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7. Coupled Laplacian
We present here some theoretical aspects of the Coupled
Laplacian, introduced in Sec. 3, which we proposed to gen-
erate aligned spectral embeddings for multiple registered
point clouds.

Zero Cross-Connections. The coupled Laplacian ma-
trix has the following structure:

LLLC = LLLU +LLL+ (6)

where LLLU is the Laplacian matrix of the global graph
without any cross-connection between GT and GSk , for
k = 1, · · · , N . Hence, LLL+ is the Laplacian matrix of
the global graph restricted to its cross-connections between
sub-graphs. Moreover,LLL+ enforces the matching constraint
in the global eigenproblem.

By construction of the matrix BBBC (see Sec. 3), eigen-
vectors related to (GSk)k=1,···N and GT , that have the same
eigenvalue �, can be stacked into a global eigenvector ���U

such that the following property holds

LLLU ���U = �BBBC ���U (7)

where the above system is block diagonal. Therefore, solv-
ing the Coupled Laplacian eigenproblem without cross-
connections, i.e. l = 0 and then LLL+ = 000, it is equiva-
lent of solving separate eigenprobems, when the eigenval-
ues are the same, for each single component of the global
graph. Otherwise, if eigenvalues are not the same, the solu-
tion of the coupled eigenproblems with LLL+ = 000 will likely
give separate eigenvectors for each sub-graph, that is, vec-
tors with non-zero values only for indices corresponding to
a single component.

Ideal Matching. In the ideal case of perfect match-
ing, when source graphs bare copies of the target graph,
whether or not vertices are randomly reordered, the set of
nT coupled eigenvectors contains N + 1 copies of target’s
eigenvectors. For the sake of simplicity, in the following
proof, the vertices in the copies of the target graph are not
reordered. Therefore, GSk = GT and FSk = F T , for
k = 1, · · · , N . Let ⌘⌘⌘Ci 2 R(N+1)nT

be the vector in which
N +1 copies of an eigenvector ���T

i are stacked. Then, from
Eq. (6) and Eq. (7) we have,

LLLC ⌘⌘⌘Ci � �T
i BBBC ⌘⌘⌘Ci = LLL+ ⌘⌘⌘Ci (8)

where non-zero rows in the right hand side term are related
to cross-connections between a vertex of GT and its copies

on the references, at the same location. Hence, the weight
function is equal to one, for each of the cross-connections,
and

8j 2 F T (LLL+ ⌘⌘⌘Ci )j =
NX

k=1

�T
ji � �Sk

ji . (9)

Since ���Sk
i = ���T

i for GSk = GT , the right hand side term of
Eq. (8) is equal to zero and (⌘⌘⌘Ci )i=1,··· ,nT are eigenvectors
of the Coupled Laplacian containing N+1 copies of a target
graph.

In addition to the above property, when target graph has
eigenvalues with multiplicity higher than one, the coupled
term LLL+ ���C

i = 0 enforces the shape matching of eigenvec-
tors that do not belong to the kernel of the matrix LLL+.

Penalization Term. The computation of matching vec-
tors can be penalized in the initial eigenvectors by incorpo-
rating a coefficient ↵ > 1 into the Laplacian matrix for the
coupled graph, as follows:

LLLC↵ = LLLU + ↵LLL+ (10)

The larger ↵, the higher the eigenvalues of non matching
eigenvectors such that kLLL+ ���C

i k > 0.
Modal Length. Let ���k be the k-th eigenvector of a

single graph G(V, E), its gradient on the graph can be ex-
pressed as

||r���k||2G =
X

(i,j)2E

✓
�ik � �jk

d(xxxi,xxxj)

◆2

(11)

where the sum is over the set of edges E and d(·, ·) is the
Euclidean distance. We define the modal length as the ratio
between the norm of the eigenvector and its gradient

Lk =
||���k||

||r���k||G
(12)

with L0 = +1, because���0 is constant, and Lk > Lk+1 for
k 6= 0. Note that the unit of Lk is the same as the unit given
by the Euclidean distance of points in the graph. There-
fore, the modal length can give an insight about the number
of eigenmpas, m, to produce with the Coupled Laplacian,
based on the extent of surface differences we want to detect.
Intuitively, representing differences at small scales is easier
than at large ones. Therefore, the more modes are used, the
larger the range of defect sizes that can be represented.



Algorithm 1: Spectral-Based Bone Side Estima-
tion (BSE) using aligned embeddings from the
Coupled Laplacian.

Data: Source surface and side -
�
VS , SS

�

Target surface - VT

Neighbours - k
Cross-Fraction - l
Eigenmaps - m

Result: Target Side - ST
WWWS  Adjacency(VS , k);
WWW T  Adjacency(VT , k);
LS , LT  Bone lengths from Fiedler vectors;
↵ LS/LT ; . Scale factor

VT  ↵⇥ VT ;
VS
M  Mirror Source using PCA;

VS ,VS
M  RANSAC registrations to VT ;

Select target cross-connections set F T ⇢ VT

Find sets FS ⇢ VS and FS
M ⇢ VS

M as in Eq. (3)
LC  Coupled Laplacin(W T ,WS , F T , FS , FS

M );
{�C

i }mi=0, {���C
i }mi=0  Eig(LC ,m);

���T ,���S ,���S
M  Split({���C

i }mi=0);
QR decompose ���T (F T , :),���S(FS , :),���S

M (FS
M , :);

if dG(QQQT ,QQQS)  dG(QQQT ,QQQS
M ) then

ST = SS ; . Same side

else
ST = ¬SS ; . Opposite side

end

8. Spectral-Based BSE
In Algorithm 1 we provide full details on the spectral-based
algorithm for BSE introduced in Sec. 4.1. It takes as in-
put the set of points, i.e. graph vertices, representing source
and target surfaces , VS and VT , respectively, and the tar-
get side, SS . Additional input parameters are the number of
neighbours used to create the k-NN graphs from the point
clouds, the fraction of target nodes used to create cross-
connection, l, and the dimension of the embeddings gen-
erated through the Coupled Laplacian, m.

As first step, the single adjacency matrices are built from
the set of vertices using an RBF kernel, as in Eq. (1). After
that, the length of each shape is computed only with the
information carried by the Fiedler vector, f , as follows

L = ||xmax � xmin||2 (13)

where xmax = xargmax f and xmin = xargmin f are the
points corresponding to the maximum and minimum val-
ues of the Fiedler vector, respectively. In this way, the input
surfaces do not need to lie on the same Euclidean frame
in order to have comparable length measurements. Even if
Fiedler vectors of different shapes may have opposite sign,

Figure 6. Graphical representation of the structure of the coupled
adjecency matrix. WWWS and WWW T are the source and target adja-
cency matrices, while F T , FS and FS

M are the set of nodes for
cross-connections of target, source and mirrored source. Note that
the nodes are sorted in groups such that the eigenmaps derived
from the Coupled Laplacian can be easily split into the single com-
ponents.

the inversion of maximum and minimum does not affect the
bone length calculation. Note that, as extension for a more
precise length computation, it is also possible to select the
M maximum and minimum points of the Fiedler vector and
compute xmax and xmin as the barycenters of those points.
The ratio between source and target lengths gives a scaling
factor, ↵, that we use to scale the target surface in order
to match the length of the reference. The mirrored version
of the source bone, VS

M , representing its contralateral, is
then generated by flipping it around the point cloud second
principal component and both versions of the reference are
registered to the target with RANSAC algorithm [19]. Inter-
estingly, the adjacency matrix of the two references, before
and after registration, is the same as the original one and,
therefore, we can avoid its computation multiple times.

After the described pre-processing, the core of the algo-
rithm based on the Coupled Laplacian takes place. The sub-
set of target nodes used for cross-connections is stochas-
tically selected and the corresponding points on the two
versions of the reference are queried as in Eq. (3). Al-
ternatively, assuming not flat surfaces, other methods for
cross-connections can be used instead of NN, e.g. spec-
tral clustering medoids. Hence, the three graphs can now
be connected and the Coupled Laplacian computed from
the whole weighted adjacency matrix. For more clarity, the
structure of the coupled graph adjacency matrix is depicted
in Fig. 6. Therefore, the first m coupled eigenmaps are com-
puted with a given eigensolver and split into the components
of each of the three single shapes, as in Eq. (4). Finally, the
Grassman distances, dG(·, ·), of the QR normalized aligned
eigenmaps restricted to the cross-connection sets are com-



Femur Hip Fibula Tibia

40  

50  

60  

70  

80  

90  

100  Chamfer
Hausdorff
FPFH
Ours 10 
Ours 20 

Ac
cu

ra
cy

 [%
]

Figure 7. Box plot of the accuracy of various methods for BSE depending on the source shape. Each measurement is the accuracy obtained
using a different source shape among the ones available in the proposed benchmark. The median is highlighted with the notch while the
mean is represented by the dashed line.

Table 4. Minimum and maximum accuracy of human BSE for
each bone structures using different sources. All the matching
methods are applied after RANSAC registration. The overall best
performing methods are highlighted in boldface.

Method Femur Hip Fibula Tibia

Be
st

Hausdorff 89.62 100.0 75.76 86.87
Chamfer 85.85 100.0 86.87 90.91
FPFH [57] 83.96 100.0 83.84 93.94
Ours20 93.40 100.0 89.90 94.95
Ours10 93.40 100.0 91.92 93.94

W
or

st

Hausdorff 51.89 89.74 39.39 51.51
Chamfer 54.72 92.31 35.35 38.38
FPFH [57] 34.34 87.18 34.34 41.41
Ours20 49.06 94.87 38.38 39.39
Ours10 57.55 84.62 43.43 45.45

pared in order to predict the target side. The latter is equal
to SS if the Grassman distance between target and reference
is lower than the distance between target and mirrored ref-
erence, otherwise it will be the opposite body side.

9. Robustness to Source Variation
In this section we briefly discuss the robustness with re-
spect to the selected source shape of the methods tested in
Sec. 4.2.

Bone Side Estimation. Fig. 7 shows the variation of
the BSE accuracy, with respect to the source bone, for dif-
ferent bones and different methods. We recall that in each
experiment one bone is chosen as source and the side is in-
ferred on all the other bones of the same category. There-
fore, we automatically have Nb accuracy measurements for
each class, where Nb is the number of samples of the bone
class b. The average accuracy of these experiments is re-
ported in Tab. 3 of the main manuscript. While median and
average accuracy are generally higher using our technique
in all the bones, the values spread is similar between meth-
ods. Additionally, we report in Tab. 4 the maximum and the

Bagel
Cable Gland

Carrot
Cookie

Dowel
Foam

Peach
Potato

Rope
Tire

0.6

0.65

0.7

0.75

0.8

0.85

0.9

AU
C-

PR
O

Figure 8. Area under the PRO curve (AUC-PRO) with an upper
integration limit of 0.3 for each category of the MVTec 3D-AD
dataset. Each score, represented by a dot, is computed with a dif-
ferent source shape selected from the train set. The median is high-
lighted with the notch while the mean is represented by the dashed
line.

minimum accuracies obtained using different sources. We
can observe that the maximum accuracy is always achieved
with our method, both using 10 or 20 eigenmaps for match-
ing. Moreover, it is also better in the worst case for all the
bones classes except for the tibia, for which the Hausdorff
distance seems to be better. Nevertheless, as also shown in
Fig. 7, there is no much difference in the span between best
and worst cases among different methods. This suggests
that, to improve the performance of our BSE technique, and
also of other methods, a proper choice of source bone is
essential.

Anomaly Localization. We tested our method on the 3D
anomaly localization task using 20 different anomaly-free
sources randomly drawn from the train set of the MVTec
3D-AD dataset. For each train sample, and for each cat-
egory, we computed the normalized area under the PRO
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Figure 9. Graphical comparison of 3D anomaly localization using different source shapes on different objects. The target example with
RGB colors and the GT anomaly are shown on the left and right, respectively. In the middle 6 different results obtained changing the
anomaly-free source are reported.

curve with an upper integration limit of 0.3 and their distri-
bution is shown in Fig. 8. All the experiments are performed
using the Coupled Laplacian with m = 200 and l = 1. We
can observe that the results are much more stable and less
spread than in the BSE task. This is likely due to the fact
that different samples of the same industrially manufactured
product are very similar and, therefore, all equally good as
source shape. On the other hand, bones may vary in size and
slightly in form from patient to patient. Hence, the selection
of a good representative source is essential to enhance the
capabilities of the proposed matching technique.

Moreover, in Fig. 9 we compare graphically the results
obtained on some test samples using different anomaly-
free sources. We can observe the strength of the proposed
method which always correctly localizes the anomalies,
even with different sources. In opposition, some false pos-
itives are sometimes present, especially on the borders of
the shapes. This weakness is due to fact that the consid-

ered point clouds are not closed surfaces, since they are ac-
quired with objects placed on a flat surface. Therefore, the
points on the edges between object and surface are likely to
contain noise which may produce different coupled embed-
dings leading to a detection of local surface differences. In-
terestingly, in the peach sample, some anomalies are located
in the area of the steam end because only some anomaly-
free sources has it. The peach test example shown in Fig. 9
does not have the steam and therefore, when compared with
a source that has it, a surface difference is highlighted in
that specific area.

10. Graphical Comparison
In this section we first provide more graphical comparisons
of different methods on the anomaly localization task. After
that, we show the difference between eigenmodes produced
with the Coupled Laplacian with respect to the ones gener-
ate independently on the single geometries.



Anomaly (GT) Target

Contamination

FPFH Euclidean Ours

Hole

Contamination

Cut

A
n

o
m

a
ly

 S
c
o

re

Bent

Crack

C
a

rr
o

t
C

a
b

le
 G

la
n

d
T

ir
e

F
o
a
m

B
a

g
e

l
C

o
o

k
ie

Figure 10. Graphical comparison of 3D anomaly localization using different methods on different objects. The target example with RGB
colors and the GT anomaly are shown on the left and right, respectively. In the middle the results obtained with FPFH, Euclidean distance
and distance between aligned spectral spaces are reported.

In Fig. 10 the anomaly scores obtained using FPFH
features comparison [57], Euclidean distance and Coupled
Laplacian, with m = 200 and l = 1, on different samples
are compared. For a fair comparison, all the techniques are
performed with the same anomaly-free source sample and
after affine CPD [45] source to target registration. We ob-
served that FPFH tends to overestimate anomalies, whereas
the Euclidean distance underestimates them, leading to mis-
leading detections. In contrast, our method achieves a better
trade-off and improves the localization of anomalies. With
reference to the modal length of Eq. (12), decreasing the
number of modes used for spectral comparison we will ob-
tain similar results to the Euclidean method, while increas-
ing it, the localization will tend to the one of FPFH. Once
again, the parameter m plays a crucial role in our method,
helping us select surface differences that are tailored to the

specific task at hand.

In Fig. 11 and Fig. 12 the first 6 eigenmodes of a femur
and hip BSE problem produced with the Coupled Laplacian
are shown and compared with the ones obtained thought
independent eigendecomposition of target and source, i.e.
uncoupled eigenmaps. In both cases the target side is oppo-
site to the source and therefore the best matching coupled
eigenmaps are with the mirrored source. This is because
its RANSAC registration to the target shape is more precise
and so the added cross-connections. On the contrary, the
cross-edges between source and target are weaker leading to
less precise coupled modes and larger Grassmann distance,
which result in a correct BSE. In the uncoupled eigenmaps
we can instead observe both the eigenvalue ordering and
sing disambiguity of the eigendecomposition. In the femur
example, eigenmode 3 has flipped sign in source and target,
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Figure 11. Graphical comparison of the eigenmaps obtained through Coupled Laplacian and with independent eigendecomposition of point
cloud graphs, i.e. uncoupled eigenmaps. The first 6 eigenmodes are shown in both cases for source, target and mirrored target in the case
of femur bones.
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Figure 12. Graphical comparison of the eigenmaps obtained through Coupled Laplacian and with independent eigendecomposition of point
cloud graphs, i.e. uncoupled eigenmaps. The first 6 eigenmodes are shown in both cases for source, target and mirrored target in the case
of hip bones.

while eigenvalues 5 and 6 are inverted. Moreover, we can
observe slight local variations of modes in the condyles area
of the distal femur (highlithed with red circles). Similar ob-
servations can be also derived from the uncoupled modes of
the hip bones in Fig. 12.

A comparison of higher modes is instead shown for two
samples of the anomaly detection task in Fig. 13. In re-
lation to the modal length defined in Eq. (12), it is evident
that lower modes represent larger scales compared to higher
modes, enabling them to better capture differences. More-
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Figure 13. Graphical comparison of the eigenmaps obtained through Coupled Laplacian and with independent eigendecomposition of
point cloud graphs, i.e. uncoupled eigenmaps. Some eigenmodes of increasing number are shown for two samples of the MVTec 3D-AD
dataset.

over, the proposed coupling process leads to aligned eigen-
maps for source and target shapes. Uncoupled eigenmodes
exhibit completely different patterns, rendering them im-
practical for matching purposes without a reordering pro-
cess, which complexity increases as the represented scale
decreases. On the other hand, modes derived from the Cou-
pled Laplacian exhibit the exact same pattern on both source
and target point clouds, making them feasible for direct
comparison. However, it is worth noting that as we increase
the mode number, there might be an observable weakening
in the coupling of the intensities of the eigenvectors, despite
the preservation of the underlying patterns. In the computa-
tion of similarity scores using aligned embeddings, the ob-
served coupling weakening with increasing mode numbers
may not significantly impact the results. In fact, this charac-
teristic could be leveraged to our advantage when determin-
ing the truncation number for the eigenspaces, highlighting

the adaptability and effectiveness of our method.

11. Cross-Species BSE
We test here the generalization of the proposed BSE algo-
rithm on an internal dataset of sheep femur and tibia bones
and we discuss its cross-species capabilities, i.e. when
source and target bones are from different species. The lat-
ter poses an interesting challenge in the medical field, as
tests are often performed on animals before being expanded
to humans. The experiments only on sheep bones are per-
formed as described in Sec. 4.1 for the public human bench-
mark. While, for the cross-species experiments, each bone
of one species is chosen once as source to infer the side of
the bones of the same category from the other species. The
results of these sets of experiments are reported in Tab. 5.
We can observe that, the sheep-to-sheep BSE is much more
effective then the human-to-human comparison reported in



Table 5. Accuracy of cross-species BSE for femur and tibia us-
ing different methods. All the matching methods are applied af-
ter RANSAC registration. S and H stands for Sheep and Human,
respectively, and the overall best performing methods are high-
lighted in boldface.

Method Femur Tibia Mean

S
!

S

Hausdorff 94.37 97.14 90.48
Chamfer 94.29 88.57 94.88
FPFH [57] 97.14 97.14 97.14
Ours20 97.30 97.30 97.30
Ours10 97.30 97.30 97.30

H
!

S

Hausdorff 72.22 69.44 70.83
Chamfer 69.44 75.00 72.22
FPFH [57] 77.78 75.00 76.39
Ours20 69.44 72.22 70.83
Ours10 83.33 77.78 80.56

S
!

H

Hausdorff 57.94 63.00 60.47
Chamfer 62.62 66.00 64.31
FPFH [57] 63.89 63.00 63.45
Ours20 63.55 60.00 61.78
Ours10 63.55 66.00 64.78
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Figure 14. Comparison of human and sheep femur and tibia bones.
For both of them, the top and lower parts are shown separately to
highlight their differences.

the main manuscript, achieving almost correct estimation in
all the sample. This is due to the fact that sheep femur and
tibia have less symmetric shapes than their human counter-
parts, hence making easier the side estimation. Moreover,
all the samples in our internal datasets are acquired with the
same settings and therefore there is small sample variability,
unlike the human benchmark we proposed to collect.

However, despite our method maintaining its superior-
ity, performance drops are noted for cross-species tasks. A
clearer understanding of this phenomenon can be obtained
from Fig. 14, where human and sheep femur and tibia bones
are graphically compared. While the overall shapes are sim-
ilar, some major differences can be noticed between species.

Figure 15. Average computational time of the eigendecomposition
using different combinations of number of shapes (1, 3 or 5) and
modes (10 or 20).
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Figure 16. Coupled modes correctly aligned in a partial matching
scenario.

For instance, the sheep proximal femur is similar to the hu-
man distal part. Such variations, and other artifacts, may
affect the result of the initial registration, leading to wrong
cross-connections and miss-aligned eigenmaps. Further-
more, while bones of different species are globally similar,
local differences introduce complexities in the BSE task.
The global similarity score derived from the Coupled Lapla-
cian is therefore affected by these differences, leading to
a more challenging task of aligning and comparing bones
across species. Addressing this challenge will contribute to
advancing the field of BSE and refining the understanding
of global similarities and localized distinctions in diverse
bone structures.

12. Scalability
The efficiency trade-off of decomposing larger Laplacians
is illustrated in Fig. 15. The average computational time is
reported for the eigendecomposition, using 10 and 20 maps,
coupling the same shape with itself 3 or 5 times. As ex-
pected, larger, i.e. number of shapes, and denser, i.e. num-
ber of cross-connections, is the Laplacian, higher is the time
needed for the computation. Scalability might be a concern
in tasks like shape retrieval with numerous classes. How-
ever, simple measures, e.g. downsampling shapes and inter-
polating eigenmaps, can reduce the complexity. Given the



intrinsic coupling of modes, faster, but randomized, solvers,
e.g. AMG, are still precise and have been used, cutting the
need of resources.

13. Partial Matching
In Fig. 16 we show a graphical example of coupled eigen-
maps derived from partially matching shapes. More in de-
tail, an entire femur bone is matched with the distal part,
i.e. lower part, of another femur. In this case, artificial
cross-connections are added only on the partial match of
the source shapes, leading to correctly aligned eigenmaps.
Namely, the embeddings are successfully coupled in the dis-
tal area of the femur while they are independent on the re-
maining surface of the source. This example shows the po-
tential of the Coupled Laplacian operator in different, and
more complex, scenarios.
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