
Supplementary Material:
Multi-modal learning for geospatial vegetation forecasting

Vitus Benson1,2,3,* Claire Robin1,2 Christian Requena-Mesa1,2 Lazaro Alonso1
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A. Model details

A.1. Cloud masking

Baselines (Table 1) The baselines reported in table 1 are
taken from CloudSEN12 [2]. Sen2Cor [14] is the process-
ing software from ESA used to produce the Scene Classi-
fication Layer (SCL) mask, which was also introduced in
EarthNet2021 [18]. FMask [17] is a processing software
originally designed for NASA Landsat imagery, but now
repurposed to also work with Sentinel 2 imagery. It re-
quires L1C top-of-atmosphere reflectance from all bands to
be produced (EarthNet2021 only containes L2A bottom-of-
atmosphere reflectance from four bands). KappaMask [6] is
a cloud mask based on deep learning, in table 1 we reported
scores from the L2A version, which uses all 13 L2A bands
as input.

UNet Mobilenetv2 (Table 1) Our UNet with Mo-
bilenetv2 encoder [20] was trained in two variants, one with
RGB and near-infrared bands of L2A imagery (i.e. works
with EarthNet2021) and one with all 13 bands of L2A im-
agery. We adopted the exact same implementation that was
benchmarked in the CloudSEN12 paper [2], with the only
difference being that in the paper, L1C imagery was used
(which is often not useful in practical use-cases). In detail,
this means we trained the UNet with Mobilenetv2 encoder
using the Segmentation Models PyTorch Python library1.
We used a batch size of 32, random horizontal and vertical
flipping, random 90 degree rotations, random mirroring, un-
weighted cross entropy loss, early stopping with a patience
of 10 epochs, AdamW optimizer, learning rate of 1e−3, and
a learning rate schedule reducing the learning rate by a fac-
tor of 10 if validation loss did not decrease for 4 epochs.

1https://segmentation-models-pytorch.readthedoc
s.io/en/latest/

A.2. Vegetation modeling

Implementation details We build all of our ConvNets
with a PatchMerge-style architecture similar to the one in
Earthformer [7]. For SimVP and PredRNN, such encoders
and decoders are more powerful, but also slightly more
parameter-intensive, than the variants used in the original
papers. We use GroupNorm [27] and LeakyReLU activa-
tion [28] for the ConvNets, and and ConvLSTMs. For the
Contextformer, we use LayerNorm [3] and GELU activa-
tion [8]. For ConvNets, skip connections preserve high-
fidelity content between encoders and decoders. Our frame-
work is implemented in PyTorch, and models are trained on
Nvidia A40 and A100 GPUs. We use the AdamW [13] opti-
mizer and tune the learning rate and a few hyperparameters
per model. More implementation details can be found in the
supplementary materials.

Contextformer (Table 2,3,4,5 Figure 3,4,5) Our Con-
textformer is a combination of a spatial vision encoder:
Pyramid Vision Transformer (PVT) v2 B0 [23, 24] with
pre-trained ImageNet1k weights from the PyTorch Image
Models library2 and a temporal transformer encoder. We
use a patch size of 4 × 4 px. We use an embedding size
of 256 and the temporal transformer has three self-attention
layers with 8 heads, each followed by an MLP with 1024
hidden channels. We use LayerNorm [3] for normalization
and GELU [8] as non-linear activation function. The model
is trained with masked token modeling, randomly (p = 0.5)
flipping between inference mask (future token masked) and
random dropout mask (70% of image patches masked, ex-
cept for the first 3 time steps). We train for 100 epochs with
a batch size of 32, a learning rate of 4e−5 and with AdamW
optimizer on 2 NVIDIA A100 GPUs. We train three models
from the random seeds 42, 97 and 27.

2https://github.com/rwightman/pytorch-image-
models
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Local timeseries models (Table 2) We train the local
timeseries models (table 2) at each pixel. For a given pixel
we extract the full timeseries of NDVI and weather vari-
ables at 5-daily resolution. All variables are linearly gap-
filled and weather is aggregated with min, mean, max, and
std to 5-daily. The whole timeseries before each target pe-
riod is used to train a timeseries model, for the target pe-
riod the model only receives weather. The Kalman Filter
runs with default parameters from darts [9]. The LightGBM
model gets lagged variables from the last 10 time steps and
predicts a full 20 time step chunk at once. For Prophet we
again use default parameters.

EarthNet models (Table 2) For running the leading mod-
els from EarthNet2021 we utilize the code from the re-
spective github repositories: ConvLSTM [5]3, SGED-
ConvLSTM [11]4 and Earthformer [7] 5. We derive the
NDVI from the predicted satellite bands red and near-
infrared:

NDV I =
NIR−Red

NIR+Red+ 1e−8
(1)

ConvLSTM (Table 2,3, Figure 4,5) Our ConvLSTM
contains four ConvLSTM-cells [21] in total, two for pro-
cessing context frames and two for processing target
frames. Each has convolution kernels with bias, hidden di-
mension of 64 and kernel size of 3. We train for 100 epochs
with a batch size of 32, a learning rate of 4e−5 and with
AdamW optimizer. We train three models from the random
seeds 42, 97 and 27.

PredRNN (Table 2,3, Figure 4) Our PredRNN contains
two ST-ConvLSTM-cells [25] Each has convolution ker-
nels with bias, hidden dimension of 64 and kernel size of
3 and residual connections. We use a PatchMerge encoder
decoder with GroupNorm (16 groups), convolutions with
kernel size of 3 and hidden dimension of 64, LeakyReLU
activation and downsampling rate of 4x. We train for 100
epochs with a batch size of 32, a learning rate of 3e−4 and
with AdamW optimizer. We use a spatio-temporal memory
decoupling loss term with weight 0.1 and reverse exponen-
tial scheduling of true vs. predicted images (as in the Pre-
dRNN journal version [26]). We train three models from
the random seeds 42, 97 and 27.

SimVP (Table 2,3, Figure 4) Our SimVP has a Patch-
Merge encoder decoder with GroupNorm (16 groups), con-

3https://github.com/dcodrut/weather2land
4https://github.com/rudolfwilliam/satellite_ima

ge_forecasting
5https://github.com/amazon-science/earth-foreca

sting-transformer/tree/main/scripts/cuboid_trans
former/earthnet_w_meso
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Figure 5. Model performance (RMSE) when using different ways
of weather conditioning over varying prediction horizons.

volutions with kernel size of 3 and hidden dimension of 64,
LeakyReLU activation and downsampling rate of 4x. The
encoder processes all 10 context time steps at once (stacked
along the channel dimension). The decoder processes 1 tar-
get time step at a time. The gated spatio-temporal attention
processor [22] translates between both in the latent space,
we use two layers and 64 hidden channels. We train for 100
epochs with a batch size of 64, a learning rate of 6e−4 and
with AdamW optimizer. We train three models from the
random seeds 42, 97 and 27.

Earthformer (Table 2) Our Earthformer is a transformer
combined with an initial PatchMerge encoder (and a final
decoder) to reduce the dimensionality. The encoder and de-
coder use LeakyReLU activation, hidden size of 64 and 256
and downsample 2x. In between, the transformer processor
has a UNet-type architecture, with cross-attention to merge
context frame information with target frame embeddings.
GeLU activation and LayerNorm, axial self-attention, 0.1
dropout and 4 attention heads are used. Weather informa-
tion is regridded to match the spatial resolution of satellite
imagery and used as input during context and target period.
We train for 100 epochs with a batch size of 32, a maximum
learning rate of 1e−4, linear learning rate warm up, cosine
learning rate shedule and with AdamW optimizer.

1x1 LSTM (Table 4) Our 1x1 LSTM is implemented as a
ConvLSTM with kernel size of 1. We train for 100 epochs
with a batch size of 32, a learning rate of 4e−5 and with
AdamW optimizer.

Next-frame UNet (Table 4) Our next-frame UNet has a
depth of 5, latent weather conditioning with FiLM, a hid-
den size 128, kernel size 3, LeakyReLU activation, Group-
Norm (16 groups), PatchMerge downsampling and nearest
upsampling. We train for 100 epochs with a batch size of
64, a learning rate of 6e−4 and with AdamW optimizer.

Next-cuboid UNet (Table 4) Our next-cuboid UNet has
a depth of 5, latent weather conditioning with FiLM, a hid-
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OOD-s OOD-st
Model R2 ↑ RMSE ↓ R2 ↑ RMSE ↓
Climatology 0.50 0.15 0.56 0.19
ConvLSTM 0.47 0.17 0.52 0.16
Earthformer 0.47 0.15 0.47 0.16
PredRNN 0.54 0.15 0.58 0.15
SimVP 0.50 0.15 0.54 0.15
Contextformer 0.54 0.15 0.58 0.14

Table 6. Same as table 5, but extended. Model skill at spatial
(OOD-s) and spatio-temporal (OOD-st) extrapolation.

den size 256, kernel size 3, LeakyReLU activation, Group-
Norm (16 groups), PatchMerge downsampling and nearest
upsampling. We train for 100 epochs with a batch size of
64, a learning rate of 6e−4 and with AdamW optimizer.

B. Weather ablations
B.1. Methods

Most of our baseline approaches have been originally pro-
posed to handle only past covariates. Here, we condition
forecasts on future weather. A-priori it is not known how to
best achieve this weather conditioning. For PredRNN and
SimVP, we compare three approaches, each fused at three
different locations. The approaches operate pixelwise, tak-
ing features xin ∈ Rd and conditioning input ci ∈ Rn for
weather variable i. The conditioning layers g(·, ·;ϕ) with
parameters ϕ then operate as

xout = g(xin, c;ϕ) ∈ Rd (2)

We parameterize g with neural networks.

CAT First concatenates xin and a flattened c along the
channel dimension, and then performs a linear projection to
obtain xout of same dimensionality as xin. In practice we
implement this with a 1x1 Conv layer.

FiLM Feature-wise linear modulation [16] generalizes
the concatenation layer before. It produces xout with lin-
ear modulation:

xout = xin + σ(γ(c;ϕγ)⊙N(f(xin;ϕf )) + β(c;ϕβ))
(3)

Here, f is a linear layer, γ and β are MLPs, N is a nor-
malization layer and σ is a pointwise non-linear activation
function.

xAttn Cross-attention is an operation commonly found in
the Transformers architecture. In recent works on image
generation with diffusion models it is used to condition the

generative process on a text embedding [19]. Inspired from
this, we propose a pixelwise conditioning layer based on
multi-head cross-attention. The input xin is treated as a sin-
gle token query Q. Each weather variable ci is treated as
individual tokens, from which we derive keys K and val-
ues V . The result is then just regular multi-head attention
MHA in a residual block:

xout = xin (4)
+ f(N(MHA(Q(xin;ϕQ),K(c;ϕK), V (c;ϕV )));ϕf )

(5)

Here, f is either a linear projection or a MLP and N is a
normalization layer.

Each of the three approaches we apply at three locations
throughout the network:

Early fusion Just fusing all data modalities before pass-
ing it to a model. This Early CAT has been previously used
for weather conditioning in satellite imagery forecasting

Latent fusion In the encode-process-decode framework,
encoders are meant to capture spatial, and not temporal, re-
lationships. Hence, latent fusion conditions the encoded
spatial inputs twice: right after leaving the encoder and be-
fore entering the decoder.

All (fusion everywhere) In addition, we compare against
conditioning at every stage of the encoders, processors and
decoders. All CAT has been applied to condition stochastic
video predictions on random latent codes [12].

B.2. Results

Fig. 5 summarizes the findings by looking at the RMSE
over the prediction horizon. For the first 50 days, most
models are better than the climatology, afterwards, most are
worse. If using early fusion, FiLM is the best condition-
ing method. For latent fusion and fusion everywhere (all),
xAttn is a consistent choice, but FiLM may sometimes be
better (and sometimes a lot worse). CAT in general should
be avoided, which is consistent with the theoretical obser-
vation, that CAT is a special case of FiLM.

For SimVP, the best weather guiding method is latent fu-
sion with FiLM. For PredRNN, the best method is early fu-
sion with FiLM. This is likely due to the difference in treat-
ment of the temporal axis. For SimVP, early fusion would
merge all time steps, hence, latent fusion is a better choice.
For PredRNN on the other hand, early fusion handles only
a single timestep.
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Figure 6. Panel a) shows a map of R2 on OOD-t and OOD-st
test sets and panel b) shows probability densities of RMSE per
geomorphon. Both for Contextformer.

C. Contextformer Strengths and Limitations
continued

We show spatial extrapolation skills for more models in ta-
ble 6.

Reassured by spatial extrapolation capabilities, we
present a map of R2 for the Contextformer in fig. 6a.
Cropland regions on the Iberian peninsula and in north-
ern France, as well as forests in the Balkans are regions
with great applicability of the model. For the former two,
this may be explained by many training samples in those
regions, for the last, it cannot. Grasslands and forests in
Poland and highly heterogenous regions (mountains, near
cities, near coasts) are more challenging for the model.

Geomorphons capture local terrain features, derived
from first and second spatial derivatives of elevation.
Fig. 6b shows densities of RMSE of the ConvLSTM for
different geomorphons from the Geomorpho90m map [1].
Generally, the model performs well across all classes. Sum-
mits and Depressions, two rather extreme types, seem to
be slightly easier to predict. Homogeneous terrain (red:
flat, shoulder, footslope) has a larger tail towards high error.
This may be as those regions are typically where there is a
lot of anthropogenic activity, possibly leading to dynamics
less covered by the predictors (harvest, clear-cut, etc.).

The OOD-t test set includes minicubes from four 3-
month periods over two years. Fig. 7 shows Con-
textformer’s model skill. Yearly variations are significant.
Growing season prediction was better in 2022 until Septem-
ber, then it switched, and 2021 performed better. First half
of the season is usually better predicted than the second half,
likely due to anthropogenic influences (harvest, mowing,
cutting, and forest fires). These events are challenging to
predict from weather covariates and may be interpreted as
random noise.

D. Performance per landcover type

Fig. 8 shows the model performance per landcover type.
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on OOD-t and OOD-st test sets of PredRNN.

E. Robustness of Outperformance Score
The choice of thresholds in the outperformance score (the
percentage of samples where a model outperforms the cli-
matology baseline by at least the threshold on at least 3 out
of 4 metrics) is a heuristic. To assess its robustness, we re-
evaluated five of our models over a wide range of possible
threshold values. Fig. 9 shows a consistency of the rank-
ing, in particular our Contextformer outperforms all other
models in all settings.

F. Inference speed
Computing inference speed is highly platform and batch
size dependent. To make it somewhat fair, we compare
models by running 1024 samples on an A40 GPU (48GB),
with the largest batch size (bs) fitting in memory, we per-
form 10 repetitions and report the mean and std. dev.: Con-
textformer 29.3s±0.4 (bs 72), SimVP 6.7s±0.8 (bs 96), Pre-
dRNN 16.2s±0.2 (bs 512), ConvLSTM 37.1s±1.8 (bs 256).
For comparison predicting a single sample with one of the
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local time series models takes >1h on a single CPU.

G. Downstream task: carbon monitoring
Carbon monitoring is of great importance for climate
change mitigation, especially in relation to nature-based so-
lutions. The gross primary productivity (GPP) represents
the amount of carbon that is taken up by plants through
photosynthesis and subsequently stored. It is not directly
observable. At a few hundred research stations around the
world with eddy covariance measurement technology, it can
be indirectly measured. For carbon monitoring, it would be
beneficial to measure this quantity everywhere on the globe.
It has been shown [15] that Sentinel 2 NDVI is correlated to
GPP measured with eddy covariance. We build on this cor-
relation to show how our models could potentially be lever-
aged to give near real-time estimates of GPP and to study
weather scenarios.

Fig. 10 compares modeled with observed GPP at the
Fluxnet site Grillenburg (identifier DE-Gri) in eastern Ger-
many distributed by ICOS [10]. First, we fit a linear model
between observed NDVI and GPP for the years 2017-2019.
Here, interpolated grassland NDVI pixels (fig. 10b, inside
red boundaries) are used. Next, we perform an out-of-
sample analysis and find an R2 = 0.53 for 2020-01 to 2021-
04 (fig. 10a, blue line). Finally, we forecast GPP with our
PredRNN model from May to July 2021(fig. 10a, orange
line). The resulting forecast has decent quality at short pre-
diction horizons, but low skill after 75 days (fig. 10c). These
results show a way to leverage models from this paper for
near real-time carbon monitoring. However, for application
at scale, it is likely beneficial to use a more powerful GPP
model (e.g. random forest [15] or light-use efficiency [4]),
fitted across many Fluxnet sites.
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RMSE over prediction horizons.

5



References
[1] Giuseppe Amatulli, Daniel McInerney, Tushar Sethi, Peter

Strobl, and Sami Domisch. Geomorpho90m, empirical eval-
uation and accuracy assessment of global high-resolution ge-
omorphometric layers. Scientific Data, 7(1):162, 2020. 4

[2] Cesar Aybar, Luis Ysuhuaylas, Jhomira Loja, Karen Gon-
zales, Fernando Herrera, Lesly Bautista, Roy Yali, Angie
Flores, Lissette Diaz, Nicole Cuenca, Wendy Espinoza, Fer-
nando Prudencio, Valeria Llactayo, David Montero, Mar-
tin Sudmanns, Dirk Tiede, Gonzalo Mateo-Garcı́a, and Luis
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