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In this supplementary material, we provide more detailed
information about our Text Grouping Adapter (TGA) in
Section 1, including the cost function of Hungarian Match-
ing and the generation of the pixel embedding map. More-
over, we demonstrate more details about the experiment
setup in Section 2, including detailed datasets in Section 2.1
and metrics in Section 2.2, and detailed configuration of
training in Section 2.3. Lastly, additional experiments are
presented in Section 3, including comparison of different
fine-tuning strategies under longer fine-tuning times in Sec-
tion 3.1, comparison of different padding strategies in Sec-
tion 3.2, ablation studies of the pre-training in Section 3.3,
ablation studies of the hyperparameters of TGA in Sec-
tion 3.4, generalization of TGA at different annotation lev-
els in Section 3.5, PCA visualization of TGA’s output fea-
tures with and without GMP in Section 3.6, and more qual-
itative results in Section 3.7.

1. Detailed Settings of TGA

Cost function of Hungarian Matching. As mentioned in
Section 3.2 of our main paper, in Group Mask Prediction
(GMP), we utilize Hungarian Matching to match ground-
truth instances with predicted instances and assign group
masks into instances as prediction target. Here we provide
the details of the matching cost function. The pair-wise
matching cost mainly consider two parts, the loss of pre-
dicted class confidence and the loss of similarity between
predicted and ground-truth masks. To adapt with different
text detectors, we keep our cost function and weight coeffi-
cient consistent with the loss of original model if it involves
masks.

*Work done during the internship at Microsoft Research Asia.
‡Corresponding authors.

For example, KNet [25] with TGA uses a weighted
combination of focal loss for predicted class confidence,
dice loss and binary cross-entropy loss for masks, as the
pair-wise matching cost, with corresponding weights of
{2.0, 4.0, 1.0}. Besides using the above three losses with
corresponding weights of {4.0, 5.0, 5.0}, MaskDINO [10]
with TGA additionally takes Euclidean distance loss and In-
tersection over Union (IoU) loss for boxes, as the pair-wise
matching cost, with corresponding weights of {5.0, 2.0}.
DBNetpp [11] with TGA, following the setting of original
text detection loss, utilizes the dice loss and binary cross-
entropy loss for masks, as the pair-wise matching cost, with
corresponding weights of {1.0, 4.0}. In cases where the
original text detector does not include the mask loss, e.g.,
DeepSolo [23], we consider a weighted combination of fo-
cal loss for class scores, dice loss for text instance masks,
and binary cross-entropy loss for text instance masks as
the pair-wise matching cost, with corresponding weights of
{1.0, 2.0, 4.0}.

Details of pixel embedding map generation. In Text
Instance Feature Assembling (TIFA), to obtain pixel em-
bedding map, we transform multi-scale image features
{X2,X3,X4,X5} into {P2,P3,P4,P5} by applying a se-
ries of convolutional networks. Here, we explain more de-
tails of generating pixel embedding map.

P2 is obtained by applying a 3×3 stride-2 convolution to
X2, and P3 is obtained by applying a 3× 3 stride-1 convo-
lution to X3, after adding positional encoding to it. To pro-
cess X4 and X5, an amplification module is defined, which
comprises a 3×3 stride-1 convolution and a 2× upsampling.
P4 is computed by applying the amplification module once
to X4, and P5 is computed by applying the amplification
module twice to X5. For certain models, additional feature
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Datasets Annotation Level #Image

Word Line Paragraph Train Val Test

Synth150K [13] ✔ 150,000 0 0
MLT17 [16] ✔ 9,000 0 9,000

IC13 [8] ✔ 229 0 233
IC15 [9] ✔ 1,000 0 500

TextOCR [19] ✔ 21,778 3,124 3,232
CTW-1500 [24] ✔ 1,000 0 500

MSRA-TD500 [22] ✔ 300 0 200
IC19-LSVT [20] ✔ 30,000 0 20,000

HierText [15] ✔ ✔ ✔ 8,281 1,724 1,634

Table 1. Details of the datasets used in the experiments. Here, #Im-
age represents the number of images corresponding to the training,
validation and test sets.

X6 with a size of 1
64 of the original input size will be fused

with X5 directly through an amplification module. We sum
{Pl|i = 1, ..., n} together into a 1x1 convolution to get the
pixel embedding map:

P =
n∑

l=1

conv1×1(Pl), (1)

where n is the number of multi-scale features, and Pl ∈
RDl×Hl×Wl refers to the lth Dl-dimensional feature with
size (Hl,Wl), and P ∈ RD×H×W refers to the pixel em-
bedding map in dimension D with size (H,W ). In the ex-
periments presented in the main paper, to be consistent with
the multi-scale feature design of the original text detector,
the scales are slightly different, as detailed below.

For KNet and DBNetpp, {X2,X3,X4,X5} are both ex-
tracted from the FPN network following the backbone of
the text detector. For MaskDINO-R50, X2 is extracted
from the backbone of the text detector and {X3,X4,X5}
are extracted from the output of the subsequent encoder.
For MaskDINO-Swin-B, {X2,X3,X4,X5,X6} are both
extracted from the output of the subsequent encoder. For
DeepSolo, X2 is extracted from the backbone of the text
detector and {X3,X4,X5,X6} are extracted from the out-
put of the subsequent encoder.

2. More Details about the Experiment Setup
2.1. Detailed Datasets

Datasets for text detection. In the main paper, we se-
lect KNet, MaskDINO, DBNetpp, and DeepSolo as the
text detectors used in the experiments. Among them,
KNet and MaskDINO are pre-trained for line-level text
detection, while DBNetpp and DeepSolo focus on word-
level text detection. Here we provide more details of
these text detection datasets. As shown in Table 1, for
line-level datasets, we choose CTW-1500 [24], MSRA-
TD500 [22], and IC19-LSVT [20] datasets, while for word-
level datasets, we choose Synth150K [13], TotalText [6],
MLT17 [16], IC13 [8], IC15 [9], and TextOCR [19]

datasets.

Different representations of line and paragraph mask.
In particular, the HierText [15] Dataset provides a hierar-
chical annotation structure covering words, lines, and para-
graphs and their relationships. This means that line and
paragraph annotations can be either masks of themselves
or the collections of masks for the words composing them,
where the slight difference is that the former covers the
background space between words but the latter does not.
In the original paper [15] which proposes the HierText
Dataset, a paragraph mask is represented and evaluated by
the collection of word masks composing the paragraph. We
follow the original evaluation setting in all our experiments
except the Table 2 in our main paper. Table 2 takes the
whole line and paragraph masks instead of word mask col-
lections as the ground truths to be consistent with other line-
level dataset evaluations like CTW-1500, MSRA-TD500
and IC19-LSVT. This explains the slightly different value
from the same model between Table 1 and Table 2 in our
main paper.

2.2. Detailed Metrics

Text detection metrics. In the comparison of fine-tuning
strategies presented in the main paper, we focus on the
model’s ability in line-level detection and layout analy-
sis. Therefore, text detectors with TGA are evaluated on
the CTW-1500, MSRA-TD500, IC19-LSVT, and HierText
datasets. Among them, the CTW-1500 Dataset and the
MSRA-TD500 Dataset use Average Precision (AP) as the
metric, the IC19-LSVT Dataset uses Harmonic Mean (H-
mean) as the metric, and the HierText Dataset uses PQ as
the metric. AP is primarily used to measure the model’s
accuracy at different confidence thresholds by calculating
the area under the Precision-Recall curve. A high AP value
typically indicates that the model can detect more positive
samples while maintaining high precision. H-mean is com-
monly used to evaluate whether a model can effectively
identify text regions while maintaining high detection ac-
curacy. The value of H-mean is the harmonic mean of Pre-
cision and Recall:

Precision =
|TP |

|TP |+ |FP |
,

Recall =
|TP |

|TP |+ |FN |
,

H−mean =
2Precision · Recall

Precision + Recall
,

(2)

where {TP, FP, FN} means the set of True Positive, False
Positive, and False Negative, respectively. |·| means the cor-
responding number of it.

Layout analysis metrics. In the main comparison pre-
sented in the main paper, text detectors with TGA and base-



lines are evaluated and tested on the HierText Dataset using
Precision (P), Recall (R), F1 score (F), and Panoptic Qual-
ity (PQ) as the metrics. The reason for using PQ is that
it provides a unified performance evaluation for segmenta-
tion at the levels of words, lines, and paragraphs. For text
detection, PQ is evaluated at the corresponding word or line
levels, while for layout analysis, PQ is evaluated at the para-
graph level. The value of PQ is equal to the product of the
F1 score and the average IoU of all True Positive pairs:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |
×

|TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |

. (3)

2.3. Detailed Configuration of Training

Training schedules. KNet and MaskDINO do not have
pre-trained parameters specifically tailored for text detec-
tion. Although DBNetpp does possess pre-trained param-
eters for text detection, its performance on the HierText
Dataset is notably poor. Therefore, it is necessary to pre-
train the text detectors before fine-tuning specifically for
layout analysis.

In the comparisons of the main paper, we make efforts
to ensure that the training processes of each model are
as consistent as possible, as shown in Table 2. For line-
level detection, KNet and MaskDINO are pre-trained on
the CTW-1500, MSRA-TD500, IC19-LSVT, and HierText
datasets for 36 and 24 epochs, respectively. In Table 2 of
the main paper, the corresponding pre-trained parameters
of KNet and MaskDINO are directly fine-tuned on the Hi-
erText Dataset for layout analysis. In Table 1 of the main
paper, the corresponding pre-trained parameters of KNet
and MaskDINO undergo alignment training on the Hier-
Text Dataset, transitioning from line annotations with the
masks of themselves to annotations with the collections of
masks for the words composing them, lasting for 50 epochs.
Subsequently, they are separate fine-tuned on the HierText
Dataset for layout analysis. Specifically, for the layout anal-
ysis fine-tuning on the HierText Dataset, KNet executes 60
epochs, while MaskDINO executes 100 epochs. Regard-
ing TGA + MaskDINO-R50 in Table 1 of the main pa-
per, there is a gradient explosion issue during the alignment
process after pre-training. Therefore, we modify its pre-
training to 27 epochs on the IC19-LSVT Dataset and add
an auxiliary semantic segmentation loss during alignment
training. For word-level detection, DBNetpp is pre-trained
on the HierText Dataset for 120 epochs, building upon off-
the-shelf pre-trained parameters from oCLIP, to enhance its
text detection performance. Following this, it is fine-tuned
on the HierText Dataset for layout analysis for 600 epochs.
DeepSolo directly utilizes off-the-shelf pre-trained param-
eters from Synth150K, MLT17, IC13, IC15, and TextOCR
datasets, undergoing fine-tuning on the HierText Dataset for
layout analysis for 435,000 iterations.

In the ablation experiments, for fast implementation,
KNet performs fine-tuning for layout analysis after 120
epochs of direct pre-training on the HierText Dataset.

Devices. In all experiments, text detectors using ResNet-
50 [7] or ViTAE-S [21] as the backbone are trained with 8
* V100-16G, while those using Swin-Base [14] are trained
with 8 * V100-32G.

Training hyperparameters. As shown in Table 2, we
avoid extensive hyperparameter search and keep simple
and consistent with the original text detectors’ schedules.
In the fine-tuning phase, the number of text instances N
of KNet, MaskDINO, DBNetpp, and Deepsolo are set
to {256, 300, 384, 100} respectively, while the batch sizes
of KNet, MaskDINO, DBNetpp, and Deepsolo are set to
{16, 8, 16, 16} respectively. The optimizer is Adam and the
learning rate lr defaults to 1e−4, and the learning rate is set
to 5e−5 only for TGA + MaskDINO-Swin-B, which is used
in the Table 2 of the main paper.

3. More Experiment Results

3.1. Comparison of Different Fine-tuning Strategies
under Longer Fine-tuning Times

To verify the effectiveness of TGA under different fine-
tuning strategies, in Table 3, we extend the fine-tuning time
of TGA + MaskDINO-R50, based on the setup of the com-
parison of fine-tuning strategies in the main paper.

The results demonstrate that a longer full fine-tuning
time can improve the model’s performance in text detection
without compromising the ability of layout analysis. We at-
tribute this to the fact that the encoder and decoder of the
model do not explicitly learn features related to layout anal-
ysis during pre-training. Throughout the full fine-tuning pe-
riod, TGA optimizes the parameters of the encoder and even
the backbone, thereby influencing the subsequent process-
ing of the decoder, i.e., the effect of text detection. Over
time, the decoder gradually learns to handle features related
to layout analysis, but the learning time is positively corre-
lated with the number of decoder parameters. The decoder
of TGA + MaskDINO-R50 is large, consisting of cross-
attention layers, hence requiring a long fine-tuning time.
Possibly due to insufficient fine-tuning time, the text detec-
tion performance of TGA + MaskDINO-R50 does not fully
recover during the full fine-tuning period.

In addition, from the results, it can be observed that un-
der the frozen text detector strategy, a longer fine-tuning
time can enhance the ability of layout analysis. The frozen
text detector strategy, while saving training costs, not only
preserves the generalization of the text detector on the pre-
training datasets but also maintains powerful performance



KNet MaskDINO DBNetpp DeepSolo

Initial Weight
COCO [1, 12] for R50

ImageNet [3, 18] for Swin-B
COCO [2, 12] for R50

ImageNet [3, 18] for Swin-B oCLIP [4, 17] Official release [5]

Pre-training
Dataset Line-level datasets Line-level datasets HierText -

Schedule 36 epochs 24 epochs 120 epochs -
Learning Rate 1e−4 1e−4 1e−4 -

Fine-tuning
Dataset HierText HierText HierText HierText

Schedule 60 epochs 100 epochs 600 epochs 435,000 iters
Learning Rate 1e−4 1e−4 1e−4 1e−4

Table 2. Training configuration of the text detectors in all comparison experiments in the main paper. Line-level datasets denotes the
combination of CTW-1500, MSRA-TD500, IC19-LSVT, and HierText. For the special cases of TGA + MaskDINO-R50 in Table 1 of the
main paper and TGA + MaskDINO-Swin-B in Table 2 of the main paper, please refer to the Section 2.3 for details.

Frozen
Text Detector Epochs CTW-1500 MSRA-TD500 IC19-LVST HierText

Line AP Line AP Line H-mean Line PQ Paragraph PQ

✘
100 41.46 51.80 59.19 59.88 59.19
200 39.88 50.23 58.04 62.52 59.91
300 39.03 50.39 57.94 64.39 59.91

✔
100

61.18 59.54 82.62 65.83
54.95

200 53.76
300 58.69

Table 3. Results of TGA + MaskDINO-R50 under longer fine-tuning time on line-level datasets. In the main content, the first three rows
are the results under the full fine-tuning strategy, and the last three rows are the results under the frozen text detector strategy.

Pre-training Line Paragraph

F PQ F PQ

✘ 73.85 56.17 69.68 53.14
✔ 77.04 59.08 71.90 55.27

Table 4. Ablation studies of the pre-training for the text detec-
tor, utilizing TGA + KNet-R50, under the full fine-tuning strategy.
The results are evaluated on the HierText Validation Set.

Attention Num Line PQ Paragraph

P R F PQ

1
58.40

72.70 61.90 66.86 50.69
3 76.70 66.23 71.07 54.27
5 77.47 66.34 71.48 54.64

Table 5. Ablation studies of the number of self-attention layers for
TGA, utilizing TGA + KNet-R50, under the frozen text detector
strategy. The results are evaluated on the HierText Validation Set.

on the layout analysis dataset. It proves to be an economi-
cally effective fine-tuning strategy for TGA.

Weight of GMP
Weight of AMP

1.0 2.0

2.0 53.95 54.26
4.0 53.88 54.27
8.0 53.60 53.99

Table 6. Results of Paragraph PQ with different loss weights for
TGA, utilizing TGA + KNet-R50, under the frozen text detector
strategy. The results are evaluated on the HierText Validation Set.

3.2. Comparison of Different Padding Strategies

As mentioned in Section 3.1 of our main paper, we ex-
tract instances I = {Ii}Ni=1 from the output of pre-trained
text detectors. Masks are padded when less than N in-
stances are found in the output of text detectors. Here we
ablate how different padding strategies affect the final per-
formance under the frozen text detector strategy, including
empty padding, prediction padding, ground-truth padding
and mixed padding. Empty padding denotes masks filled
with all zero values are padded into M̂I . Similarly, pre-
diction or ground-truth padding means predicted or ground-
truth instance masks are randomly selected and padded. The
mixed padding denotes the padded masks are randomly se-
lect from a mixed set of predicted and ground-truth instance



(a) (b) (c)

Figure 1. PCA visualization of text instance features with the input image (a): (b) without GMP and (c) with GMP under the frozen text
detector strategy. Here, The ellipses represent 95% confidence intervals for the features, and the explained variance ratios on the horizontal
and vertical axes are {27.29%, 13.80%} in (b), and {44.77%, 21.10%} in (c), respectively.

Padding Paragraph

P R F PQ

empty 47.37 35.89 40.81 29.56
prediction 42.76 33.53 37.59 27.10

ground-truth 45.93 36.09 40.42 29.24
mixed 45.94 37.22 41.12 29.72

Table 7. Comparison of different padding strategies. The experi-
ments perform fine-tuning with frozen text detector on single TGA
+ DBNetpp-R50 for 60 epochs on the HierText Dataset. Note that
the number is lower than the main comparison for the short train-
ing epochs. The results are evaluated on the HierText Validation
Set.

Models Instance Paragraph

F PQ F PQ

Word-based

TGA + KNet-R50 64.62 48.53 58.20 43.00
TGA + MaskDINO-R50 72.25 55.84 55.24 42.37

Line-based

TGA + DBNetpp-R50 71.13 53.45 62.35 46.49

Table 8. Results of different models with TGA at different annota-
tion levels, under the frozen text detector strategy. The results are
evaluated on the HierText validation set.

masks. As shown in Table 7, the mixed one outperforms
others. It demonstrates that the accurate instance masks
help the layout analysis performance but directly injecting
the ground-truth masks causes gap between predicted masks
and ground-truth ones. Hence, the mixed padding strategy
is most beneficial one for layout analysis.

3.3. Ablation Studies of Pre-training

To verify the necessity of pre-training, in Table 4, we per-
form ablation studies on it. The results show that pre-
training not only improves the performance of text detec-
tion, but also further enhances the ability of layout analysis.

3.4. Ablation Studies of Hyperparameters in TGA

Number of self-attention layers. In Table 5, we exper-
iment with the number of self-attention layers of TGA. It
can be observed that as the number of layers increases, the
gains decrease. To balance the computational cost with per-
formance, we set the number of self-attention layers to be 3
in all our experiments.

Weights of losses. In Table 6, we experiment with differ-
ent weight coefficients of losses for TGA on KNet-R50. It’s
noteworthy that our performance is robust when we adjust
these weight coefficients, which demonstrates the robust-
ness of our TGA.

3.5. Generalization of TGA at different annotation
levels

To demonstrate that TGA performs well at different anno-
tation levels, in Table 8, we fine-tuned TGA + KNet-R50
and TGA + MaskDINO-R50 on the HierText Dataset at
the word level and TGA + DBNetpp-R50 on the HierText
Dataset at the level of line annotations with the masks of
themselves. All of the above fine-tuning is for the layout
analysis phase and freezes the text detector. Since there
are more word annotations than line annotations per image
on average in the HierText Dataset, the number of text in-
stances of KNet and MaskDINO should be increased ap-
propriately. Meanwhile, the setting of the fine-tuning time
should take into account the difficulty of the layout anal-
ysis task, the capability of the text detector, and the num-
ber of parameters of the TGA module. Thus, in the case



of all three models, namely TGA + KNet-R50, TGA +
MaskDINO-R50, and TGA + DBNetpp-R50, the number
of text instances N is set to 384, and each is fine-tuned for
{120, 40, 1200} epochs, respectively.

It can be observed that TGA + KNet-R50 and TGA +
MaskDINO-R50 continue to perform well at the word an-
notation level. However, TGA + DBNetpp-R50 performs
mediocrely at the level of text line annotation, which is at
variance with the performance at the word annotation level.
This is due to the fact that the ground truths of the poly-
gons undergo a shrink operation in the loss computation
during the text detection training of the DBNetpp model.
The shrink operation, whose shrink offset is proportional to
the ratio of the area and perimeter of the polygon. Since
the aspect ratio of the text line mask is larger than that of
the word mask, the former loses more features of the edges,
which hinders fine-tuning of the layout analysis.

3.6. PCA Visualization

In the ablation studies presented in the main paper, we
propose how GMP assists in predicting the affinity ma-
trix when both group masks and affinity are derived from
group annotations. The answer lies in the design of GMP,
which can capture more comprehensive and holistic infor-
mation about group instances. To substantiate this con-
clusion, in Figure 1, we present the PCA visualization of
text instance features with and without GMP. The visualiza-
tion clearly shows that instances incorporating GMP exhibit
tighter clustering, validating the effectiveness of our design.

3.7. More Qualitative Results

To demonstrate the generality and effectiveness of TGA, we
present more visual results of layout analysis in Figure 2.
It can be observed from the results in the fourth row that
the performance of text detection indeed has a significant
impact on the layout analysis: the poor text detection results
of TGA + DeepSolo-ViTAE-S, as it is not pre-trained on the
HierText Dataset, lead to inferior layout analysis compared
to TGA + MaskDINO-Swin-B. In the face of this situation,
the frozen text detector strategy allows for the decoupling of
the text detector and TGA, enabling them to focus on their
respective tasks during pre-training and fine-tuning stages,
namely text detection and layout analysis.
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Figure 2. Visualization of results on the validation set of the HierText Dataset: from left to right, the sequence includes the ground truth,
line-based Unified Detector, TGA + MaskDINO-Swin-B and TGA + DeepSolo-ViTAE-S. The red dashed boxes in the figure represent
areas that require additional attention.
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