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Figure 6. Bidirectional t-patch illustration. t-patches formed
from start to finish are presented in light blue and the reverse-t-
patches in pink. Note that the nearest neighbour in one direction is
not necessarily the nearest neighbour in reverse (time step t = 4).

A. Bidirectional t-patches
In Section 3 we presented the t-patches, their construc-
tion and the t-patch collapse problem. To mitigate the col-
lapse issue, we proposed a bidirectional t-patch formula-
tion, given in Eq.(2). In Figure 6 we present an illustration
of this process. The illustration depicts t-patches formed
from start to finish in blue
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q and in reverse in pink
←−
Ψ t

p.
Note that the nearest neighbour in one direction is not nec-
essarily the nearest neighbour in reverse, as can be seen in
time step t = 4. The bidirectional t-patches are essential
for long sequences in order to keep the coverage ratio and
prevent t-patch collapse.

B. Pipeline architecture details
The t-Patch network computes a high-dimensional repre-
sentation for each t-Patch. The architecture is composed of
several MLP layers operating on the non-temporal dimen-
sions (sharing weights across points) followed by a convo-
lutional layer operating on both the temporal and feature di-
mensions. The network weights are shared across t-patches.

For the first t-Patch module, 512 t-Patches are extracted
and fed into 3 MLPs with dimensions of (64, 64, 128)
followed by a 2D temporal convolution with a kernel
of (8, 128), i.e. operating over all feature channels and
weighted averaging 8 consecutive frames. For the second

module, 128 points (t-patch centers from the previous ex-
tractor) are sampled, the MLP is size is (128, 128, 256) and
the temporal kernel is 4. For the third module, no down-
sampling is performed, MLPs sizes are (256, 512, 1024).
All layers use ReLU activation and batch norm. The
final classifier uses 3 fully connected layers of sizes
(512, 256,#classes) with a drop out after the first and sec-
ond layers with a drop probability of 0.4. We apply tempo-
ral smoothing as a convolutional kernel over the temporal
domain before the last classifier layer with a kernel size of
T (all frames).

C. DFAUST Dataset extension
We extend the DFAUST dataset for the task of action recog-
nition. The DFAUST dataset [3] provides high-resolution
4D scans of human subjects in motion. It includes over
100 dynamic actions of 10 subjects (6:4 male-to-female ra-
tio) with varying body shapes represented as registrations
of aligned meshes. This dataset was not specifically de-
signed for action understanding, however, it provides point
cloud sequences with action labels per sequence. We ex-
tended it to our task by subdividing the dataset into clips of
64 frames of train and test human subjects. The trainingset
is composed of three male and three female subjects and in-
cludes a total of 76 sequences, 395 clips, and ∼25K point
cloud frames. The testset is composed of two male and two
female subjects and includes a total of 53 sequences, 313
clips, and ∼20K frames. This split was chosen in order to
guarantee no subject will appear in both training and test
splits as well as to make sure that all actions appear both
in the train and test splits. Note that not all actions are per-
formed by all subjects.

The action instance occurrences and full action list are
depicted in Figure 7. It shows that there are two dominant
classes (hips and knees). Therefore, to mitigate this imbal-
ance’s effect on training we use a weighted sampler that
uses a sampling probability that is inversely proportional to
a class’s occurrence in the training set.

D. IKEA ASM preprocessing
The IKEA ASM is a large scale dataset and each frame may
contain a very large number of points (hundreds of thou-
sands). Most of the points, however, lie on static back-
ground regions. In order to keep the training time reason-
able, we downsampled each frame using farthest point sam-
pling (FPS) to have a fixed number of 4096 points. We then
saved the data into clips for training. This reduced the train-
ing time for all methods significantly since the data loading



Figure 7. Our extension of the DFAUST dataset for action recog-
nition. Number of frames per action in the training (blue) and test
(orange) sets.

was a bottleneck.

E. Additional Experiments
Results on NTU RGB+D dataset. We conduct thorough
experiments to evaluate the performance of our proposed
approach compared to existing state-of-the-art methods on
the NTU RGB+D 60 dataset [28]. Since the dataset is
essentially saturated and previous methods show correla-
tion between the different training splits (subject, view, and
setup) we explore the performance as a function of the size
of available data. Since the full NTU60 includes 57.6K
videos and ∼ 1.1M clips we evaluate the performance
in terms of small fractions of the original data, specifi-
cally (2.5%, 5%, 7.5%, 10%) that amount to (∼ 25.5K,∼
54.3K,∼ 81.4,∼ 110.5K) clips respectively. The re-
sults are reported in Figure 8. The results show that while
some methods thrive when a lot of data is available, the
proposed method demonstrates superiority even when the
dataset scale is limited. For completeness, the performance
of all methods when all data is available are comparable and
given here: 90.2, 91.0, 89.3 for P4Transformer [8], PST-
Transformer [9] and the proposed approach respectively.

In this experiment we use the same training and test pro-
tocol as specified by P4Transformer [8] and retrain the mod-
els using the parameters reported in the papers. Since the
proposed approach and architecture were designed for per-
frame prediction we add a 3 layer GRU at the end, to aggre-
gate the temporal domain into a single vector representation
per clip. To fairly compare the quality of the representation
we also replace our classifier with the same classifier ar-
chitecture as in P4Transformer and PSTTransformer. This
helps avoid changes in performance that are related to the
classifier and focus the evaluation on the core representa-

Figure 8. Video Accuracy as a function of the data fraction
on the NTU 60 dataset. The results show that the proposed
approach achieves better performance than PSTTransformer [8],
P4Transformer [9] when the dataset scale is limited.

Figure 9. NTU60 clip class distribution. It shows an imbalance
between different classes.

tion ability. To generate the data fractions, we uniformly
sample a fraction of the videos in both train and test sets.
This way, the distribution of class occurrences is preserved.
Note that while the number of videos in each class is equal
in both trainingset and testset, the lengths are different and
therefore the number of generated clips is different. This
causes a significant class imbalance, as shown in Figure 9.
Absence of dynamic method’s baselines on DFAUST and
IKEA ASM. In Section 4 we report the performance of
various baseline methods on existing datasets for 3D ac-
tion recognition. For DFAUST and IKEA ASM we re-
port static methods PointNet [23], PointNet++ [24], and



Figure 10. Confusion matrices for the proposed approach with
(left) and without (right) bidirectional t-patches, evaluated on the
IKEA ASM dataset.

Set Transformer [18] by applying them on each point cloud
frame individually. Additionally, we report temporal meth-
ods like PSTNet [10] and also implemented a temporal
smoothing version of each static method (PoinNet+TS,
Pointnet+++TS, and Set Transformer+TS respectively) by
learning the weights of a convolutional layer over the tem-
poral dimension. Some dynamic methods performance do
not appear in the tables as those were not reported in the
original papers. Since a code is publicly available for
some, we corresponded with the authors of PSTNet [10],
P4Transformer [8] and PST-Transformer [9] in order to get
recommendations for testing these methods on our datasets,
however, results were very poor for [8, 9] and therefore not
reported to avoid unfair judgment on these methods.
IKEA ASM confusion matrices. In Table 2 of the main
paper we presented quantitative results for action recogni-
tion on the IKEA ASM dataset [2].Here, in Figure 10, we
present the confusion matrices for the proposed approach
with and without bidirectional t-patches. Our analysis re-
veals varied impact on different action classes when Bi-
directional t-patches (BD) are applied. Notably, the per-
formance drops for classes like align leg screw and align
side panel, while increasing for spin leg and slide bottom
drawer. This variability stems from the data-dependence of
BD, addressing temporal collapse, which can have a posi-
tive and negative effects by reintroducing informative and
uninformative patches.
Occlusion ablation study. We conducted additional exper-
iments to evaluate the effectiveness of the bidirectional t-
patches in the context of occlusions. The results, reported
here in Table 11 and visualized in Figure 12, show that the
proposed approach provides a boost in performance which
significantly benefits from the bidirectional sampling strat-
egy. In this experiment, we simulated occlusions on the
DFAUST dataset by randomly selecting a point from a ran-
dom frame and removing all points within a 20% radius for
16 consecutive frames (64 frames per clip).

Frame acc.
Method top 1 top 3 mAP
PointNet++ + TS 66.71 86.80 0.7985
Ours 76.75 95.54 0.8770
Ours + BD 84.81 96.66 0.8683
Ours+BD no occlusion 87.26 99.26 0.8616

Figure 11. Occlusion ablation on DFAUST. Exploring effects of
occlusions with and without bidirectional t-patches. For reference
we include our “no occlusion” result from the main paper.

Figure 12. Occlusion ablation. Visualizing the point clouds used
in the occlusion ablation experiment on the DFAUST dataset.

Additional details on accuracy and mAP inconsistency.
Our models are trained using the cross entropy loss, which
encourages high recall (i.e., Top 1 accuracy). The mAP
metric roughly summarizes the trade-off between precision
and recall and is important for cases where a clip contains
multiple action labels. The reason for the small inconsis-
tency between Top 1 and mAP is class imbalance. In the
IKEA ASM dataset, there is a significant imbalance with
many occurrences for classes such as “spin leg” (which ap-
pears four times in each of the three furniture types). Meth-
ods that perform well on dominant classes will be favored
by the Top 1 metric. The DFAUST dataset is also affected
by class imbalance, albeit less so than IKEA ASM. Impor-
tantly, when ranking by either Top 1 or mAP, our t-patch
based method outperforms previous approaches.
Additional IKEA ASM Visualization. In Figure 5 we pro-
vided a visualization of the t-patches with grayscale point
clouds. Here, in Figure 13 we provide an extended version
of that figure that also includes colored point clouds.
Parameter ablation for t-patch extraction. In Sec-
tion 4.4 we performed an ablation study and analyzed the
effect of tuning the number of neighbors to extract (k) and
the number of points to sub sample (n) on accuracy perfor-
mance. The results were reported in Table 5. Here we com-
plement this ablation by also reporting the time and number
of network parameters for each parameter selection in Ta-
ble 7. Timing experiment was done on an NVIDIA A5000
GPU (timing experiment for Figure 6 was done on an A100,
hence the reported time differences).



Figure 13. IKEA ASM example with t-patches. The flip table action for the TV Bench assembly is visualization including the RGB
image (top), a grayscale 3D point cloud with colored t-patches (middle), and a RGB colored 3D point cloud with colored t-patches (bottom).
t-patches are highlighted in color. The blue is on the moving TV Bench assembly, maroon is on the moving persons arm, teal is on the
static table surface, and green is on the colorful static carpet.

Frame acc.
n k top 1 top 3 mAP Time [ms]

256 16 76.96 97.54 0.8430 385
512 16 80.03 97.57 0.8975 415
1024 16 77.30 97.88 0.8507 448
512 8 76.87 96.21 0.7557 324
512 32 77.91 96.60 0.7453 608

Table 7. t-patch parameters ablation. Results for the number
of neighboring points in a patch k and number of downsampled
points n show that the method is robust.


