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This supplemental document supplies additional details
on the mathematical derivation and training details to aid
future work and possible extensions. It also contains ex-
tra figures showcasing more results for the experiments de-
scribed in the main document, as well as demonstrating our
relighting methods on other datasets.

1. HDRi Relighting
We are able to relight, not only by changing a single,

primary light source direction, but by using a high dynamic
range image (HDRi) that defines the environment illumina-
tion. For HDRi relighting, we rely on the Gaussian den-
sity model to query visibility and pair it with a diffuse re-
flectance model. We cast multiple secondary rays for each
pixel from the surface of the model towards to the environ-
ment map, typically 64 secondary rays per pixel. The first
of which is important sampled towards the brightest region
in the HDRi, i.e. the sun. The rest are sampled accord-
ing to diffuse reflection, with probability proportional to the
cosine angle between normal and sample direction. This
distribution can be attained by setting the ray direction as
the unit surface normal and adding a random point on the
unit sphere. This is a simple yet effective model that serves
our purpose by sampling rays that contribute most with high
likelihood, considering both the brightest region in the en-
vironment map and those that contribute most to diffuse re-
flection. In the same manner, the Gaussian shadow casting
could also be integrated into a physically accurate illumina-
tion model by including a full BRDF function and an unbi-
ased importance sampling method for reducing variance.

Relighting using HDRis can be seen in the Supplemental
Video and the teaser in the main paper.

Relighting on MonoPerfCap and Animal Datasets.
Our Gaussian method can also be used as a standalone re-
lighting tool for datasets captured under uniform illumina-
tions. These datasets have very few lighting and shading
effects which allows for the direct interpretation of the neu-
ral color field as the albedo. We can simply fit the Gaussian
density model and relight the learned avatars with HDRis.
We test this paradigm on a monocular sequence from the
MonoPerfCap dataset [6]. See Figure 1 for the results.

Figure 1. HDRi Relighting on MonoPerfCap. Our Gaussian
relighting method can work on recordings done under uniform il-
lumination, even monocular datasets.

Figure 2. HDRi Relighting on Animal Dataset. Our method
can extend beyond human avatars as we do not necessitate any
templates.

Likewise, due to the template-less nature of our imple-
mentation, we are able to learn bodies with Gaussian den-
sity models for non-human characters. We test this using
the Animal dataset [3] as seen in Figure 2.

2. Novel Poses on Outdoor Sequence
We showcase more novel-pose results on a real sequence

captured outdoors in bright daylight Figure 3. Our explicit
lighting module results in more accurate shadows compared
to the baselines. The baselines, which overfit to the training
set, are highly inconsistent with small perturbations in pose
leading to large changes in the shadow.

3. Novel-View Rendering Results
We also test the ability to render novel views using our

method. We find that due to the explicit nature of our shad-
ing computations, the lighting and shadows are still accu-
rate. The baselines fail to produce accurate illuminations
and are much more susceptible to small pose variations
leading to large changes, as seen in Figure 4. In contrast
to the training cameras, the novel view is backlit with large
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Figure 3. Outdoors in sunlight (Real Sequence 1). Novel poses rendered using DANBO [4], NPC [5] and our method. Our method has
more consistent lighting and shadows whereas the baselines suffer from large shadow changes from small pose variations.



Figure 4. Novel-view Synthesis (Synthetic Sequence). Due to
the explicit nature of our lighting module, our models are robust
to changes in view. The baselines are highly pose-dependant with
small changes in pose affecting the image drastically.

parts of the trunk in shadow. Consequently, the quantitative
analysis in Table 1 demonstrates even larger performance
gains than the novel pose evaluation in the main document.
The result further highlights the importance of our explicit
shadow-casting method.

4. Training Details

4.1. Loss Functions & Regularizations

Our primary objective is the accurate reconstruction of
the neural character renders Î and the training images I. We
use a standard photometric reconstruction loss between the
pixel color values in the training image, c, and reconstruc-
tion, ĉ.

Table 1. Novel-pose in novel-view synthesis (all test frames). As
our method is explicit, large changes is view direction still result
in accurate shadowing unlike the baselines.

Novel View

PSNR↑ SSIM↑ LPIPS↓
DANBO 18.85 0.773 0.179
NPC 20.64 0.823 0.157
Ours 27.19 0.873 0.153

LRGB = |ĉ− c| (1)

We augment this by also using a mask loss that operates
between the integrated accumulation, ρ̂, and the foreground
mask, ρ.

Lmask = |ρ̂− ρ| (2)

Our final photometric loss is one we dub the grey loss.
Its objective is to initialize the RGB head of the NeRF to
output a light grey value such that when the standard RGB
loss starts to have an influence on the training, it is not prone
to getting stuck in a local minimum with shadows already
learnt caused by an initialization resulting in darker color
values. It also provides enough time for the light direction
to optimize and fit before the NeRF overfits to the shadows
as we interpolate between the grey loss and the RGB loss.

Lgrey = |ĉ− 0.75| (3)

To fit the Gaussians, we introduce a Gaussian Density
loss which minimizes the squared distance between the
Gaussian density function at a given query location, G(x),
and the density head of the NeRF at the same query loca-
tion, D(x).

LgDensity = ||G(x)−D(x)||2 (4)

We regularize our Gaussians by supervising their mean
and standard deviations. The standard deviation regulariza-
tion limits the size of the Gaussians to approximately be
within 2.5 and 50 centimeters, while the mean regulariza-
tion prevents Gaussians from drifting too far from the bone
centers, b. These loss functions are visualized in Figure 5.
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Figure 5. Regularization on Gaussian Density Model. a) The
regularization function for the standard deviations of the Gaus-
sians, constraining the size. b) The regularization function for the
means of the Gaussians, keeping the Gaussians close to the center
of the bones.

LgSigma =

{
2e−5
σ σ ≤ 0.02

100(σ − 0.02)4 + 0.001 σ > 0.02
(5)



LgMean = (100(µ− b)4 + 1)
1
4 − 1 (6)

We also regularize the ambient intensity, L̂amb, to be
somewhat dark values to prevent the model from setting a
bright ambient value and learning all of the shadows as part
of the NeRF color.

Lamb = ||L̂amb − 0.1||2 (7)

We adopt the SDF-based density field from VolSDF [7]
for improved normals, and regularize the SDF network us-
ing an Eikonal loss [2] LEikonal to predict proper level sets,

LEikonal = ||n̂s(x)− 1||22 (8)

and use a curvature loss, LCurvature, to smoothen out the ge-
ometry by minimizing the difference between neighbouring
normals,

LCurvature = ||n̂s(x)− n̂s(x+ ϵ)||2, (9)

with ϵ a small random perturbation.
Our total loss is the sum of all of these losses and regu-

larization terms, each with a weighing function, αi(t), for
loss term i and training iteration t. Training takes around
20 hours on an NVIDIA RTX 3090, similar to Relight-
ing4D [1].

4.2. Scheduled Learning

Our scheduled learning can be split into 3 segments. De-
noting a change in the weights for each of the loss terms
throughout the training using linear interpolation.

Segment 1: Density Fitting ∼ 1k Iterations. In this step,
the main goal for the model is to train the neural field’s den-
sity to fit the silhouette of the character. It begins with high
weights for only Lmask and Lgrey alongside the regulariz-
ers for curvature, LCurvature, and Eikonal constraints LEikonal.
We need this first stage as our shading computations rely on
accurate depth maps, normal maps and accurate Gaussian
fits, which the latter requires an accurate density field to fit
to. Training the RGB head directly from the start results in
many artifacts that the network cannot recover from due to
the deferred nature of our shading computations.

Segment 2: Gaussian Density Model Fitting ∼ 4k Iter.
This segment marks the addition of the Gaussian density
loss, LgDensity, and its regularizers, LgMean and LgSigma. At
which point the parameters of the Gaussians, G, are opti-
mized to fit to the pretrained NeRF’s density.

Segment 3: Light Fitting & RGB Fitting This step
switches from using the grey loss to the RGB loss. Iterpo-
lation between the two ensures a smooth transition between
purely optimizing for the silhouette and our target color re-
construction. In our experiments, 1k iterations were suf-
ficient to fully optimize the light direction, at which point
the diffuse and Gaussian shadow computation is fairly ac-
curate, allowing the neural color field to learn color without
shadows, more closely resembling the albedo, see the Sup-
plemental Video.

Weight Modulation: As previously mentioned, our total
loss is the sum of all of our loss terms each with a weighing
function αi(t) which modulates the weight during training
to allow the previously mentioned stages to train properly.
We plot the value of each of the weighing functions over the
training iterations in Figure 6. They are linearly interpolat-
ing between two values over a number of iterations with a
hold-off period.
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Figure 6. Weight Modulation. How the weights αi(t) change
throughout the training. First focusing on fitting a grey silhouette
and the Gaussian model, later transitioning to fir the RGB along-
side ambient regularization.

5. Analytical Gaussian Integral

Our goal is to derive a 1D function Gr(t) that repre-
sents the density along a ray r that we can integrate to ac-
quire the cast shadow. We start our derivation from the 3D
anisotropic Gaussian G(x) that we use to approximate the
body density field,

G(x) = C exp
[
−0.5(µ− x)TΣ−1(µ− x)

]
= C exp

[
−0.5(µTΣ−1µ− 2µTΣ−1x+ xTΣ−1x)

]
.

(10)

We can infer the density along the ray, Gr(t), by parameter-
izing the 3D positions along the ray by the distance t from
the origin ro, with x = ro + t · rd, and substituting it into



Equation 10,

Gr(t)

= Ĉ exp
[
−0.5(t2rTd Σ

−1rd − 2trTd Σ
−1(ro − µ))

]
= Ĉ exp

[
− 0.5rTd Σ

−1rd

(
t2 − 2t

rTd Σ
−1(ro − µ)

rTd Σ
−1rd

)]
,

(11)

where rd is the ray direction, and Ĉ consists of the terms that
are constants with respect to the ray distance t, separated by
the equality exp(a+ b) = exp(a) exp(b),

Ĉ = C exp
[
−0.5(µ− ro)

TΣ−1(µ− ro)
]
. (12)

We then reorganize Equation 11 by substituting σ̂ =
1√

rTd Σ−1r
and µ̄ =

rTd Σ−1(ro−µ)

rTd Σ−1rd
,

Gr(t) = Ĉ exp
[
− 0.5

(t2 − 2tµ̄)

σ̄2

]
= Ĉ exp

[
− 0.5

(t2 − 2tµ̄+ µ̄2)− µ̄2

σ̄2

]
= Ĉ exp

[
− 0.5

(t− µ̄)2 − µ̄2

σ̄2

]
= C̄ exp

[
− (µ̄− t)2

2σ̄2

]
, (13)

where, again, C̄ absorbs the terms that are constant to t,

C̄ = C exp

[
−0.5

(
(µ− ro)

TΣ−1(µ− ro)−
µ̄2

σ̄2

)]
,

(14)
and we arrive at Gr(t) that assumes the form of a 1D Gaus-
sian density function with mean µ̄, std σ̄, and scaling factor
C̄. As the integral through a Gaussian can be computed in
closed form through the error function, this enables analyt-
ical integration of the density along the ray, which in turn
enables our method to cast shadows efficiently.
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