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Supplementary Material

A. Stationarity-Compatibility Theorem
Before proceeding to the main theorem, a key Lemma is
established. This Lemma, concerning the probability of a
random point on a surface cap of a hypersphere, plays an
essential role in the subsequent discussion.

Lemma 1 Let wi ∈ Rd for i = 1, . . . , n be i.i.d. vectors
from the uniform distribution on the unit hypersphere. Then
the probability Pn,d of a random vector on a hypersphere
cap around wi is given by:
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where θn,d is the expected angle from a vector wi to its
nearest neighbor.

Proof. We begin by noting that the probability P of a ran-
dom point on a hypersphere cap around prototype wi is given
by the ratio of the cap surface to the hypersphere’s surface
area. This can be approximated as P = Adisc

A where Adisc is
the area of the disc locally approximating the cap around
the prototype wi. The surface area A of a hypersphere in d
dimensions is given by

A = 2πd/2 Rd−1

Γ(d/2)

and the hyperarea Adisc of the disc is

Adisc = 2π(d−1)/2 rd−2

Γ((d− 1)/2)
.

This leads to the simplified expression for the probability P
of a random point on a disc on a hypersphere:
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Where r is the radius of the surface disc (locally approxi-
mating the cap), R is the radius of the hypersphere, d is the
number of dimensions, and Γ is the gamma function. Using
spherical coordinates, the relationship between R, r, and the
polar angle θ is r = R sin(θ). We use θn,d as described in
[1] and [2] to denote the dependencies on n and d:
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Substituting r = R sin(θn,d) into the probability P of Eq. 2
and, considering the unit hypersphere R = 1, we get Eq. 1.
This highlights the dependencies of the probability on both
the number of prototypes n and their dimension d.

□
Lemma 1 is used to demonstrate Theorem 1 that is re-

ported in the following for better comprehension. It is note-
worthy that a disc in high dimensional space can be consid-
ered a hyperball when referring to its filled volume.

Theorem 1 (Stationarity =⇒ Compatibility) Let W =
[w1,w2, . . . ,wK ] be the d×K matrix of a d-Simplex fixed
classifier. Given two tasks, Tk and Tt. The task Tt is derived
from Tk by incorporating an additional training set ∆T ,
such that Tt = Tk ∪∆T . The combined task, Tt, comprises
a set of classes each denoted by y, where y ∈ {1, 2, . . . ,Kt}
and Kt < K. Under the assumption that learning the new
task Tt causes the hyperball Bk(wy) with radius ryk to shrink
into a smaller hyperball Bt(wy), i.e., ryt ≤ ryk for all y in
the set {1, 2, . . . ,Kk}, then it necessarily follows that ϕt

and ϕk optimally approximate the compatibility inequality
constraints as defined in Def. 1 in expectation.

Proof. Let ϕt(x) and ϕk(x) be random variables represent-
ing the learned representations up to the t-th and the k-th
task, respectively. We assume that these variables are dis-
tributed within hyperballs denoted as Bt(wy) and Bk(wy),
where y is a generic class label, according to the joint proba-
bility density function fϕt(x),ϕk(x). Hyperballs are centered
at the d-Simplex classifier prototype wy and are defined as:

Bt(wy) = {ϕt(x) ∈ Rd : ||ϕt(x)−wy||2 ≤ ryt }, (4)

Bk(wy) = {ϕk(x) ∈ Rd : ||ϕk(x)−wy||2 ≤ ryk} (5)

being ryt and ryk the radii of Bt(wy) and Bk(wy), respec-
tively. The distance between the two random variables
ϕt(xa) and ϕk(xb) is a new random variable:

Dk,t = ||ϕt(xa)− ϕk(xb)||. (6)

Verification in expectation of the compatibility defini-
tion of Def. 1 requires the evaluation of Dk,t, i.e,
E[||ϕk(xa)− ϕt(xb)||] , and compare it with the expected

value of Dk,k, i.e., E[||ϕk(xa)− ϕk(xb)||]. Defining the
function g as:

g (xa, xb) = ||xa − xb||,



the expected value E[Dk,t] of Eq. 6 is given by:

E[Dk,t] =

∫
Byi

k

∫
B

yj
t

g (xa, xb) fϕk,ϕt
(xa, xb) dV (xa)dV (xb)

(7)
where yi and yj denote the classes associated with xa and
xa, respectively, and Byi

k , Byj

t , and fϕt,ϕk
are simplified no-

tations for Bk(wyi
), Bt(wyj

), and fϕt(x),ϕk(x), respectively.
Eq. 7 is evaluated under the following assumptions: (1)

UFM [3], which allows features of a model to be considered
independent. (2) The hypothesis of a d-Simplex fixed classi-
fier. This assumption allows focusing on a single pairwise
class interaction, as interactions with all other classes are
symmetrically similar and fixed. (3) Since ϕt(x) and ϕk(x)
are derived from training two separate models, they are
treated as independent random variables, each distributed ac-
cording to fϕt(x) and fϕk(x), respectively. As a consequence,
the joint probability density function can be substituted by
the product of the probability density functions of ϕk(x) and
ϕt(x), i.e., fϕk(x),ϕt(x) (xa, xb) = fϕk(x) (xa) fϕt(x) (xb)
and integral of Eq. 7 reduces to:

E[Dk,t] =

∫
B

yj
k

∫
Byi

t

||xa−xb||fϕk
(xa) fϕt (xb) dV (xa)dV (xb).

(8)
Lemma 1 allows for the case-by-case evaluation of Equa-
tion 8 in the case of assessing the alignment and compati-
bility of class prototypes in trainable and non-trainable clas-
sifiers. From the Lemma it follows that when retraining a
model from scratch in which the classifier is trainable, the
probability of class prototypes falling, according to Near-
est Neighbor rule, within their corresponding hyperballs
of a previously trained model decreases exponentially as
both dimensionality and the number of classes for training
increases (Fig. 1). Following the definition of Eq. 1a, the
conditions for optimal compatibility between prototypes of
corresponding classes in both models are realized when their
distance reaches its minimum value. This occurs when they
are perfectly aligned. In this case, classes will not manifest
randomly and the probability of them falling within the same
regions does not decrease exponentially.

Eq. 3 in Lemma 1, also indicates that the introduction of
new classes results in a decrease in the angles between them,
a phenomenon also shown in [2]. Assuming two perfectly
aligned models, the introduction of new classes in one of the
models results in two effects: a decrease in intraclass and
interclass distances between features. Such reductions in dis-
tance indicate a deviation from the concentric arrangement
between of corresponding class hyperballs in the two models,
leading to a compromise of the conditions for optimal com-
patibility. While one might consider pre-allocating a large
number of classes to leverage a broader representation space
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Figure 1. The probability P of Eq. 1 of a point lying within a disc
on a hypersphere’s surface. Different curves (logarithmic scale)
correspond to varying numbers of points sampled (n), across a
dimension range (d). The plot shows that as the dimension and the
number of points increases, the probability decreases significantly,
reflecting the curse of dimensionality.
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Figure 2. Expected distance of Eq. 8 between points on two closely
aligned (or nearly concentric) hyperballs. Distance increases by
shifting one of the hyperballs showing that optimality (i.e. less
distance variation) is when hyperball are concentric.

for future classes to prevent the reduction of class angles,
this strategy is found to be suboptimal in trainable classifiers.
In fact, without supervision, the pre-allocated prototypes for
future classes tend to collapse onto each other, as evidenced
by [4, 5]. This tendency illustrates the inherent limitations
of this approach in achieving optimal compatibility with
trainable classifiers.

In contrast, stationary features of models learned through
a pre-allocated d-Simplex fixed classifier are concentric and
do not suffer from class collapse due to pre-allocation. Using
this result and the three previously established assumptions,
the verification of optimality can be achieved. This is done
by computing the expected distance according to Eq. 8, par-
ticularly within the hyperballs of two models corresponding
to a single class. Expected distance is computed according
to Eq. 8 by shifting one of the hyperballs and assuming a
uniform distribution. Given the symmetry of a hyperball,
shifting in any single direction is adequate for the evaluation.
Since no closed form solution of Eq. 8 exists Monte Carlo
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Figure 3. Comparison of expected distances between feature points from two learning phases, characterized by indices k (before learning)
and t (after learning), across different dimensions of the representation space. Both E[Dk,t] and E[Dk,k] are examined. (a): Expected
distance in the case of same class, the value of E[Dk,t] remains less than E[Dk,k], satisfying on average the condition of Eq. 1a. (b): In the
case of two different classes, the expected distance, does not satisfy the condition of Eq. 1b.

integration is employed. Fig. 2 illustrates optimality for a
corresponding class in two stationary models. It shows that
as the amount of shift increases, there is a corresponding
increase in the expected distance, a phenomenon observed
across various dimensional spaces.

The same evaluation is used to verify the definition of
compatibility in Eq. 1a and Eq. 1b:

E[Dk,t] ≤ E[Dk,k] (9)

(in the case of the same class) and if

E[Dk,t] ≥ E[Dk,k] (10)

(in the case of different classes) hold. In Fig. 3a and Fig. 3b,
we show plots of E[Dk,t] and E[Dk,k] with varying feature
dimension from 2 to 500. Without loss of generality, the hy-
perball radius starts at 1 and is reduced to 0.5 (further radius
reductions follow the same principle and are not shown). The
plots show that as the radius is reduced (i.e., more knowledge
is assimilated) in the case of the same class the expected dis-
tance E[Dk,t] is always below E[Dk,k] at any feature dimen-
sions (Fig. 3a). Differently, as shown in Fig. 3b, the expected
distance evaluation for the case of different classes results
in E[Dk,t] < E[Dk,k] therefore not satisfying Eq. 1b. To
satisfy Eq. 1b, the hyperball Bt(wyi

) from Eq. 4 should be
placed away from the hyperball Bk(wyj

) of the other class
(Eq. 5). Such repositioning changes the concentric arrange-
ment of the hyperballs of the same class, which negatively
affects the optimality.

The optimal approximation to compatibility directly fol-
lows from: (1) the fact that hyperballs centered at the vertices
of a regular d-Simplex, are at their pairwise maximum dis-
tance, and (2) the addition of more classes does not alter this
distance because their corresponding representation space is
pre-allocated and remains unchanged (i.e., stationary).

□

In the proof above, it emerges that the satisfaction of both
compatibility constraints of Def. 1 cannot be achieved. In the
following corollary, we provide the explicit statement outside
the proof above for a clearer and more focused exposition
of this result, as it has a general validity beyond the specific
assumption of a d-Simplex fixed classifier.

Corollary 1 (Infeasibility) The two compatibility inequal-
ities in Def. 1 cannot be satisfied by the representation
learned by a trainable classifier.

Proof. The proof follows immediately from the arguments
presented in the final part of the proof of Theorem 1. The
discussion therein establishes that in order to satisfy Eq. 1b,
a shift of the hyperball Bt in Eq. 4 away from the hyperball
Bk in Eq. 5 is required. This results in a departure from
the concentric configuration for the case of the same class,
thereby negatively affecting the optimality of Eq. 1a. In the
case in which the classifier can be trained, the introduction of
additional classes alters the pairwise class distances, and as a
result, a departure from the concentric configuration cannot
be avoided. As a consequence the inequality constraints of
compatibility cannot be satisfied. □

B. Implementation Details
In the following section, we provide more detailed informa-
tion about the experimental settings described in Sec. 4.2. We
pre-train ResNet18 models on ImageNet32 for 300 epochs.
Pre-training was done using an SGD optimizer with a learn-
ing rate of 0.1, momentum 0.9, and weight decay 1 · 10−4.
Models are trained with a mini-batch size of 128, and the
learning rate follows a cosine annealing schedule throughout
the training process. For methods based on the d-Simplex
fixed classifier [6], we pre-allocate K = 1024 classes (fea-
tures vectors are then of size d = 1023) and training is



performed according to the cross-entropy loss of Eq. 2. The
other methods utilize a trainable classifier, wherein the fea-
ture size corresponds to that of the ResNet18 architecture,
namely 512.

Models were fine-tuned on CIFAR100R for 70 epochs.
Fine-tuning was performed using the SGD optimizer with
learning rate of 0.001, momentum 0.9, weight decay 10−4

and with mini-batch size of 128. The learning rate is de-
creased according to a linear scheduling with a reduction
factor of 0.1 at epochs 50 and 65.

C. Ablation Studies
In this section, we present ablation studies of d-Simplex-
HOC using CIFAR100R/10. These studies involved fine-
tuning the model for 31 tasks, with two model replacements
as is the experiment of Fig. 4a.

C.1. Hyperparamters

The training of d-Simplex-HOC is influenced by the hyper-
parameters λ and τ , as used in Eq. 3 and Eq. 5, respectively.
Tab. 1 shows the AC metric for different values of λ and τ .
The results show that using λ = 0.1 and τ = 10 yields the
highest performance in terms of AC. A lower value of λ sug-
gests a greater emphasis on the contrastive loss relative to the
cross-entropy loss, prioritizing the higher-order component
over the first-order one offered solely by the cross-entropy.
The value of τ yielding the highest AC in our study closely
aligns with that reported in [7]. This similarity suggests a
consistent τ effect across various contexts of representation
learning.

λ
τ

1 5 8 10 (♠) 15 20

0.05 0.10 0.55 0.63 0.64 0.35 0.23
0.1 (♠) 0.10 0.58 0.64 0.65 0.36 0.23
0.25 0.06 0.30 0.43 0.42 0.34 0.21
0.5 0.09 0.23 0.19 0.20 0.18 0.21
0.75 0.17 0.19 0.16 0.13 0.12 0.10

Table 1. Ablation study for d-Simplex-HOC in 31 tasks using
CIFAR100R/10 with two model replacements of λ (Eq. 3) and
τ (Eq. 5). The evaluation is performed with respect to the AC
metric. Values used in our implementation are marked with the
“(♠)” symbol.

C.2. Learning Rate

Learning a new task without affecting the existing model’s
representation requires a proper selection of the learning
rate. Tab. 2a reports the metrics AC and AA31, obtained
for different learning rate values η. A higher η enables the
model to adapt more quickly to new tasks; however, this
results in a noticeable decline in performance with respect

η AC AA31

0.1 0.07 58.21
0.01 0.40 68.67
0.005 0.57 68.94
0.001 (♠) 0.65 67.40
0.0005 0.57 66.31
0.0001 0.32 63.44
0.00001 0.30 63.32

(a)

#imgs AC AA31

500 0.69 67.97
300 (♠) 0.65 67.40
200 0.55 66.95
100 0.42 65.83
50 0.32 65.01
10 0.25 62.05
5 0.22 61.77

(b)
Table 2. Ablation for d-Simplex-HOC in 31 tasks using CI-
FAR100R/10 with two model replacements of learning rate η (a)
and of the number of images (#imgs) per class in CIFAR100R
(b). Values used in our implementation are marked with the “(♠)”
symbol.

to both AA31 and AC. This decline is primarily due to
significant changes in the model’s representation before and
after the updates. In contrast, a lower learning rate allows
the model to transition more gradually from its current state,
leading to improved compatibility. This approach, while
improving compatibility, results in a slight reduction in the
model’s ability to assimilate new knowledge from the task.
Considering this trade-off, we opted for a learning rate of
0.001 in our implementation.

C.3. Training-sets Relative Size

We aim to study the impact on performance of the relative
size between the dataset used for pre-training the models,
namely ImageNet32, and the CIFAR100R dataset used for
fine-tuning them. To this end, we varied the number of im-
ages per class in the CIFAR100R dataset. Tab. 2b shows the
values with 500 (all the images of CIFAR100 are used in
CIFAR100R), 300, 200, 100, 50, 10, and 5 images per class.
We observe that compatibility performance (AC) decreases
as the number of images per class reduces. Conversely, the
average accuracy exhibits a gradual decline. This highlights
that achieving compatibility is a complex constraint requir-
ing adequate data.

C.4. Episodic Memory Size

Fine-tuning is performed using data from the new task along
with an episodic memory to mitigate potential forgetting [8].
Consequently, we assess how the number of images per class
in the episodic memory impacts the model’s performance.
Fig. 4 shows AAt curves for various numbers of images per
class in the episodic memory. These plots illustrate scenarios
ranging from the rehearsal-free case, where no images are
retained, to the case where all images of each class are stored
(300 images per class), and include intermediate scenarios
as well. As expected, the more data are used in the mem-
ory, the more the accuracy increases. Remarkably, in the
rehearsal-free case, there is a continuous improvement in
accuracy. This case indicates that d-Simplex-HOC is capable



Figure 4. Ablation for d-Simplex-HOC in 31 tasks with CI-
FAR100R/10 with two model replacements of the number of images
in the episodic memory (0 is rehearsal-free). Values used in our
implementation are marked with the “(♠)” symbol.

of leveraging improvements from model replacement, even
in the absence of episodic memory. This evidence may be
relevant for future search/retrieval systems which evolve or
enhance their performance over time.

D. d-Simplex fixed classifier PyTorch Code
We provide a GPU-based implementation to generate a d-
Simplex classifier matrix W for a given number of pre-
allocated classes K that offers faster computation compared
to CPU-based implementations [6, 9, 10].

def dsimplex_fixed_classifier(K):
W = torch.zeros((K, K-1))
W[:-1,:] = torch.eye(K-1)
W = W.cuda()
c = torch.sqrt(1 + torch.Tensor([K-1]).cuda())
W[-1,:] = W[-1,:] + (1 - c) / (K-1)
W.add_(-torch.mean(W, dim=0))
W.div_(torch.linalg.norm(W) + 1e-8)
W.requires_grad = False
return W
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