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6. Introduction

We present additional details, experimental results, and vi-
sualizations that are essential to prove our NVSVDE-Net
can learn to model and render novel views with view-
dependent effects (VDEs).

In Section 7, we provide additional details on the epipo-
lar projection equations that are used for the projection op-
erations in our relaxed approximation of volumetric render-
ing. For reproducibility, in Section 8, we provide the details
of our network backbones in our NVSVDE-net. In Section
9, we provide the details of our improved camera pose esti-
mation network.

In Section 10 we provide additional visualizations of
VDE modeled from single image inputs. In Section 11 we
provide additional results on NVS from a single image and
compare them against Single-view MPIs [40], PixelNeRF
[46], MINE [26], BehindScenes [42], and SceneRF [2]. In
Section 12, we provide additional visualizations of interme-
diate network outputs, such as the coarse NVS output, the
mean sample distance estimated by the sampler MLP head,
and the changes in geometry and VDE weights induced by
different camera motions.

In addition to the qualitative results presented in this
supplemental, we also attach videos that better show our
VDEs and Novel Views against the previous methods (these
are also available in https://shorturl.at/ABIJ3).
Furthermore, we complement the results in our main paper
by providing videos for our qualitative results. We refer
to these videos by FigX-video in the attached supplemen-
tal materials. Higher resolution/length videos can also be
found at https://shorturl.at/ltJT7.

Finally, we push the boundaries of our model by render-
ing views with an impressive 40-frame disparity from the
input view in Section 13 and discuss our method’s limita-
tions and failure cases in Section 14.

7. Epipolar Projections

Our base relaxed volumetric rendering requires projected
epipolar colors and probability logits. Such colors are
obtained by projecting lines from the target ray sampling
points at ti (or t∗i ) depths to the camera centers of the refer-
ence view. The color is then sampled from the intersections
with the camera plane. Assuming a pinhole camera model,
the coordinates of the epipolar color projection for a pixel
in image I are given by

g(p, ti, Rc|tc,K) = p′ (15)

where p′ is the image pixel coordinate to sample from ref-
erence image I via bilinear sampling. p′ is computed by:

(i) Obtaining 3D points in world coordinates pw by lift-
ing p into the depth ti as described by

pw = tiK
−1p; (16)

(ii) Getting reference camera coordinates pcj by rotat-
ing and translating the world coordinates by the reference
camera extrinsics (rotation and translation). Given camera-
to-world extrinsics, pcj is given by

pc = R′
cpwj

−R′
ctc, (17)

where R′
c and tc are the inverse camera rotation matrix and

translation vector of the reference view, and
(iii) Projecting camera coordinates into reference view

image coordinates, as given by

p′ = K
pc

zc
, (18)

where K are the camera intrinsics and zc is the Z-axis com-
ponent of pc.

8. Additional Network Architecture Details
The network backbone FW extracts geometry and pixel-
aligned features WD and WV , consisting of an encoder-
decoder network architecture with skip connections. An
ImageNet [7] pre-trained ResNet-34 [19] is chosen for FW

for most of our experiments and design explorations, as it
makes for a fast yet effective feature extractor encoder back-
bone. For the decoder side, we upscale the deep features via
the nearest interpolation to the resolution of its skip connec-
tion, followed by a CONV-ELU-SKIP-CONV-ELU block,
similar to the well-known Monodepth2 [15]. However, at
the decoder stage, we concatenate into the skip connection
deep-encoded pixel positional information given by the rel-
ative pixel locations (U, V ). Pixel positional information
is encoded by a 1×1Conv-ELU-1×1Conv (or MLP) head
with 16 hidden units that encode the horizontal and verti-
cal pixel positional information into an 8-element vector.
We repeat this process until we reach the input resolution.
All Conv layers in our decoder are 3 × 3 convolutions. To
better assess the effects of our design choices (volumetric
rendering approximations, rendering of VDE, etc.) we do
not use any advanced block such as attention or dropout.
For a fair comparison, all methods in the Experiments and
Results Section share the same network backbone FW .

For our NVSVDE-Net, we set two output branches at the
last decoder stage, one for WD and one for WV , with N and
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Figure 11. Our improved PoseNet incorporates rotation-aligned
views for improved camera pose estimation. Rotation-aligned
views allow our PoseNet to extract more relevant visual features
for finer pose estimation. See attached RotAligned.gif for an ani-
mated visualization.

Nv numbers of channels, respectively. Our NVSVDE-Net
incorporates additional Linear-ELU-Linear MLP heads FD

and FV with 32 hidden units. Finally, our Sampler Linear-
ELU-Linear-ELU-Linear MLP head with 4N input units
and 2N∗ output units utilizes 64 hidden units.

9. Additional Details on our Improved PoseNet

We provide detailed descriptions of each layer in our im-
proved PoseNet in Table 3. In addition, it is worth noting
that the camera pose network is not trained with random re-
sized and cropped patches (as the NVS networks) but with
full images at 1/2 resolution. The same resolution, 1/2, is
used during testing.

A core feature of our improved PoseNet, is the process-
ing of rotation-aligned images, which allows for extracting
more relevant visual features. Fig. 11 shows that it is much
“easier” to understand the diagonal translation motion in the
top scene and the Z-axis motion on the bottom scene when
the images are rotation aligned. See attached RotAligned.gif
for an animated visualization.

10. Additional Visualization of VDEs

Due to their high sparsity, and low-frequency nature, VDEs
such as glossy reflections are hard to visualize in still im-
ages. For this reason, we include several examples of
our single-view-based VDE in the attached VDE-video.mp4
video. We kindly suggest viewing it.

11. Additional Results on NVS from a Single
Image

For the sake of completeness, we also include the compar-
ison with the previous methods of Single-view MPI [40]
and MINE [26] in this supplemental. Table 5 shows the ex-
tended version of Table 1 with results for Single-view MPI
and MINE which, for a fair comparison, were also trained
with the same ResNet34 network backbone and under the
same conditions as those methods in Section 4. Again,
our NVSVDE-Net outperforms in terms of all metrics by
a considerable margin. Interestingly, Single-view MPI [40]
yields 0.4 dB better PSNR than SceneRF (but still 0.4 dB
lower than ours) for the MC dataset, but with worse LPIPS,
which is reflected in its qualitative results.

We also provide additional qualitative results on RE10
and MC in Figs. 13 and 14. Single-view MPI [40] and
MINE [26] methods attempt to solve a very ill-posed prob-
lem of estimating densities and colors for all pixels in
all image planes in the MPIs but yield very blurred re-
sults, as shown in Figs. 13 and 14. In contrast, our
NVSVDE-Net with a “relaxed” volumetric rendering ap-
proximation yields the sharpest novel views with baked-in
view-dependent effects. To complement Figs. 13 and 14 we
also attach RE10k-results.mp4 and MC-results.mp4 videos
in this supplementary materials. We kindly suggest to view
them. As can be observed in the third sample of RE10k-
results.mp4, previous methods either provide blurred results
for the highly reflective regions (such as Single-view MPI
and MINE) or completely warps the reflective surface (such
as SceneRF) instead of modeling VDEs from a single im-
age. It is worth noting that the warping in methods such as
SceneRF is due to the method modeling the reflections to
be at the symmetrical “mirror” depth, which causes reflec-
tions to be considered as located farther than the reflective
surface. In contrast, our NVSVDE-Net infuses VDEs into
the input images (last column of RE10k-results.mp4) and
then synthesizes novel views based on our relaxed volumet-
ric rendering approximation.

As shown in Fig. 14 and Video MC-results.mp4, our
NVSVDE-Net generates the highest quality of novel views,
even for complex camera motions such as those in the sec-
ond and third rows.

11.1. Additional Comparisons Against Trilinear
Density Interpolation

Instead of proposing a novel relaxed volumetric rendering
as in our NVSVDE-Net, the previous work of [48] proposed
to perform a trilinear sampling of density in a predicted den-
sity volume for novel view synthesis. In contrast, in our re-
laxed VR, FD and FV perform a more complex non-linear
mapping from source to target densities (instead of trilinear
sampling), allowing for a higher level of details in the novel



Outputs Layer descriptions Inputs Channels Feature sizes
Image Encoder
I Input image - 3 H×W
Conv1 3×3Conv(s2), ELU, ResBlock I 32 H/2×W/2
Conv2 3×3Conv(s2), ELU, ResBlock Conv1 64 H/4×W/4
Conv3 3×3Conv(s2), ELU, ResBlock Conv2 128 H/8×W/8
Conv4 3×3Conv(s2), ELU, ResBlock Conv3 128 H/16×W/16
Joint Encoder
I1, I

R
2 Concatenated rotation aligned pair - 6 H×W

Conv1 3×3Conv(s2), ELU, ResBlock I 32 H/2×W/2
Conv2 3×3Conv(s2), ELU, ResBlock Conv1 64 H/4×W/4
Conv3 3×3Conv(s2), ELU, ResBlock Conv2 128 H/8×W/8
Conv4joint 3×3Conv(s2), ELU, ResBlock Conv3 128 H/16×W/16
Pose Estimator
Conv5 3×3Conv(s2), ELU, ResBlock Conv41, Conv42 128 H/32×W/32
Conv6 3×3Conv(s2), ELU, ResBlock Conv5 256 H/64×W/64
Conv7 1×1Conv, ELU Conv6 256 H/64×W/64
R0, t0 1×1Conv, ELU GAP(Conv7) 6 1
∆ Pose Estimator
Conv5 3×3Conv(s2), ELU, ResBlock Conv4joint, Conv41, Conv42 128 H/32×W/32
Conv6 3×3Conv(s2), ELU, ResBlock Conv5 256 H/64×W/64
Conv7 1×1Conv, ELU Conv6 256 H/64×W/64
∆R,∆t 1×1Conv, ELU GAP(Conv7), R0, t0 6 1
I1 Input image - 3 H×W
I2 Input image (target view in NVS) - 3 H×W
Conv41 Image Encoder I1 128 H/16×W/16
Conv42 Image Encoder I2 128 H/16×W/16
R0, t0 Pose Estimator Conv41, Conv42 6 1
IR2 IR2 = I(g(R0)) I2, R0, 3 H×W
Conv4joint Joint Encoder I1, IR2 128 H/16×W/16
∆R,∆t ∆ Pose Estimator Conv4joint, Conv41, Conv42, R0, t0 6 1
R, t R = R0 +∆R, t = t0 +∆t R0,∆R, t0,∆t 6 1

Table 3. Detailed network architecture of our improved PoseNet. s2: Stride of 2. GAP: Global Average Pooling. ResBlock(x):
ELU(3×3Conv(ELU(3×3Conv)) + x). ELU: Exponential Linear Unit [5].

Figure 12. Relaxed-VR VS σ-interpolation-VR.

views and geometries as evidenced by Fig. 12. Fig. 12
depicts results at large viewpoint changes (40 frames apart,
approximately 2.5× the training viewpoint changes in the
training set), showing that our approach can better handle
density discontinuities due to large camera motion thanks

to FD and FV .

Our relaxed volumetric rendering approach is not only
more accurate, as shown in Table 4, but also computa-
tionally less expensive than trilinear sampling, which re-
quires sampling N source densities not only in x, y (like



Methods VDE MAE↓ PSNR↑ PSNRlf↑ SSIM↑ LPIPS↓
Trilinear σ (I ′′c ) Yes 0.0343 23.9083 29.7102 0.8267 0.2560
Relaxed VR (I ′′c ) Yes 0.0325 24.1020 29.9808 0.8343 0.2365

Table 4. Relaxed-VR VS σ-interpolation-VR.

Methods VDE MAE↓ PSNR↑ PSNRlf↑ SSIM↑ LPIPS↓
RealEstate10k (RE10k) Dataset [50]

PixelNerf [46] No 0.0417 22.8455 28.0945 0.7818 0.3256
BehindScenes [42] No 0.0466 22.9949 28.5941 0.8068 0.2762
MINE [26] No 0.0415 23.1657 27.8785 0.8041 0.2976
Single-view MPI [40] No 0.0374 23.6260 28.9447 0.8112 0.2925
SceneRF [2] No 0.0373 23.6087 28.9636 0.8130 0.2709
NVSVDE-Net (Ours) Yes 0.0319 24.3131 30.2529 0.8397 0.2325

MannequinChallenge (MC) Dataset [27]
PixelNerf [46] No 0.0511 21.3047 25.2781 0.7580 0.3455
BHindScenes [42] No 0.0463 21.4307 25.9280 0.7831 0.3101
SceneRF [2] No 0.0467 21.5992 25.8119 0.7796 0.3080
MINE [26] No 0.0487 21.6922 25.6230 0.7803 0.3306
Single-view MPI [40] No 0.0460 22.0378 26.2500 0.7873 0.3251
NVSVDE-Net (Ours) Yes 0.0405 22.4274 27.0263 0.8130 0.2733

Table 5. Single view-based NVS results. ↓/↑ denotes the
lower/higher, the better.

ours) but also in z. Our sampling operation has a memory
complexity of H×W×N , while trilinear sampling requires
H×W×N2, at least on the vanilla PyTorch.

11.2. Additional Qualitative Results on Ablation
Studies

Fig. 15 shows results for our NVSVDE-Net with differ-
ent network encoder backbones for FW . Interestingly, even
though our NVSVDE-Net (Swin-t) does not yield the high-
est PSNR in Table 2, it presents the most discriminative
VDE activation maps and the most detailed depth maps,
suggesting further improvements could be achieved by fine-
tuning the network architecture design. In contrast, the
NVSVDE-Net (R18), which incorporates a weaker encoder
backbone, struggles to predict VDE activation maps focus-
ing on the reflective scene regions.

12. Additional Visualizations of Intermediate
Network Outputs

Fig. 17 depicts the different intermediate network outputs
in our NVSVDE-Net. We show the infused VDEs and VDE
activation map in Iv+1 and V̂ respectively for a positive Z-
axis camera translation in the first row. In the second row,
Fig. 17 shows a comparison between our coarse synthetic
view I ′′+1 and the final rendered view I ′+1. Note that the
fine-grained ray sampling in I ′+1 fixes the double edge arti-
facts in I ′′+1.

The third row of Fig. 17 depicts the estimated geometry
(inverse depth) of the input view D̂, the mean sample dis-
tance t for the coarse synthetic view (a constant due to uni-

form sampling), the mean estimated sample distance t∗, and
the novel view geometry D̂+1. t∗ resembles the scene dis-
parity, which shows that ray samples are being taken around
the highest-density regions in the scene. The novel view
geometry D̂+1 can be estimated from the fine-grained ray
sampling distances and weights by

D̂c(p) = t∗(p) · w∗(w). (19)

In Fig. 17, +1 sub-index represents a view 8 frames
apart from the input image I .

We also show the effects of the so-called re-calibration
blocks FD and FV in our NVSVDE-Net. While the changes
in V̂ by FV can be better visualized in the attached Extreme-
NVS.mp4 video, the changes in DL are depicted in Fig. 16.
Fig. 16. shows the corresponding channels of DL for ren-
dering two different novel views, one with negative Z-axis
motion (left column) and the other with positive Z-axis mo-
tion (right column). From top to bottom, DL channels rep-
resent the weights for close and far-away ray points. As can
be noted, FD changes the values in DL to account for the
novel camera view. For instance, the chair in row 3 of Fig.
16 is assigned less weight for the left column, as it will be
further away in the novel view. Similarly, the chair is as-
signed more weight in row 3 for the right column, where
the chair will be closer to the positive Z-axis motion novel
view.

13. Rendering Views Beyond the Training Set
We trained our NVSVDE-Net to render views that are at
most 16 frames apart from the single-image input. In
this experiment, we render views equivalent to 40 frames
apart from the input view and show our results in the at-
tached Extreme-NVS.mp4 video. We cordially invite the
reader to observe the video, also available at the following
anonymous repository link: https://shorturl.at/
ABIJ3. Despite the inherent challenges associated with
extreme Novel View Synthesis (NVS), our method consis-
tently produces realistic views, albeit with certain observ-
able artifacts, as anticipated in any single-view NVS frame-
work.

The Extreme-NVS.mp4 video illustrates two primary fail-
ure scenarios. Firstly, when the camera motion exceeds a
certain threshold, our relaxed volumetric rendering encoun-
ters challenges in modeling large dis-occluded regions, a
known issue prevalent in prior methods relying on projec-
tions for rendering [2, 26, 40, 42, 46]. Generative models
have effectively addressed this concern but very often show
stochastic artifacts. Secondly, under substantial camera mo-
tions, our negative disparity-based view-dependent effects
(VDEs) struggle to model reflections accurately, leaking in-
correct colors into the scene. Addressing this challenge may
involve incorporating extreme NVS samples during training
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Figure 13. Additional Results on the RE10k [50] dataset. Previous methods struggle to render sharp structures for very close-by objects
and reflective regions. Our NVSVDE-Net with explicitly modeled view-dependent effects (VDE) and fine-grained relaxed volumetric
rendering yields more detailed synthetic views in all image regions.

and refining the regularization applied to the intermediate
output Ivc of the VDE-infused input image.

14. Limitations and Failure Cases
The architecture of our NVSVDE-Net, as defined in Eq.
5, imposes limitations on rendering high-frequency view-
dependent appearances. This, however, proves to be ade-
quate for rendering most glossy reflections in the context of
realistic NVS. Future avenues of research will explore the

modeling of both low- and high-frequency View-Dependent
Embeddings from a single image to mitigate this inherent
limitation.

It is also important to note that for the synthesis of view-
dependent effects Section 3.2, we exploit two simple yet ef-
fective priors for simple glossy/diffuse specular reflections,
which are plausible to estimate/render for single image in-
puts: (i) VDEs follow camera motion w.r.t. their reflec-
tive surfaces, (ii) VDE ‘motion’ cannot be larger than the



Figure 14. Additional Results on the MC [27] dataset.

rigid flow of the reflective surface itself. These assumptions
can fail with complex reflections (e.g., on very concave or

convex reflective surfaces). However, (i) and (ii) hold for
the simpler glossy reflections/highlights we aim to model,



Figure 15. Qualitative comparison among different network backbones for our NVSVDE-Net. The Swin-t [30] backbone yields more
discriminative VDE activation maps V̂ that better focus on the most reflective surfaces in the input image and relatively more detailed input
view geometries D̂.



Figure 16. Visualization of the effects of the adjustment MLP
block FD . Differences in channel activations of DL show the re-
calibration carried by FD for rendering novel view geometry at the
target camera views.

which are plausible to estimate/render from single image
inputs.

Another limitation of our approach is apparent when
dealing with extreme NVS scenarios, where novel views
with baselines significantly surpassing those encountered
during training are required. As demonstrated in Sec-
tion 13, our network encounters challenges in generating
artifact-free novel views when tasked with rendering views
40 frames apart from the input view, a significant departure
from the training set’s 16-frame disparity. The impediments

arise from the sheer size of occlusions, rendering them im-
practical to inpaint through projected colors, and the limited
context available to the sampler MLP head for predicting
sampling distances from the few valid projected DL and
Ivc values. Future research directions include incorporating
generative model properties into our NVSVDE-Net for re-
alistic wide-baseline occlusion inpainting.



Figure 17. Intermediate outputs of our NVSVDE-Net
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