridized basis can notably better represent
the ground truth for k = 30 and 60. We observe an optimum
of around 80% LBO and 20% elastic eigenfunctions. This
phenomenon diminishes at k = 200, suggesting the LB basis
functions can indeed represent fine details with a sufficiently
high number of basis functions. However, ground-truth re-
covery does not necessarily represent the setting where fea-
tures are learned through backpropagation of the functional
map loss. Our experiments indicate that learned pipelines
cannot leverage the high-frequency LBO eigenfunctions to
represent fine extrinsic details as effectively as the elastic
basis functions, even with a large total number of basis func-
tions. We, therefore, conduct a similar ablation in the learned
setting.

Learned Setting. In Fig. 7, we consider the hybrid
ULRSSM method with a fixing total basis number of k =
200 under different hybrid basis ratios with a step size of 20.
Due to the high-order polynomial computational increase
(see Sec. 7) for the k2 × k2 system, we limit the number of
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Figure 7. Hybrid ULRSSM is evaluated on SMAL using a varying
ratio of LBO and elastic eigenfunctions. Our basis ratio can be
observed in red, with the baseline pure LBO implementation in
yellow.

elastic basis functions to less than 100 (Point Map Recov-
ery from GT also indicates inferior performance outside of
this regime). We run each experiment 5 times to eliminate
inherent noise and report all results.
Results. Here, we observe that a ratio of around 140:60 is
optimal; the hybridized basis (red) shows consistent perfor-
mance improvements over the baseline (orange) and other
basis ratios.

6.3. Training Strategies

Training a reliable shape correspondence estimation pipeline
through hybrid functional maps involves several key model-
ing decisions. Both the linearly increasing scheduler for the
elastic loss during training and normalizing factors for both
Laplace-Beltrami (LB) and elastic losses play a large role in
the obtained performance increases.

As mentioned in Sec. 4, we observed the elastic basis
functions are not robust to uninitialized features. Easing in
the elastic loss after feature initialization in the LBO basis
mitigates convergence to undesirable local minima. Further-
more, the loss of each component in the hybrid functional
map is normalized according to the number of matrix ele-
ments for this component, an important hyperparameter to
balance the two blocks. During the ablation studies presented
in Fig. 8, we selectively eliminate each one of these factors
from our model and measure the mean geodesic error. We
further demonstrate that fine-tuning from a pre-trained LBO
checkpoint is ineffective, likely converging to local minima.
Results. The results in Fig. 8 show that each component
is indeed important for our final model. Fine-tuning from a

checkpoint or training without normalization yields inferior
results. Furthermore, except for a single outlier, our approach
converges to a significantly lower minimum than learning
without the linear-annealing strategy.

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

M
ea

n 
G

eo
de

si
c 

Er
ro

r (
x1

00
)

SMAL

Ours
w.o. Linear Annealing

w.o. Loss Normalization
Finetuning from pretrained LB ckpts

Figure 8. Ablation study of optimization strategies using Hybrid
ULRSSM on SMAL. Five random runs are shown for each training
setting.

Method Runtime

ULRSSM 610.70 ± 45.20 ms

Hybrid ULRSSM 623.19 ± 32.03 ms

Table 4. Comparison of per-iteration runtime on SMAL over 100
training iterations (mean ± st. dev).

7. Runtime Analysis
We provide our runtime analysis for the Hybrid ULRSSM
method in SMAL dataset under Table 4. Results are obtained
on an NVIDIA A40. Our hybrid adaptation incurs minimal
runtime overhead while yielding significant performance
gains despite needing to solve an expanded k2 × k2 sys-
tem. This can be explained by analyzing the complexity.
Assuming the complexity of solving a linear system for an
k × k matrix is O(k3), solving the combined optimization
problem costs O(k4) flops (since we solve k separate k × k
systems. Solving the separate optimization problem costs
O((k− l)4+ l6) flops, which for the total spectral resolution
k = 200 and elastic eigenfunctions l = 60 is only one order
of magnitude larger.

8. Additional Figure of Basis Embedding
We provide additional visualization of the basis embeddings
in Fig. 3. The figure depicts 3D embeddings of the first three



basis functions on the shape in different combinations. The
visualization suggests that while the elastic basis lacks global
structure, it naturally extends the smooth approximation of
the LBO basis to incorporate geometric details (creases)
when hybridized.

9. Additional Qualitative Results

We provide additional qualitative results in Fig. 4 on each
dataset. We evaluate and visualize the best and worst predic-
tions of ULRSSM in the proposed hybrid basis.
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