
Bézier Everywhere All at Once:
Learning Drivable Lanes as Bézier Graphs

Supplementary Material

6. Bézier Fitting
6.1. Fitting Procedure
In this section, we provide a more detailed description of
the Bézier fitting process initially introduced in Sec. 3.1.

As previously described, the Bézier Graph nodes Vb are
first chosen as a subset Vb ✓ Vl of the nodes of the input
graph, Gl. For each directed path in Gl between these nodes,
we then add a corresponding edge to Gb. This results in the
surjective mapping

EDGEMAP : Vl ! Eb.

For each path

p = (v1, v2, . . . , vn) 2 Vl ⇥ · · ·⇥ Vl

for each node vi in the path, we can define a mapping to
Bézier parameter t. Consider that each node vj has corre-
sponding 2D position xj , and the path therefore represents
a sequence of positions (x1, . . . ,xn). The mapping from
node vi to t is therefore defined as its fractional distance
along the path, i.e.

LENGTHMAP(vi) =

8
<

:

Pi
j=2kxj�xj�1k2Pn
j=2kxj�xj�1k2

i � 2

0 i = 1

Note since each node exists in only one path, this is a unique
mapping for each node.

Therefore, we have for each node a unique mapping to
an edge in the Bézier Graph and a (normalised) length along
the corresponding Bézier curve:

NODEMAP(v) = (EDGEMAP(v), LENGTHMAP(v)).

This allows us to now define the function FGl(Db,Eb)
mapping an input lane graph and Bézier parameters to a ma-
trix of reconstructed node positions: this is provided in Al-
gorithm 2.

Note we have an additional requirement that the values
of Eb are positive, i.e. Eb 2 R|Eb|⇥2

+ . To account for this,
we actually perform gradient descent on the logarithm of
these Bézier parameters, and exponentiate them to obtain
the final Eb array.

6.2. Additional Fit Results
In this Appendix we present additional quantitative and
qualitative results of our Bézier fitting method.

Algorithm 2 Bézier Graph reconstructed node positions
function FGl (Db,Eb)

X []
for v 2 Vl do

e, t NODEMAP(v)
x BEZIERPOSITION(Db[e[0]], Db[e[1]], Eb[e], t)
X.append(x)

end for
return X

end function

The full results for the Bézier fit for the Succ-LGP and
Full-LGP experiments are shown in Tabs. 4 and 5 respec-
tively. These show a good fit on average, as discussed in
our paper. However, the high maximum Hausdorff distance
values also demonstrate that in some edge cases, the fit fails.

Note that here the Hausdorff distance is computed per
Bézier Graph edge (a cubic Bézier curve) as compared to
the ground truth nodes to which it was fit. Therefore the
maximum Hausdorff per tile is the maximum Hausdorff dis-
tance between any Bézier curve and its ground truth nodes.
Mean Hausdorff is the mean over all curves. The mean
Hausdorff distances reported in Tabs. 4 and 5 are computed
over the mean values from all tiles. All Hausdorff distances
were computed with the directed_hausdorff func-
tion from the scipy.spatial.distance Python li-
brary.

To understand the causes of the poor fits we visualise
two of the worst performing Bézier Graph fits for the Succ-
LGP training set and Full-LGP training set in Fig. 7. These
four visualisations demonstrate three different failure cases:
Fig. 7a demonstrates poor performance on unusual curves
with multiple inflection points; Figs. 7b and 7d both demon-
strate poor performance on U-turns and Fig. 7c visualises a
case with two lanes meeting at the same point but going in
nearly completely opposite directions (this is likely due to
opposite direction turning lanes meeting at a two-way lane).

Future iterations of the Bézier Graph fitting process
could be improved by better accounting for more compli-
cated curves and bidirectional lanes.

7. Experiment Details
7.1. Full-LGP Dataset Tiling
For the Succ-LGP experiments, we use the training and
evaluation tiles provided by the UrbanLaneGraph dataset.

For the Full-LGP experiments, we generate our own

(a) Succ-LGP Austin fitting failure
case.

(b) Succ-LGP Washington fitting
failure case.

(c) Full-LGP Austin fitting failure
case.

(d) Full-LGP Washington fitting
failure case.

Figure 7. Examples of where the Bézier Graph fitting process fails. Fitted Bézier Graph in red, ground truth lane graph in black.

training tiles, since we use a different tile resolution (512⇥
512) and train on tiles containing all lanes, rather than just
those which are descendants of the bottom centre node.

In order to generate these tiles from the 5000 ⇥

5000 images in the Full-LGP training set, we use an
agglomerative clustering algorithm, fit on node posi-
tions. For this we use AgglomerativeClustering
from the sklearn.cluster Python library, using a
distance_threshold of twice the output crop size
(2 ⇤ 512).

These images are incompletely annotated, so this method
resulted in training images containing incomplete lane net-
works. Therefore, to avoid incomplete training examples
we further removed all clustered tiles containing any nodes
with a degree of 1, thus removing “end-point” nodes.

This results in tiles that effectively follow the lane graph
structure, with some overlap between them. In this way the
training data is efficiently used and examples of incomplete
annotation in the training set are minimised. A visualisation
of this tiling approach can be found in Fig. 8.

7.2. Hyperparameters and Training

Both models were trained with a ResNet-50 backbone and
Deformable-DETR transformer architecture. Both used
transformer layer dimension 256, 6 layers and 8 attention
heads in both the encoder and decoder. Both used the same
loss weightings �, shown in Tab. 6.

The Succ-LGP model was trained for 150 epochs, Full-
LGP for 250. We applied colour jitter dataset augmentation
to both, and random rotation by integer multiples of 90� to
the Full-LGP model. Both models were trained using the
Adam optimiser with a cosine varying learning rate, begin-
ning at 10�4 and ending at 10�5.

�n
c �n

p �n
d �e

prob �e
a

1 5 2 0.2 1

Table 6. Loss weightings used for both models.

Figure 8. Agglomerative clustering of the node positions in an
example Full-LGP image, to generate our 512⇥512 training tiles.
Ground truth lane graph shown in red, tiles shown as black square
boxes.

7.3. Reproducing LaneGNN
We encountered difficulties when trying to use the public
UrbanLaneGraph LaneGNN code to reproduce their Succ-
LGP experiments. Our understanding of the provided code-
base was that additional “context” RGB files were required,
which at the time of writing were not included in the down-
loaded UrbanLaneGraph successor eval data. We at-
tempted to create our own eval data using the full tiles
and the preprocessing scripts provided in their codebase, but
this resulted in a significant fraction of the resulting graphs
containing errors such as incorrectly connected overlapping
lanes, which particularly harmed the successor graph gen-
eration. Therefore, to be as fair as possible, we used the
LaneGNN numbers provided by the original paper for our
Succ-LGP comparisons. Our method did not require the

additional “context” RGB files, so we were able to use the
provided eval data for evaluation.

For the Full-LGP task we were able to use the provided
data and code to evaluate the UrbanLaneGraph model.
However, as we highlight in the main body of our paper, the
original UrbanLaneGraph paper used a pretrained LaneEx-
tractor model to provide initial positions and directions for
LaneGNN. We did not have access to this trained model,
so we instead initialised with 180 sampled positions and di-
rections from the ground truth data. Our Full-LGP compar-
isons therefore use metrics obtained from our own repro-
duction of the LaneGNN model across all cities, rather than
those reported in the original paper; note the original paper
evaluated only on the two Miami files in order to compare
with LaneExtractor.

8. Additional Full-LGP Results
For clarity, and given space limitations, we visualised only
crops of the full 5000⇥ 5000 tiles in the body of our paper.
In Fig. 9 we show the full results for the Full-LGP model
on the corresponding tiles.

Note to account for the incomplete ground truth anno-
tation and following the experimental setup of Büchner et

al. [3], we filter our predicted graph by removing any curve
components for which there does not exist a ground truth
node within 50 pixels.

8.1. Curvature Distributions
In Fig. 10 we visualise several example curvature distri-
butions, comparing BGFormer to LaneGNN on several of
the Full-LGP aggregated graphs. We observe that BG-
Former captures the curvature distribution of the ground
truth more closely, and it seems that there is a common trend
for LaneGNN to predict a higher proportion of larger curva-
tures; we believe this may be exacerbated by the ‘wobbling’
of the LaneGNN predicted lanes due to the node lattice sub-
tractive sampling.

(a) BGFormer Evaluated on an Austin Tile (b) LaneGNN Evaluated on an Austin Tile

(c) BGFormer Evaluated on a Washington Tile (d) LaneGNN Evaluated on a Washington Tile

Figure 9. Qualitiative comparison of uncropped Full-LGP results. Predicted lanes are depicted in red, ground truth lanes in green. Figs. 9c
and 9d visualise the uncropped version of figures presented in the main body of our paper.

City Max H Mean |Vl| |Vb| |El| |Eb|
Max Mean H Max Mean Max Mean Max Mean Max Mean

Austin 11.4 1.1± 1.0 0.65 72.0 27.1± 7.8 12 4.3± 1.7 70 26.0± 7.8 11 3.3±1.7
Detroit 20.9 1.2± 1.1 0.67 93.0 27.4± 8.5 17 4.4± 1.7 89 26.2± 8.4 16 3.4±1.7
Miami 39.9 1.2± 1.3 0.68 94.0 27.5± 8.8 16 4.4± 1.8 91 26.4± 8.7 15 3.4±1.8

Palo Alto 16.7 1.3± 1.4 0.76 76.0 27.6± 8.0 21 4.5± 1.7 74 26.5± 8.0 20 3.5±1.7
Pittsburgh 40.8 1.2± 1.4 0.74 70.0 25.1± 8.5 11 4.0± 1.6 69 24.0± 8.4 10 3.0±1.6

Washington 29.8 1.2± 1.3 0.67 77.0 27.4± 8.3 14 4.3± 1.6 74 26.2± 8.2 13 3.3±1.6

Table 4. Complete results for the Bézier fit of the Succ-LGP training examples. Max H and Mean H respectively denote the maximum and
mean Hausdorff distances between the ground truth and Bézier Graph for each training example - both are reported in pixels. To obtain
distances in meters, multiply by 0.15. |V| denotes number of nodes, |E| denotes number of edges, l and b subscripts denote lane (source)
graph and Bézier (fitted) graph respectively.

City Max H Mean |Vl| |Vb| |El| |Eb|
Max Mean H Max Mean Max Mean Max Mean Max Mean

Austin 32.1 3.3± 3.4 1.09 701 187± 98 60 14± 8 689 183± 96 50 10± 7
Detroit 22.0 3.4± 3.5 1.04 697 223± 120 60 17± 10 680 218± 117 58 12± 8
Miami 48.9 3.2± 3.2 1.10 666 192± 102 64 15± 9 650 188± 99 61 11± 8

Palo Alto 115.0 4.0± 5.5 1.30 1007 221± 124 77 16± 10 980 215± 121 60 11± 8
Pittsburgh 120.2 3.7± 5.1 1.25 546 152± 79 49 13± 8 532 148± 77 42 9± 7

Washington 29.3 3.1± 3.3 1.07 678 209± 119 52 15± 9 658 204± 116 47 11± 8

Table 5. Complete results for the Bézier fit of the Full-LGP training example tiles. See Tab. 4 for column descriptions.

Figure 10. Curvature distributions for several example Full-LGP tiles. Ground truth (GT) distribution shown in blue; LaneGNN in orange;
BGFormer in green.

	. Introduction
	. Related Work
	. Road and Lane Detection
	. Transformers for Graphs in Computer Vision

	. Method
	. Bézier Graphs
	. Bézier Graph Transformer
	Loss Function and Graph Matching

	. Global graph aggregation

	. Experimental Results
	. Lane Prediction Tasks
	. Bézier Graph Fit
	. Evaluation Metrics
	. Successor Lane Graph Prediction
	. Full Lane Graph Prediction

	. Conclusion
	. Bézier Fitting
	. Fitting Procedure
	. Additional Fit Results

	. Experiment Details
	. Full-LGP Dataset Tiling
	. Hyperparameters and Training
	. Reproducing LaneGNN

	. Additional Full-LGP Results
	. Curvature Distributions

