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Supplementary Material

In this supplementary material, we present additional de-
tails of the dataset creation pipeline, implementation details,
and qualitative results. In Sec. 1, we provide additional de-
tails of our proposed dataset, Sec. 2 presents additional im-
plementation details of the CMT and other baselines. Sec. 3
illustrates the qualitative results of the anomaly localization
task. Sec. 4 provides additional information and qualitative
results of the view prediction experiment and Sec. 5 shows
experiments on unseen categories. Finally, Sec. 6 presents
additional details of the user study experiments.

1. Additional Details of BrokenChairs-180K

Deformation parameters. We normalize the vertices to
[−1, 1] before applying geometric deformation. For posi-
tional anomaly, we randomly translate the vertices of a ran-
dom part by an offset of δp. The translation offset for each
axis is randomly sampled from a uniform distribution of
range 0.04 ≤ |δp| ≤ 0.08. To create rotational Anoma-
lies, we apply a 3D rotational transformation to a random
part. The rotation matrix is formed using a random rotation
axis and an angle (rθ, radians) sampled from a uniform dis-
tribution of range 0.2 ≤ |rθ| ≤ 0.4. The center of rotation is
set to a fixed point at one of the connecting points between
the anomalous part and the main body of the chair object.
Quality control and verification. We aim to ensure that
the resulting anomaly shapes adhere to the principles of
physics. For instance, in case of positional and rotational
anomaly, if a part detaches from the chair’s main body dur-
ing the deformation process such that it stands itself, we
reject the generated anomaly and initiate the process again,
adjusting the parameters as necessary. Similarly, for miss-
ing anomaly types, if removing a specific part makes the
chair structurally impractical, we discard the sample and at-
tempt to remove a different part of the same chair instance.
For broken anomaly types, if a particular break removes
more than 90% or less than 10% of an object we discard
the sample and regenerate another break.

We also apply an IoU thresholding technique (see Fig. 1)
to filter out rendered samples in cases where the created
anomaly closely resembles its normal counterpart primar-
ily because of the camera viewpoint. To do this, we gen-
erate masks for the working part both before and after ap-
plying the deformation. Subsequently, we calculate the IoU
between these two masks, and if the IoU exceeds 0.8, we
discard the rendered image and try with a different camera
angle. If the same occurs four times in a row, we will dis-
card that particular anomaly shape.
Additional dataset statistics. Our dataset has 103 distinct

Figure 1. IoU-based thresholding to filter out rendered samples
where the created anomaly (red) closely resembles its normal
counterpart (yellow). We generate masks before and after defor-
mation, calculate their IoU, and if it’s over 0.8, we discard the
rendered sample.
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Figure 2. Distribution of anomaly types within our dataset, cate-
gorized by salient chair parts. Each row in the plot represents the
number of instances, various anomaly types are observed within
the part in the whole dataset.

Figure 3. (a) Distribution of anomaly sizes as indicated by their
bounding box areas. (b) The histogram plot illustrates the distribu-
tion of occlusion within our dataset. The x-axis of the plot denotes
the fraction of the anomalous part visible.

part categories involving some type of anomaly. The distri-
bution of these parts over different anomaly types is illus-
trated in Fig. 2. For the visualization, certain part categories
have been grouped and are shown in the Figure. Fig. 3(a)
shows statistics of anomaly sizes as indicated by their nor-
malized bounding box areas. An anomalous part can be
partially occluded or hidden by other parts of the object
when captured from a specific camera viewpoint. Fig. 3(b)
illustrates the degree of occlusion within our dataset. Ren-
dered instances where anomalies are entirely occluded are
excluded from our dataset.
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Figure 4. Bounding box regression results. We compare our pro-
posed CMT with ViT which does not use the 3D reference.

2. Additional Implementation Details
Architecture details of 3DPE. We use a Fourier encoding
function, denoted as γF , which maps R into a higher di-
mensional space R2l. Formally, the encoding is denoted as:

γF (x) = (sin(20πx), cos(20πx), ...,

sin(2l−1πx), cos(2l−1πx))
(1)

This function γF (·) is applied separately to each of the three
coordinate values in x. After including the original coordi-
nate values, we obtain a 6l + 3 dimensional vector. We set
l = 10 in our experiments. The output is further processed
through an MLP block of 2 linear projection layers, obtain-
ing a final d dimensional 3DPE.
Negative sampling in VLFA. The view-agnostic alignment
loss is calculated over a subset of 32 feature points. For
each feature point, the negatives are sampled both from non-
corresponding points in the reference view of the same ob-
ject and from other objects in the batch.
Training details of CMT. We train our model end-to-
end using the binary cross-entropy loss, denoted as Lbce,
along with the view-agnostic alignment loss, denoted as
Lva. Specifically, the Lva updates the parameters of φ, β.
On the other hand, the Lbce is used to update φ, γ, and ϕ.
Note that β is only updated based on the alignment loss.
This ensures that the view-agnostic space obtained through
β is not affected by the classification objective.
Training details of related works. While the works of
Grabner et al. [1] and Lin et al. [2] are originally based
on retrieval task, we adopt them for the conditional AD
problem. Both methods follow a metric learning training
scheme. In our formulation, a reference shape and a nor-
mal image form a positive pair, while an anomaly image
forms a negative pair. We train the model using the loss
functions described in the paper, aiming to increase the dis-
tance between the negative pair and subsequently decrease

Figure 5. Screenshot of the interface used in the user perceptual
study experiment. Each participant is given a 3D model and a 2D
query image of a chair and asked to check for any defects in the
query image by comparing it with the 3D model. Participants can
interactively explore the reference 3D model.
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Figure 6. Examples illustrating cases where humans underperform
(columns 1− 4) or outperform (column 5) compared to the CMT
are presented. The Human Error Rate (HER) represents the cu-
mulative error rate of human participants for each image. Ground
truths and predictions of the CMT are displayed beneath each im-
age. Ground truth bounding boxes are shown in orange.

the distance between the positive pair. During inference, we
calculate an L1 distance between the shape and query repre-
sentation. We set a threshold value of 0.8 for both methods.
If the distance is greater than the threshold we classify the
query as an anomaly otherwise a normal.

3. Qualitative Results of Anomaly Localization

Fig. 4 illustrates the qualitative results of bounding box re-
gression. The CMT performs better than a ViT-based model
that only uses query image to make predictions.



Figure 7. Query pose estimation using learned correspondence mapping. Failure case(s) are marked in red.
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Figure 8. Qualitative analysis of CMT under unseen categories:
(left) For each example, we show the ref. shape, query, and the
feat. map of the last layer of the transformer. The predicted bound-
ing box is highlighted in yellow box. (right) Correspondence vi-
sualization given a query patch (denoted in red square).

4. Additional Details of View Prediction

In the view prediction experiment, we utilize 20 regularly
sampled viewpoints, from which the model selects the clos-
est viewpoint for a given query image. While the view-
point predicted using this process will be coarse in nature,
it demonstrates our model’s ability to implicitly learn the
relationship between the query image and the closest view.
We compare our method with a ResNet model trained for
15 epochs. The ResNet model predicts the discretized pose
(through classification) given only the RGB normal images
as input. The training is done in a supervised setting using
softmax classification loss. In contrast, our model has ac-
cess to the multi-view images along with the normal RGB
image, however, the training is conducted in an unsuper-
vised way (i.e.,, the ground truth camera pose label was not
used during training); our model learns the pose implicitly
by matching the multi-view images.

Fig. 7 illustrates the qualitative results of our method
showing the chair image and its matched multi-view image
with the closest viewpoint.

5. Qualitative Results on Unseen Categories

We tested our model on three very different object cate-
gories, basket, jug, and table from the 3DCoMPaT++ [3]
dataset where we followed the same protocol to generate
anomalies, and render the multi-view and query images. As
depicted in Fig. 8, our method successfully generalizes to
these categories in spite of being trained on chairs.

6. Additional Details of User Perceptual Study
Fig. 5 shows the interface used for the user perceptual study
experiment. In this study, each participant is shown a refer-
ence 3D model and a query image. Then, the participants
can compare the 3D model and the query side by side on
the same screen and without any time restriction to give the
answer. The 3D model can be rotated freely to facilitate
the comparison. Each participant is required to provide a
response to a total of 10 questions. Overall, we have col-
lected 1000 responses from 100 participants. The outcome
of the study demonstrates that our method performs better
than human participants (70.6% vs 74.8%) on the random
subset used for the study. Fig. 6 shows some examples
where humans perform worse and better than the method.
In the first four examples, humans perform worse than the
CMT. For example, in the first column, the Human Error
Rate (HER) is 80%, indicating that when the same image
was presented to multiple participants, they predicted it in-
correctly 80% of the time. However, for the last example,
the HER is 33%, signifying that a higher percentage of par-
ticipants correctly identified this image as an anomaly while
the CMT provides a wrong prediction.
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