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1. PSF and Noise Variance Measurement

This section explains the process of measuring the radar’s
Point Spread Function (PSF) and noise variance, essential
components for RadSimReal as elaborated in Section 3 of
the main paper. To obtain the PSF, a radar measurement can
be conducted in a scenario featuring a narrow and station-
ary object, like a pole, positioned in an isolated area where
there are no prominent reflecting objects nearby. The pole,
characterized by narrow spread in distance, azimuth angle,
and Doppler frequency, can be treated as an approximation
of a point reflector. If possible, using a radar corner reflector
as the isolated target is preferred. A radar corner reflector
is specifically designed to exhibit an exceptionally narrow
spread in all dimensions [4].

To measure the PSF, multiple radar tensors that capture
the same scenario as described above are collected at var-
ious time instances when both the radar and the observed
object remain stationary. These tensors are then averaged to
reduce the noise in the PSF measurement. Subsequently, the
truncated PSF utilized in RadSimReal is derived by extract-
ing a 3D segment from the averaged radar tensor, centered
around the reflection point of the narrow object. The in-
tensity of the PSF diminishes rapidly from its central point.
Each dimension of the PSF is truncated at a point where its
intensity significantly falls below the radar’s noise variance
(the noise variance in the tensor without averaging).

Fig. 1 provides a demonstration of the PSF measure-
ment for the radar utilized in the RADDet dataset. Fig. 1(a)
presents a camera image of a scene from RADDet featuring
a pole that was used for the PSF measurement. Figs. 1(b),
(c), and (d) display the measured PSF slices in range,
Doppler, and azimuth angle, respectively, alongside cor-
responding slices of a PSF obtained through conventional
simulation of the radar in the RADDet dataset (as detailed in
Fig. 2(a)+(b) in the main paper). The figure illustrates that
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the measured PSF closely resembles the simulated radar’s
PSF.

It is worth noting that the simulation method employed
to derive the reference PSF in Figs. 1 necessitates an in-
depth understanding of the specific radar hardware design
and processing algorithms. This information is not always
disclosed by radar suppliers. In contrast, the measurement
procedure outlined above enables the acquisition of the PSF
through a straightforward measurement that does not re-
quire detailed knowledge of the radar design.

Next, we proceed to elucidate how to measure the radar’s
noise variance, a prerequisite for RadSimReal as detailed in
Section 3 of the main paper. The noise variance can be de-
termined by identifying a region within the radar tensor that
lacks any objects. This specific portion of the radar tensor
comprises only noise, allowing the calculation of noise vari-
ance by assessing the variance of the tensor cells within this
region. Fig. 2 illustrates an instance of a radar image from
the RADDet dataset, with red rectangles indicating sections
without reflections that can be utilized for measuring the
noise variance.

2. Equivalency Between Outputs of Conven-
tional Simulation and RadSimReal

In Section 3 of the main paper, we claimed that the iden-
tical output tensor from the conventional simulation (Fig.
2(a)+(b) in main paper) could be achieved by convolving
the radar’s Point Spread Function (PSF) with the 3D re-
flection points in the scene (Fig. 2(a)+(c) in main paper).
This section provides an explanation for the validity of this
equivalence. We first provide an intuitive understanding of
this equivalence through a straightforward example in Sec-
tion 2.1. Subsequently, in Section 2.2, we present a formal
mathematical derivation of this equivalence.

2.1. Intuitive Explanation of Simulations equiva-
lence

We explain the equivalence between the conventional sim-
ulation and RadSimReal through a simplified example of a

1



23 23.2 23.4 23.6 23.8 24

Range[m]

-40

-20

0

d
b

Measured PSF

Simulated PSF

-4 -3 -2 -1 0 1 2 3 4

Doppler [m/s]

-30

-20

-10

0

d
b

Measured PSF

Simulated PSF

-37 -24 -12 0 12 24 37 53

Azimuth [deg]

-40

-20

0

20

d
b

Measured PSF

Simulated PSF

Measured

 Pole

(a)

(b
)

(c
)

(d
)

Figure 1. Measurement of the radar’s PSF using a pole. (a) Image depicting the scenario and the employed pole. PSF slices in range,
Doppler, and azimuth angle of the measured PSF compared with the PSF obtained through conventional radar simulation in (b), (c), and
(d), respectively.
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Figure 2. Measurement of radar noise variance from radar image
in the RADDet dataset. Red rectangles in the radar image mark
reflection-free regions utilized for noise variance measurement.

radar signal. The conventional radar simulation of this ex-
ample is depicted in Fig. 3. Fig. 3(a) illustrates a transmit-
ted radar pulse signal at time zero. In Fig. 3(b), the received
signal is illustrated for a scenario involving two reflection
points. It is evident that the received signal is essentially the
transmitted signal but delayed by τ1 and τ2. These delays
represent the times taken for the signal to travel from the
radar to the first and second reflection points and back. Im-
portantly, these time delays are proportional to the distances
of the first and second reflection points denoted by d1 and

d2, respectively. To obtain the received energy for each de-
lay (distance) hypothesis, the radar employs a match filter
on the received signal [3, 5]. The match filter operation is
a correlation between the received signal and the transmit-
ted signal. Fig. 3(c) displays the result of the match filter
in this example. The signal propagation times, τ1 and τ2,
are proportional to the reflection points distances. Hence
the time scale in Fig. 3(c) can be converted to distance. The
corresponding match filter output as a function of distance
is depicted in Fig. 3(d).

Fig. 4 illustrates the simulation conducted by RadSim-
Real for the same example depicted in Fig. 3. In Fig. 4(a),
Kronecker delta functions at the distances d1 and d2 of the
two reflection points are presented. Fig. 4(b) illustrates
the radar’s PSF, which is the auto-correlation of the trans-
mitted signal. Fig. 4(c) displays the output of the con-
volution between the delta functions in Fig. 4(a) and the
PSF in Fig. 4(b). It is evident that the match filter output
in Fig. 3(d) is identical to the result in Fig. 4(c). Thus,
the output of the conventional simulation can be achieved
through convolution between the radar’s PSF and the reflec-
tion points, represented as delta functions at the distances
of the reflection points. This approach is the simulation
methodology employed by RadSimReal.

While the representation in Fig. 3 and 4 show a one-
dimensional match filter applied to a simplified single trans-
mitted radar pulse, practical automotive radars involve ex-
tending the transmitted signal and match filter across a se-
quence of pulses and multiple antennas. Consequently, the
result is a multidimensional output tensor with dimensions
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Figure 3. Illustration of the conventional simulation processes
with a simplified Example. (a) Transmitted pulse. (b) Received
signal from two reflections at delays τ1, τ2. (c) Output of receiver
processing obtained by correlating the received signal with the
transmitted signal (match filter). (d) Match filter output converted
from time to distance scale.
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Figure 4. Illustration of the RadSimReal processes achieving
an identical output as the conventional simulation in the simpli-
fied example shown in Fig. 3. (a) Representation of two reflec-
tion points using Kronecker delta functions centered at reflection
points’ distances d1 and d2. (b) The radar’s PSF as a function
of distance. (c) The result of convolution between the reflection
points in (a) and the PSF in (b). The output in (c) is identical to
the output of the conventional simulation shown in Fig. 3(d).

of range (distance), Doppler, and angle, rather than a single-
dimensional output. This tensor is the one discussed in
Section 3 of the main paper. Nevertheless, the processes
in each dimension can be separable. Therefore, the funda-
mental principle remains unchanged: the output radar ten-
sor can be calculated by convolving a 3D PSF with dimen-
sions for range, Doppler, and angle with delta functions in
the 3D space having the same dimensions. The delta func-
tions are positioned in this space at the reflection points’
range, Doppler, and angle. A mathematical derivation of
this equivalence is detailed in Section 2.2.

2.2. Mathematical Derivation of the Simulations
equivalence

The radar emits a periodic sequence of short signals through
multiple antennas, and this signal can be characterized in
three dimensions as s(n,m, q), where the indices n, m, and
q correspond to distinct time scales. These time scales rep-
resent the time samples of the short signal, the time samples
of the short signal periods within the repetition sequence,
and the signal duration along the antenna array, respectively.

The transmitted signal reflects off objects in the environ-
ment and returns to the radar with delays in each of the time
scales, which are proportional to the reflection position and
speed. Let τ id, τ if , and τ iθ denote the ith reflection point’s
delays in the short signal duration, the delay in the period
between the short signals, and the delay between the an-
tennas. These delays correspond to the reflection point’s
distance (range), Doppler frequency (radial velocity), and
angle, respectively. The received signal is an aggregation of
the received signals from individual reflection points, each
with its corresponding reflection intensity. The received sig-
nal samples along each of the three time dimensions can be
expressed as follows:

r(n,m, q) =
∑
i

αis(n− τ id,m− τ if , q − τ iθ), (1)

where αi represents the intensity of the ith reflection point.
The radar tensor, which represents the received energy

in each distance, Doppler, and angle, is obtained by apply-
ing a match filter to the received signal [3, 5]. The match
filter is a 3D correlation between the received signal and
the transmitted signal s(n,m, q), in all three delays dimen-
sions, which are proportional to the distance, Doppler, and
angle. This correlation is expressed by:

y(n,m, q) =
∑
c,u,k

r(n− k,m− u, q − c)s(k, u, c) =

∑
i,c,u,k

αis(n− k− τ id,m− u− τ if , q− c− τ iθ)s(k, u, c).

(2)

The radar’s PSF is obtained by the auto-correlation of the
transmitted signal given by

x(n,m, q) ≜
∑
c,u,k

s(n− k,m− u, q − c)s(k, u, c). (3)

Then by substituting (3) into (2) we obtained that the match
filter output can be expressed by

y(n,m, q) =
∑
i

αix(n− τ id,m− τ if , q − τ iθ). (4)

From (4), it becomes evident that the radar tensor is a
superposition of the radar’s PSF shifted by the delays’ of



the reflection points and scaled by their intensities. This
relationship can equivalently be expressed as:

y(n,m, q) = x(n,m, q) ∗
∑
i

αiδ(n− τ id,m− τ if , q− τ iθ),

(5)
where the symbol ∗ denotes a convolution operation, and
δ(n− τ id,m− τ if , q− τ iθ) is a 3D Kronecker delta function.
This function takes a value of 1 when n = τ id, m = τ if ,
and q = τ iθ, and is zero elsewhere. Therefore, rather than
obtaining the radar tensor through match filtering, as shown
in (2), it can equivalently be obtained by convolving the
radar’s PSF, x(n,m, q), with reflection points that are rep-
resented by 3D Kronecker delta functions that are shifted by
the 3D delays’ (τ id, τ

i
f , τ

i
θ) of the reflection points and scaled

by their intensities (αi), as expressed in (5). The 3D delays
are directly proportional to the range, Doppler frequency,
and angle of the reflections. Consequently, the dimensions
of the radar tensor are eventually transformed from delays
to range, Doppler, and angle. This equivalent approach is
the methodology utilized in deriving the tensor in RadSim-
Real.

3. Simulation Computation Complexity
In this section, we assess the computational complexity of
conventional radar simulation in comparison to RadSim-
Real. Both simulations initiate with the shared step of gen-
erating reflection points in the environment (as depicted in
Fig. 2(a) in the main paper). The runtime of this phase de-
pends on the graphics simulation engine and can be very
fast, even in real-time. The significant run-time differ-
ence lies in transforming reflection points into radar images
(parts (b) and (c) of Fig. 2 in the main paper), which are
evaluated next.

The initial phase of the conventional simulation involves
the generation of received samples per radar image frame.
These samples result from aggregating the received signals
from individual reflection points, leading to a computational
complexity of O(NpNr), where Nr represents the number
of received samples per radar image, and Np denotes the
number of reflection points in the scenario. The number
of received samples per frame, Nr, is directly proportional
to the number of cells in the radar tensor, denoted as Ns.
Consequently, the complexity of the first part of the con-
ventional simulation can be expressed as O(NpNs).

In the subsequent stage of the conventional radar simu-
lation, signal processing algorithms are applied to the re-
ceived signal to generate the radar tensor. These algorithms
coherently combine received signal samples for each range,
angle, and Doppler cell in the radar tensor. This process,
called match filtering, is efficiently executed through a se-
ries of Fast Fourier Transform (FFT) operations in range,
Doppler, and angle, resulting in an overall complexity that

is lower bounded by O(Ns log(Ns)).
The total complexity of the conventional simulation is

derived by summing the complexities of the two afore-
mentioned parts. This yields a complexity of O(Ns(Np +
log(Ns))). Since Np is significantly larger than log(Ns),
the complexity of the conventional simulation approach
simplifies to O(NsNp).

Moving on, we proceed to compute the computational
complexity of RadSimReal, which involves performing con-
volution between the reflection points and the radar’s PSF.
The reflection points are sparsely distributed within the
radar tensor, i.e., Ns ≫ Np. Consequently, the convolution
between the reflection points and the PSF can be carried out
as a sparse convolution. This operation entails aggregating
the PSFs of reflection points, resulting in a complexity of
O(NpNf ), where Nf denotes the number of cells in the
radar’s PSF.

Therefore, the complexity ratio between conven-
tional simulations and RadSimReal is expressed as
O((NsNp)/(NpNf )) = O(Ns/Nf ), which represents the
proportion of the entire radar tensor volume to the PSF vol-
ume. As detailed in Section 3 of the main paper, our simu-
lation truncates the PSF to preserve 99% of its energy, sig-
nificantly reducing its volume. Consequently, this leads to
a substantial reduction in complexity, exemplified by a ratio
of 1250 for the radar utilized in the RADDet, CARRADA,
and CRUW datasets.

We tested the average run time for generating radar im-
ages using the conventional physical radar simulation and
our simulation. These tests were conducted for the TI radar
employed in the RADDet [1, 2]. We implemented the simu-
lations in Matlab 2020a, making use of the parallel process-
ing toolbox. The computations were executed on a com-
puter equipped with an Intel(R) Xeon(R) W-2235 CPU op-
erating at 3.80GHz, alongside an Nvidia Quadro RTX 5000
GPU with 16GB of memory. The results reveal that the
average run time for generating a radar images from reflec-
tion points with our simulation is 0.0105 second, and with
the conventional physical simulation it takes 5.296 seconds.
RadSimReal generates images about 500 times faster than
the conventional simulation, which is on the order of the
factor 1250 that was obtained from the analysis above.

4. RADDet Train-Test Set Split
The performance evaluation conducted in Section 4 of the
main paper utilized a train-test set split of the RADDet
dataset that differs from the split proposed in [6]. Table 1
displays the Average Precision (AP) results at IOU 0.1, 0.3,
and 0.5 for the three object detection methods employed
in the paper (‘RADDet’, ‘Probabilistic’, and ‘U-Net’). The
comparison is made between the original RADDet train-test
split and our suggested split. The AP results are assessed
on the test set within each respective split. The results re-



Table 1. Object detection average precision (AP) on RADDet with
original train-test split vs. our split

AP Original Split AP Our Split

Method @ 0.1 @ 0.3 @ 0.5 @ 0.1 @ 0.3 @ 0.5

RADDet 93.82 88.03 68.71 83.69 72.96 47.95

Probabilistic 92.87 86.36 66.30 83.31 74.80 40.68

U-Net 94.68 89.59 71.00 84.76 83.01 55.53

Table 2. Instances in the RADDet dataset divided into distinct
scenes.

Scene ID Frame Numbers

0 0− 439, 559− 724, 1549− 1971
1 440− 555, 731− 1548, 1972− 2571
2 2572− 3038
3 3039− 3437
4 3438− 3653
5 3654− 4073
6 4074− 4331
7 4332− 5018, 5623− 6243
8 5019− 5622, 6244− 6608
9 6609− 8046

10 8047− 8634
11 8635− 9158
12 9159− 9437
13 9438− 9745, 10175− 10292
14 9746− 10174

veal that all methods achieved significantly higher AP re-
sults with the original RADDet split compared to our split.
This discrepancy in results can be attributed to the fact that
the test and training images in the original split [6] were
derived from the same scenarios, often with small temporal
gaps. Consequently, a strong correlation is established be-
tween the test and training samples, leading to overfitting of
all methods on the test set.

To address the issue of overfitting, we implemented a
train-test set partitioning strategy that ensures distinct sce-
narios between the training and testing sets. The RADDet
dataset comprises 15 unique scenes, each detailed in Table
2. In our partitioning scheme, scenes 9 and 11 were desig-
nated for the test set, while the remaining scenes were used
for the training set. The adjusted training set comprises a to-
tal of 17,021 cars compared to 16,755 in the original split.
For the test set, we have 4,094 cars compared to 4,135 in
the original split.
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