
Steerers: A framework for rotation equivariant keypoint descriptors

Supplementary Material

A. Supplementary theory
We provide further theoretical discussions that did not have
room in the main text. First, Section A.1 contains a dis-
cussion of what having representations of C4 or SO(2) on
description space means. Section A.2 contains a proof of
Theorem 5.1 and Section A.3 presents matching strategies
that are considered in the extra ablations of Section B but
were omitted from the main paper due to space limitations.

A.1. Disentangling description space

As explained following Theorem 4.1, any representation of
C4 or SO(2) can be block-diagonalized over the real num-
bers into blocks of size 1 and 2, called irreducible repre-
sentations (irreps). We can think of these irreps as disen-
tangling descriptions space [14], i.e. each eigenspace of the
steerer is acted on by rotations in a specific way according
to the respective irrep. This section explains the relevance
of the different irreps to keypoint descriptors. For C4, we
have the following.
• 1 × 1 irreps

(
1
)

act by doing nothing. Hence, the cor-
responding dimensions in description space are invari-
ant under rotations. For C4, image features described by
these dimensions could be crosses or blobs.

• 1 × 1 irreps
(
−1
)

correspond to dimensions that are in-
variant under 180◦ rotations, but not 90◦ rotations. Ex-
amples of such image features could be lines.

• 2× 2 irreps
(
0 −1
1 0

)
correspond to pairs of dimensions

that are not invariant under any rotation. Many image
features should be of this type, e.g. corners.

For SO(2) we get the same
(
1
)

irrep, which in this case rep-
resents features invariant under all rotations such as blobs,
and the 2× 2 irreps in (8) which represent features rotating
with j times the frequency of the image. E.g. lines rotate
with frequency j = 2 since when we rotate the image by
180◦, the line returns to its original orientation.

The description for a keypoint does not lie solely in the
dimensions of a single irrep. It will be a linear combination
of quantities that transform according to the different irreps.
The descriptions can then be viewed as a form of non-linear
Fourier decomposition of the image features, as discussed
in the literature for general image features. We will provide
a short discussion in the next paragraph.

Example A.1. In Upright SIFT, the decomposition of the
128 description dimensions is equally split between the ir-
reps, i.e., there are 32 invariant dimensions, 32 dimensions
that are invariant under 180◦ degree rotations and 64 dimen-
sions which are not invariant under any rotation.

The connections to Fourier analysis of having a group
representation acting on the latent space of a model were
discussed in [14] for linear models and concurrently to this
work for neural networks in [28]. We sketch the main idea
here to give the reader some intuition. If we have a sig-
nal h on Rn and want to know how it transforms under
cyclic permutations of the n coordinates, we can take the
Discrete Fourier Transform (DFT). Each coordinate hj can
be written as a linear combination of Fourier basis func-
tions: hj =

∑n−1
k=0 ĥk exp(2πijk/n) and the DFT is sim-

ply the vector ĥ. When we cyclically permute h by J
steps, it corresponds to multiplying each component ĥk by
exp(2πiJk/n). Thus, the cyclic permutation on h acts like
a diagonal matrix on the DFT ĥ. The DFT is a linear trans-
form of the signal h. In our setting, the signal consists of
images and keypoints transformed by a neural network f to
description space. As described in Theorem 4.1, rotations
act by a diagonal matrix in description space (up to a change
of basis Q). In the terminology of [28], we can think of the
neural network f as doing a Neural Fourier Transform of
the input.

The usefulness of having group representations act on la-
tent spaces in neural networks has been considered in, for
instance, [16, 36, 60]. In these works, the specific repre-
sentation is fixed before training the network, similar to our
Setting C. As far as we know, optimally choosing the rep-
resentation remains an open question—the experiments in
this paper showed that this is an important question. [48]
and [25] considered using (9) as a loss term to obtain or-
thogonal representations on the latent space. This approach
is also promising for keypoint descriptors, particularly for
encoding transformations more complicated than rotations
in description space, since it does not require knowledge
of the representation theory of the transformation group in
question.

A.2. Proof of Theorem 5.1

Here, we give a proof of Theorem 5.1.

Theorem 5.1. [Adapted from Shakerinava et al. [48],
Gupta et al. [25]] Assume that we have a function f : V →
SD−1 and a group G with representation ρin on V such that,
for all v, v′ ∈ V and g ∈ G

⟨f(ρin(g)v), f(ρin(g)v
′)⟩ = ⟨f(v), f(v′)⟩. (9)

Then there exists an orthogonal representation ρ(g), such
that f is equivariant w.r.t. G with representations ρin and ρ.

Proof. Note that if f(v) = f(v′), then by (9), f(ρin(g)v) =
f(ρin(g)v

′). This means that we, for each g ∈ G, can define



a map φ̃g : f(V ) → f(V ) by

φ̃g(w) = f(ρin(g)f
−1(w)), (11)

where f−1(w) is any element that f maps to w. We next
extend φ̃g to a map φg : SD−1 → SD−1. Start by writing
any element w ∈ SD−1 as

w = w⊥ +

n∑
i=1

aiwi, (12)

where ai ∈ R, the wi’s are of the form f(vi) for some vi ∈
V and form a basis of span(f(V )) and w⊥ is orthogonal to
span(f(V )). Define

φg(w) = w⊥ +

n∑
i=1

aiφ̃g(wi). (13)

We can now use (9) to show that φg is an isometry of the
sphere SD−1, i.e. an orthogonal transformation:

⟨φg(w), φg(w
′)⟩ = ⟨w⊥, w

′
⊥⟩ (14)

+

n∑
i=1

n∑
j=1

aia
′
j⟨φ̃g(wi), φ̃g(wj)⟩ (15)

(9)
(11)
= ⟨w⊥, w

′
⊥⟩+

n∑
i=1

n∑
j=1

aia
′
j⟨wi, wj⟩

(16)

= ⟨w,w′⟩. (17)

As it is an orthogonal transformation, we can write φg as
being a matrix acting on vectors in SD−1 by matrix mul-
tiplication. Finally, we need to show that ρ(g) = φg de-
fines a representation of G, i.e. that φgφg′ = φgg′ for all
g, g′ ∈ G. We begin by showing that φg and φ̃g are equal on
f(V ), which now follows from linearity of φg as follows.
Take a general w ∈ f(V ), and again write w =

∑n
i=1 aiwi,

then

⟨φg(w), φ̃g(w)⟩ =

〈
φg

(
n∑

i=1

aiwi

)
, φ̃g(w)

〉
(18)

=

n∑
i=1

ai⟨φg(wi), φ̃g(w)⟩ (19)

(13)
=

n∑
i=1

ai⟨φ̃g(wi), φ̃g(w)⟩ (20)

(9)
=

n∑
i=1

ai⟨wi, w⟩ (21)

= ⟨w,w⟩ (22)
= 1 (23)

so that φg(w) = φ̃g(w). For the wi’s from before, we thus
have

φgg′wi = φ̃gg′(wi) (24)
= f(ρin(gg

′)vi) (25)
= f(ρin(g)ρin(g

′)vi) (26)
= φ̃g(f(ρin(g

′)vi)) (27)
= φ̃g(φ̃g′(f(vi))) (28)
= φ̃g(φ̃g′(wi)) (29)
= φ̃g(φg′(wi)) (30)
= φgφg′wi. (31)

Further, for any w⊥ orthogonal to span(f(V )) we have

φgg′w⊥ = w⊥ = φgφg′w⊥. (32)

Thus by linearity φgg′ = φgφg′ .

A.3. More matching strategies

We discuss more potential matching strategies. Their per-
formance is shown in the large ablation Table 5.
Projecting to the invariant subspace. Given a steerer
ρ(g), we can project to the rotation invariant subspace of
the descriptions by taking

∑3
k=0 ρ(g)

ky/4 as descriptions
instead of y. Equivalently, one can project by decomposing
ρ(g) using (6). However, we will see that these invariant
descriptions do not perform very well (but still better than
just using y). This is likely because the invariant subspace
is typically only a fourth of the descriptor space.
Subset matcher. We can estimate the best relative rotation
between two images using the max matches matching strat-
egy on only a subset of the keypoints in each image. The
obtained rotation is then used to steer the descriptions of all
keypoints. This subset matcher strategy gives lower run-
time while not sacrificing performance much. In our exper-
iments, we use 1, 000 keypoints.
Prototype Procrustes matcher. For frequency 1 descrip-
tors, as a way to make the Procrustes matcher less com-
putationally expensive, we propose, instead of aligning
each description pair optimally, to align every descrip-
tion to a prototype description ỹ ∈ R2×(D/2). Thus,
we solve the Procrustes problem once per description
in each image to obtain 2N rotation matrices R1,m

and R2,n and form the matching matrix with elements
⟨flatten(R1,my1,m), flatten(R2,ny2,n)⟩. ỹ can be ob-
tained by optimizing it over a subset of the training set for a
fixed frequency 1 descriptor. This strategy is similar to the
group alignment proposed in RELF [31]; however, there,
the alignment is done using a single feature in a permuta-
tion representation of C16, whereas we look at the entire
D-dimensional description. Similarly to RELF, we could
use only specific dimensions of the descriptions for align-
ment and add a loss for this during training. However, we



leave this and a careful examination of optimal alignment
strategies for future work.

B. More experiments
We show further matching examples on AIMS in Figures 5
and 6. These examples were chosen by selecting pairs with
20-200 matches after RANSAC, corresponding to success-
ful but challenging pairs. In the remainder of this section,
we present ablations that did not have room in the main pa-
per. A large results table is provided as Table 5. Further,
we present an experiment in support of using Theorem 5.1
to motivate the existence of steerers in Section B.1 and a
comparison to test time rotation augmentation in terms of
performance and runtime in Section B.2

Figure 8 shows an example of the improvement obtained
using a steerer for large rotations. Figure 7 shows the recall-
precision curves for the experiments on AIMS from Sec-
tion 6.3.

B.1. Equal rotation augmentation

We explained the spontaneous equivariance of DeDoDe-B
by referring to Theorem 5.1 and saying that descriptors will
be equivariant if the performance is equivalent for match-
ing images I1 and I2 as matching jointly rotated images
P k
90I1 and P k

90I2. To test this explanation, we can look at
whether the equivariance of a keypoint descriptor relates to
how good it is at matching jointly rotated images.

We experiment with four different descriptors, DeDoDe-
B, DeDoDe-G, DISK [55] and a retrained DeDoDe-B with
data augmentation where both images are rotated an equal
multiple of 90◦. This retrained version is denoted DeDoDe-
B†. The results are shown in Table 6 and show that
DeDoDe-B and DISK, for which the dropoff in perfor-
mance between upright and jointly rotated images is rela-
tively low, the steered performance is relatively high. Con-
versely, DeDoDe-G has a large dropoff in performance be-
tween upright and jointly rotated images, and it also has a
worse-performing steerer. Finally, the retrained DeDoDe-
B†, trained to perform well on jointly rotated images, has a
more or less perfect steerer.

B.2. Comparison to test time augmentation

Given two images with an unknown relative rotation, the
best obtainable matches from test time augmentation would
be obtained when rotating the first image to have the same
rotation from upright as the second, which is the case in
the joint rotation benchmark. The joint rotation bench-
mark considered in the previous section hence gives an up-
per bound for how well test time augmentation can work.
We also include the results of using C4-TTA with ordinary
DeDoDe-B in Table 5. Therefore, Tables 6 and 5 show
that using test time augmentation can give higher perfor-
mance than a steerer in Setting A (Section 5.1) of optimiz-

ing a steerer given a fixed descriptor. The steerers obtained
in Settings B and C, however, clearly outperform test time
augmentation for the original DeDoDe networks (compare
Table 5 and Table 6). Table 4 presents the improved runtime
of using steerers.

C. Experimental details
We use the publicly available training code from De-
DoDe [19] to train our models. In Setting A, we train the
steerer for 10k iterations with a learning rate of 0.01. In
Setting B, we set the learning rate of the steerer to 2 · 10−4,
which is the same as for the decoder in [19] and train for
100k iterations as in [19]. In Setting C, we also train for
100k iterations. All other hyperparameters are identical to
[19].

C.1. How to initialize/fix the steerer

Theorem 5.1 tells us that the representation acting on the de-
scription space (i.e. the steerer) should be orthogonal. Fur-
ther, since we match using cosine similarity, we can perform
an orthogonal change of basis in description space without
influencing matching. Thus, using the representation theory
described in Section 4, we can always change the basis of
description space so that the steerer is block-diagonal with
blocks of size 1 and 2. Next, we describe the exact forms
of steerers in our experiments when using different initial-
izations or fixed steerers. The labels correspond to the ones
described in Section 6.1. Again we have two different cases
depending on whether we have a C4 steerer ρ(g) or a SO(2)
steerer obtained from a Lie algebra generator dς .
Inv. Here, the steerer is simply the identity matrix.
Freq1. We set the steerer ρ(g) or the Lie algebra generator
dς to

128⊕
b=1

(
0 −1
1 0

)
. (33)

Each block has eigenvalues ±i, so we get 128 of each.
Perm. We set the steerer ρ(g) to

64⊕
b=1


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (34)

Each block has eigenvalues ±1,±i, so we get 64 of each.
Spread. We set the Lie algebra generator dς to(

40⊕
b=1

(
0
))

⊕

 6⊕
j=1

(
18⊕
b=1

(
0 −j
j 0

)) (35)

Here, the first 40 × 40 zero matrix gives 40 eigenvalues 0,
the remaining blocks give 18 eigenvalues of each ±ji for
j = 1, 2, 3, 4, 5, 6.



Figure 5. More qualitative challenging matching examples from the AIMS data.

C.2. AIMS details

In contrast to [49], we compute the average precision over
the entire precision-recall curve instead of at fixed thresh-

olds of the number of inliers. The thresholds used in [49]
were chosen to approximately cover the precision-recall
curve for the methods considered there. Still, we find using
the complete precision-recall curve easier than rescaling the



Figure 6. More qualitative challenging matching examples from the AIMS data.

thresholds for our methods. Furthermore, in [49], the aver-
age precision was computed with a maximum of 100 nega-
tive satellite images per astronaut photo. Instead, for each
astronaut photo, we use all associated satellite images in the

AIMS to get more accurate precision scores. These changes
were agreed upon with the authors of [49].

We use only the Scale-1 subset of AIMS as we aim to
evaluate rotational robustness. Following [49], we resize



all images so that the smallest side is 576px during match-
ing. For homography estimation, we use OpenCV with flag
USAC MAGSAC [5] with confidence 0.999, max iterations
10, 000 and inlier threshold 5 pixels. These settings were
given to us by the authors of [49]. We rerun SE2-LoFTR to
compute the average precision as described above. We con-
firmed that we get approximately the same score using the
old evaluation protocol for SE2-LoFTR as reported in [49]
(they report 0.62 on Upright and 0.51 on All Others, while
we get 0.60 and 0.52 respectively).

Figure 7. Precision-recall on AIMS. We plot precision-recall
curves over the complete AIMS.

Table 4. Runtime comparison. We report the mean runtime over
100 random image tensors for description and matching on a sin-
gle A100 GPU. I.e. the time for loading images and detection of
keypoints is not measured. We use resolution 784×784 and 5, 000
keypoints throughout.

Descriptor Matching strategy Time [ms]

DeDoDe-B Dual softmax 63.4± 0.03
DeDoDe-B Dual softmax + TTAx4 254.2± 0.10
DeDoDe-B Dual softmax + TTAx8 513.0± 0.09
DeDoDe-B-C4 Max matches C4-steered 96.5± 0.05
DeDoDe-B-C4 Subset C4-steered 68.4± 0.10
DeDoDe-B-C4 Max similarity C4-steered 66.9± 0.02
DeDoDe-B-SO2 Max matches C8-steered 141.4± 0.05
DeDoDe-B-SO2 Subset C8-steered 73.4± 0.13
DeDoDe-B-SO2 Max similarity C8-steered 72.4± 0.02
DeDoDe-B-SO2 Procrustes 95.0± 0.04
DeDoDe-B-SO2 Prototype Procrustes 63.9± 0.02

DeDoDe-G Dual softmax 217.3± 0.11
DeDoDe-G Dual softmax + TTAx4 872.5± 0.11
DeDoDe-G-C4 Max matches C4-steered 250.4± 0.09
DeDoDe-G-C4 Subset C4-steered 222.9± 0.08
DeDoDe-G-C4 Max similarity C4-steered 221.3± 0.05



Table 5. Evaluation on MegaDepth extended. This is a larger version of Table 3. The first section shows Setting A where we only
optimize the steerer, the second section shows Setting B where we jointly optimize the descriptor and steerer and the third section shows
Setting C where we predefine the steerer and optimize only the descriptor. For MegaDepth-1500 we always use dual softmax matcher to
evaluate the descriptors on upright images, except when the matching strategy is marked by ∗, in which case we use the specified matching
strategy for MegaDepth-1500 as well. We use 20, 000 keypoints throughout. The best values for B- and G-models are highlighed in each
column. See Section 6.1 for shorthand explanations for our models.

Detector Descriptor MegaDepth-1500 MegaDepth-C4 MegaDepth-SO2
DeDoDe DeDoDe Matching strategy AUC @ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦

Original B Dual softmax 49 65 77 12 17 20 12 16 20
Original B Dual softmax + TTA C4 46 61 73 34 49 61
Original B Max matches C4-steered 43 60 73 30 44 56
C4 B Max matches C4-steered 50 66 78 43 60 74 30 44 56
C4 B Project to invariant subspace∗ 39 55 68 33 49 62 18 31 45
SO2 B Max matches C4-steered 50 66 78 44 61 74 30 45 58
SO2 B Max matches C8-steered 50 66 78 40 57 70 34 51 65
Original G Dual softmax 52 69 81 13 17 21 16 22 28
Original G Max matches C4-steered 31 45 57 26 39 50

C4 C4-B Max matches C4-steered 51 67 79 50 67 79 39 55 68
C4 C4-B Subset C4-steered 50 66 78 39 54 68
C4 C4-B Max similarity C4-steered 50 67 79 49 65 78 35 50 62
SO2 SO2-B Max matches C8-steered 47 63 76 47 63 76 44 61 74
SO2 SO2-Spread-B Max matches C8-steered 50 66 79 49 66 78 46 63 76
SO2 SO2-Spread-B Subset C8-steered 49 65 78 46 62 75
SO2 SO2-Spread-B Max similarity C8-steered 49 66 78 47 64 77 43 61 74

C4 C4-Inv-B Dual softmax 48 64 76 47 63 76 39 55 69
C4 C4-Perm-B Max matches C4-steered 50 67 79 50 66 79 39 54 67
C4 C4-Freq1-B Max matches C4-steered 49 66 78 49 65 78 36 51 64
SO2 SO2-Inv-B Dual softmax 46 62 75 45 61 74 43 60 73
SO2 SO2-Freq1-B Max matches C8-steered 47 64 77 47 64 76 45 62 75
SO2 SO2-Freq1-B Procrustes 47 64 76 46 62 75 45 61 74
SO2 SO2-Freq1-B Prototype Procrustes 44 61 74 43 60 73 41 58 72
C4 C4-Perm-G Max matches C4-steered 52 69 81 53 69 82 44 61 74
C4 C4-Perm-G Subset C4-steered 52 69 81 43 60 73

Table 6. Performance on jointly rotated images vs steerer performance. We evaluate three descriptors on image pairs where both images
are rotated an equal multiple of 90◦ from upright. This gives an upper bound on how good the performance of test time augmentation
can be. We compare to the performance of a steerer trained for the fixed descriptor (Setting A). Finally we show the performance of a
descriptor DeDoDe-B† which is trained with data augmentation with jointly rotated images. For DeDoDe-B† we also use Setting A, so it
is trained without a steerer and then a steerer is trained with the fixed descriptor. We use 20, 000 DeDoDe keypoints throughout.

MegaDepth-1500 MegaDepth-C4
MegaDepth-1500 joint rotation with steerer

Descriptor AUC @ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦

DeDoDe-B [19] 49 65 77 46 62 74 43 60 73
DeDoDe-G [19] 52 69 81 45 61 74 31 45 57
DISK [55] 34 49 62 29 45 58 26 41 54

DeDoDe-B† 50 66 78 50 66 78 50 66 78



Figure 8. Steering DeDoDe descriptions under half turn rotations. We replicate [19, Figure 7] but with a steerer. In the upper image
pair, we match the ordinary DeDoDe-descriptions. In the lower image pair, we instead modify the descriptions of the keypoints in the right
image by multiplying them by a steering matrix ρ(g)2. This corresponds to setting A, where we, for a fixed descriptor, have optimized a
steerer.


