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S1. Overview of the Supplementary Material
• In Sec. S2.1, we provide additional visual comparisons

of the results obtained with our method versus results ob-
tained with the state-of-the-art language-supervised im-
age segmentation methods.

• In Sec. S2.2, we analyze segmentation accuracy per
category.

• In Sec. S2.3, we further investigate the generalization
properties of our method and how it compares with fully-
supervised methods.

• In Sec. S3, we provide a more in-depth discussion of
Sec. 5: Human-model alignment of the main paper.

• In Sec. S4.1, we provide a detailed analysis of the benefit
of using cross-attention.

• In Sec. S4.2, we analyze different models’ performance
depending on the choice of a checkpoint: the last check-
point versus the checkpoint optimal on the validation set.

• In Sec. S4.3, we discuss in detail the choice of a thresh-
old value for segmenting out pixels corresponding to in-
dividual categories.

• In Sec. S5, we provide the computational cost of our
method.

S2. Additional Performance Analysis

S2.1. Additional Qualitative Comparisons

In the main paper, we show in Tab. 2 a numerical compari-
son of the segmentation results obtained with our method
and the segmentation results obtained with the state-of-
the-art language-supervised image segmentation methods.
Also, in the main paper, in Fig. 5, we show a comparison
of our model with CLIP Surgery⋆⋆, where CLIP Surgery⋆⋆

represents the fine-tuned CLIP Surgery [5] model with v-
v self-attention introduced at both training and inference
stages. Here, in Figs. S1 and S2, we provide an addi-
tional visual comparison between our method and state-
of-the-art language-supervised image segmentation meth-

ods: GroupViT [8], SegCLIP [6], CLIP Surgery [5], fine-
tuned on the FS-COCO dataset. The fine-tuned versions
of these models are denoted as GroupViT⋆⋆, SegCLIP⋆,
CLIP Surgery⋆⋆, respectively. In Figs. S1 and S2, we show
segmentation results and the error maps (in red), which vi-
sualize incorrectly labeled pixels for each method.

S2.2. Segmentation Accuracy Analysis by Category

In this section, we analyze segmentation accuracy per cat-
egory in both the train and test sets. We show in Fig. S3
the pixel accuracy (Acc@P) for each selected object cat-
egory. For the figure, we selected categories that appear
more than ten times in the FS-COCO dataset [2] captions.
First, we can see that the segmentation accuracy is smoothly
distributed across different categories.

Next, we investigate whether more frequent categories
are more likely to be labeled accurately. To evaluate this,
we approximate the frequency of a category by counting its
occurrence in both the train and test sets, then consider only
categories that appear in the test set. We plot with green and
red lines in Fig. S3 the train and test sets category frequency,
respectively.

The figure clearly shows a lack of correlation between
the frequency of category occurrence and its segmentation
accuracy.

We further evaluate it numerically by computing the cor-
relation between x, the pixel accuracy (Acc@P) of each cat-
egory, and y the occurrence frequency of this category:
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where N is the number of categories in the test set.
The resulting correlation coefficients for both train and

test sets are 0.16 and 0.14, respectively. This suggests a
very weak accuracy-frequency correspondence, indicating
that our model is not biased toward more frequently occur-
ring categories. We hypothesize that this is in part due to

1

https://ahmedbourouis.github.io/Scene_Sketch_Segmentation/


Grth. GroupViT* SegCLIP* CLIP_Surgery** Ours

building
dog
fence
grass
man
pole
tree

cloud
giraffe

grass

zebra

boy
disc

grass

tree

building
person
pole
skateboard
sun
tree
yard

70.67

35.38

72.91

47.36

69.13

57.76

68.67

59.49

75.25

69.54

76.52

75.98

88.00

92.05

83.15

93.47

Figure S1. Part-1: Visual comparison of our method against state-of-the-art language supervised image segmentation methods, trained on
the FS-COCO dataset [2]. The numbers show Acc@P values. The error maps in red represent the misclassified pixels.
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Figure S2. Part-2: Visual comparison of our method against state-of-the-art language supervised image segmentation methods, trained on
the FS-COCO dataset [2]. The numbers show Acc@P values. The error maps in red represent the misclassified pixels.



Figure S3. Blue bars show pixel accuracy (Acc@P) for each object category with more than 10 appearances in FS-COCO dataset [2]
captions. The green line shows the frequency of occurrence of each category in the train set. The red line shows the frequency of
occurrence of each category in the test set. Please see Sec. S2.2 for an additional discussion.

our careful fine-tuning strategy, which prevents over-fitting.
Therefore, the model efficiently leverages pre-training on a
large image dataset.

Model generalization to new object categories Our test
set includes 185 object classes, with 125 seen and 60 un-
seen during training. The accuracy on seen categories is
86.35% and 84.68% on unseen. These results demonstrate
good generalization of our model to unseen categories.

S2.3. Synthetic vs. Freehand sketches

In the Sec. 4.4.3 in the main paper, to better understand the
generalization properties of our model, we evaluated our
method trained on the sketches from the FS-COCO dataset
[2] on the freehand sketches from [4]. Here, we provide
additional analysis of generalization properties.

S2.3.1 Generalization to sketches consisting of clip-
art-like object sketches

Here, we additionally evaluate our method on the
SketchyScene [10] dataset. The SketchyScene [10] dataset
contains 7,264 sketch-image pairs. It is obtained by pro-
viding participants with a reference image and clip-art-like
object sketches to drag and drop for scene composition.
The augmentation is performed by replacing object sketches
with other sketch instances belonging to the same object
category. This is a dataset with sketches with a large do-
main gap from the freehand scene sketches we target. Yet,
it is interesting to evaluate the generalization properties of
our method. Tab. S1 shows a comparison of the zero-
shot performance of our method (third line: Ours) with
the two fully-supervised methods trained on semi-synthetic
sketches. The Acc@P and mIoU are the metrics we use in

Method Acc@P MAcc mIoU FWIoU

LDP [4] 93.46 85.84 74.93 88.13
SketchSeger [9] 95.44 88.18 81.17 91.52
Ours 87.99 66.59 60.91 76.33

Ours⋆ 92.87 79.54 71.73 85.19
Ours⋆⋆ 91.23 77.87 70.51 84.72

Table S1. Comparison of our method with state-of-the-art fully su-
pervised scene sketch segmentation methods on the sketches from
the SketchyScene [10] dataset. Ours: trained on freehand sketches
from the FS-COCO dataset [2] (zero-shot performance), Ours⋆ is
trained on synthetic sketches [10], Ours⋆⋆ is trained on both free-
hand [2] and synthetic sketches [10].

the main paper. We additionally report results for two addi-
tional measures:
• Mean Pixel Accuracy (MeanAcc): It measures the aver-

age pixel accuracy Acc@P of each category.
• Frequency Weighted Intersection over Union

(FWIoU): It introduces category occurrence fre-
quency to the mIoU, by weighting per-category pixel IoU
(intersection over union) by the frequency of occurrence.
Our model reaches high accuracy on these sketches, even

in the presence of a large domain gap. In particular, the
performance of our model on these sketches is higher than
on the freehand and more challenging sketches from the FS-
COCO dataset [2]. This, combined with the results in Tab. 3
in the main paper, is a strong argument towards usage of
true freehand sketches with weak annotation in the form of
captions over the semi-synthetic dataset of scene sketches.

Fine-tuning on semi-synthetic sketches While our
model does reach high accuracy on these sketches, it does



Method Trained on Supervision Tested on Segmentation accuracy
Pixel labels Captions mIoU Acc@P Acc@C MAcc FWIoU

LDP [4]
SketchyScene ∪ FS-COCO 33.04 56.23 56.71 51.16 52.63
∪ SKY-Scene ∪ ✓ LDP freehand 37.16 78.84 - 47.25 66.98
∪ TUB-Scene SketchyScene 74.93 93.46 - 85.84 88.13

SketchSeger [9]
SketchyScene ∪ FS-COCO - - - - -
∪ SKY-Scene ∪ ✓ LDP freehand - - - - -
∪ TUB-Scene SketchyScene 81.17 95.44 - 88.18 91.52

Ours
FS-COCO 73.48 85.54 87.02 82.27 84.09

FS-COCO ✓ LDP freehand 53.94 81.63 - 59.36 69.37
SketchyScene 60.91 87.99 - 66.59 76.33

Ours⋆ SketchyScene
FS-COCO 61.79 74.43 75.62 69.41 71.75

✓ LDP freehand 49.72 71.96 - 48.71 59.15
SketchyScene 71.73 92.87 - 79.54 85.19

Ours⋆⋆
FS-COCO ∪ FS-COCO 68.84 79.21 81.29 74.08 77.63

∪ SketchyScene ✓ LDP freehand 50.13 76.07 - 55.83 62.97
SketchyScene 70.51 91.23 - 77.87 84.72

Table S2. Comparison of our method with state-of-the-art fully supervised scene sketch segmentation methods in different setups.
Ours: trained on freehand sketches from the FS-COCO dataset [2], Ours⋆ is trained on synthetic sketches [10], Ours⋆⋆ is trained on both
freehand [2] and synthetic sketches [10].
We test all methods on three datasets: our FS-COCO-based test set, LDP [4] freehand sketches test set, and SketchyScene [10] synthetic
sketches test set.
Training datasets: The SketchyScene [10] dataset contains 7,265 synthetic scene sketches spanning 46 categories with 5,617 images for
training, and 1,113 for test. SKY-Scene and TUB-Scene were introduced in [4], and are composed of object sketches from the Sketchy [7]
and TU-Berlin [3] datasets, respectively. They both have 7,265 synthetic scene sketches and follow the same data split.

Method mIoU Acc@P Acc@C

LDP [4] 33.04 56.23 56.71
Ours 73.48 85.54 87.02

Ours⋆ 61.79 74.43 75.62
Ours⋆⋆ 68.84 79.21 81.29

Table S3. Comparison on the freehand sketches from the FS-
COCO dataset [2] of our method with state-of-the-art fully su-
pervised scene sketch segmentation method LDP [4]. LDP [4]
is trained on semi-synthetic sketches. Ours: trained on freehand
sketches from the FS-COCO dataset [2], Ours⋆ is trained on syn-
thetic sketches [10], Ours⋆⋆ is trained on both freehand [2] and
synthetic sketches [10]. We do not compare here with SketchSeger
[9], as there is no code available and we can not run it on sketches
from the FS-COCO dataset [2].

not reach the performance of fully supervised methods
trained on semi-synthetic sketches when tested on semi-
synthetic sketches. Therefore, we investigate whether fine-
tuning our model on semi-synthetic sketches can close the
gap – while relying only on textual labels and not pixel-level
annotations.

We perform two additional experiments:
1. Training exclusively on Synthetic Sketches (Ours⋆):

We train our model on the SketchyScene synthetic
sketches [10] using language supervision. Captions
are constructed by concatenating scene sketch category
names into one text token.

2. Training on Both Synthetic and Freehand Sketches
(Ours⋆⋆): We train the model on both SketchyScene
synthetic sketches and FS-COCO freehand sketches.
The results are shown in Tab. S1: Ours⋆ and Ours⋆⋆.
We observe a performance increase for Ours⋆ on the

sketches from the SketchyScene [10] dataset, reaching com-
petitive performance with fully supervised methods [4, 9].
This highlights the generalization properties of our training
pipeline for different data distributions and highlights that
succinct captions can serve as a robust supervisory signal,
lifting the need for extensive annotations.

However, when freehand sketches are added to the train-
ing data (Ours⋆⋆), there is a slight decrease in perfor-
mance across all metrics. This further emphasizes the exis-
tence of a domain gap between freehand sketches and semi-
synthetic sketches, which again motivates the usage of free-
hand sketches with weak annotations.



Similar observations are made in Tab. S3 when the model
is trained on the synthetic sketches (Ours⋆) and tested on the
FS-COCO freehand sketches. Even when both synthetic
and freehand sketches are used for training (Ours⋆⋆), the
model’s performance degrades compared to training solely
on freehand sketches. This further emphasizes our observa-
tions regarding the domain gap between synthetic and free-
hand sketches.

Tab. S2 shows a full comparison of our method against
fully supervised sketch segmentation methods: LDP [4]
and SketchSeger [9], across the free datasets: FS-COCO-
based test set, LDP [4] freehand sketches test set, and
SketchyScene [10] synthetic sketches test set. It shows the
superiority of our method on both datasets of freehand scene
sketches.

S2.3.2 Pre-training on synthetic sketches

We also experiment with fine-tuning CLIP and CLIP-
Surgery on synthetic sketches. However, training on mil-
lions of synthetic sketches is out of the scope of this work
due to computational constraints. As a feasible experiment,
we generated 9025 synthetic sketches for the reference im-
ages in our training set, using [1], in ‘contour’ style (as the
closest to the test set sketches style). This is the number of
sketches identical to the number of sketches we use to train
our model. The accuracy on our test set of fine-tuned this
way CLIP and CLIPSurgery increases by negligible 2 to 3
points compared to their zero-shot performance. In compar-
ison, our model outperforms their zero-shot performance
by 56.72% and 13.07% points, respectively. Training our
model from CLIP weights pre-trained on synthetic sketches
boosts the performance only by 0.42 points.

S3. Detailed human Study Analysis
In this section, we provide a more in-depth discussion of
Sec. 5: Human-model alignment of the main paper.

S3.1. Human Study Categories

In the main paper, in Sec. 5.1, we introduced four challeng-
ing categories of sketches for our method, that we used for
the user study. We show all the sketches used in the user
study in Fig. S4. For convenience, below we repeat the def-
inition of each category:

(1) Ambiguous sketches: sketches where it might be hard
even for a human observer to understand an input sketch.
We selected the sketches by visually examining the test
set sketches alongside reference images.

(2) Interchangeable categories: sketches containing mul-
tiple objects with labels that can interchange each other,
such as ‘tower/building’, ‘girl/man’, and ‘ground/grass’.

(2) Correlated categories: sketches with categories that
typically co-occur in scenes. These categories are se-

Interchangeable CorrelatedAmbiguous Numerous

Figure S4. Visualization of the selected sketches for the four
challenging sketch categories used in the user study. Please see
Sec. S3.1 for the description of categories.

mantically related. We selected sketches containing
the most common pairs with significant co-occurrence.
Specifically, ‘branch/bird’ (52%), ‘runway/airplane’
(44%), ‘railway/train’ (39%), and ‘road/car’ (29%),
were chosen.

(4) Numerous-categories: sketches with six or more object
categories and a model accuracy (Acc@P) below 80%.
The sampled sketches have an average of 6.4 categories
per sketch (7, 7, 6, 6, 6).

Additionally, we included a Strong performance cate-
gory, comprising ten sketches where the model’s accuracy
(Acc@P) exceeded the average performance (85.54%), to
demonstrate scenarios of effective model segmentation.

S3.2. Annotators

We recruited 25 participants (14 male). The annotators are
PhD students in diverse disciplines and of diverse national-
ities aged from 22 to 42 years (average age 29.32). We be-
lieve this group represents well the general population and
each individual performed the task carefully.
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Figure S5. Visualizations of the confidence in segmenting seman-
tically similar objects by human annotators and our model. Inter-
section shows the pixels that are confidently assigned to belong
to both considered categories (with a confidence threshold higher
than 60%). Please see Sec. S3.3 for the discussion.

S3.3. Visual Analysis of Interchangeable Categories
Segmentation Results

We conducted a visual analysis to compare the confidence
in segmenting semantically similar objects by human an-
notators and our model. For each object category, we ob-
tain a category confidence map by counting how many par-
ticipants assigned a given label to a category. For our
model, we obtain segmentation confidence as a result of
a cosine similarity computation between the sketch patch
features and the category textual embedding. We visualized
in Fig. S5 the obtained confidence maps for the most fre-
quently confused by our model categories: ‘girl/man’ and
‘building/tower’. We also show the pixels that are con-
fidently assigned to belong to both considered categories
(with a confidence threshold higher than 60%). We can ob-
serve that our model is less confident than humans in as-
signing labels to these categories.

S3.4. Statistical Significance: Ours vs CLIPSurgery

On the 20 sketches from the 4 challenging groups, our
model outperforms CLIPSurgery with a p-value of 2×10−5.
In the ‘strong’ group, we have 10 sketches, in which, while
our model performs on par with humans, it outperforms
CLIPSurgery with a p-value of 0.005.

Dropout 0 0.2 0.4 0.6 0.8 1

Acc@P 85.54 84.61 84.38 84.16 83.06 82.86

Table S4. Acc@P with different cross attention dropout ratios

S4. Additional Ablation Studies
S4.1. Detailed Ablation on Cross Attention vs. Self

Attention

To validate the effectiveness of our cross-attention module,
we added a residual connection to demonstrate that rely-
ing solely on self-attention features, without the integration
of cross-attention, leads to suboptimal segmentation results.
We run several experiments with varying dropout ratios in
the cross-attention block. This allows us to assess its impact
on model performance. The results, presented in Tab. S4,
show model accuracy across different dropout levels, from
0 (no dropout) to 1 (complete dropout). This shows the ben-
efit of the design used in the main paper, equivalent to using
only cross-attention in the category-level encoder.

S4.2. Models Checkpoint Choice

As described in Sec. 4.3 of the main paper, for each of
the models fine-tuned on sketch data: ours and competing
methods, we select a checkpoint based on the performance
on the validation set with pixel-level segmentation annota-
tions, consisting of 475 sketches. This requires at training
time having a small set of pixel-level annotated sketches,
which can be limiting. However, we observe that the loss
gradually decreases for our model, and it is safe to choose
a last checkpoint if such an annotated set is not available.
In Tab. S5, we provide a comparison with the results when
for our model and competing models the last checkpoint is
used. We trained for 20 epochs. We observe that after that
the convergence rate is very low for each of the considered
models.

We observe only a marginal performance drop (less than
one point in all metrics) for our model when the last check-
point is used compared to a checkpoint selected based on
the performance on the validation set (referred to as opti-
mal in the table). This implies that competitive model per-
formance can be achieved without using any pixel-level an-
notations.

We also observe that with either of the choices of a
checkpoint, the performance on the validation and test sets
is similar, with just a small decrease in performance on the
test set compared to the validation set. Our test set includes
sketches from five non-expert artists whose sketches were
not present in either the training or validation sets. There-
fore, this analysis implies that there is no over-fitting to the
training data and our model robustly generalizes to the un-
seen sketches and drawing styles.



Test set Validation setModel Checkpoint mIoU Acc@P Acc@S mIoU Acc@P Acc@S
Optimal 22.86 33.41 32.64 25.76 36.34 35.17CLIP* Last 19.34 28.89 27.64 22.11 31.49 31.07
Optimal 45.71 66.21 66.89 47.26 68.28 68.76GroupViT* Last 43.83 64.03 64.48 46.58 67.70 68.13
Optimal 49.26 69.87 73.64 51.27 71.79 75.67SegCLIP* Last 46.41 66.91 70.31 50.86 70.12 74.41
Optimal 48.74 65.38 68.78 50.84 67.32 70.88CLIP Surgery* Last 47.29 63.94 67.13 48.33 66.01 68.82
Optimal 59.98 78.68 81.11 62.41 80.69 83.23CLIP Surgery** Last 58.64 77.34 79.88 61.53 79.41 82.07
Optimal 73.48 85.57 87.02 74.76 86.83 88.41Ours Last 72.51 84.74 86.39 74.12 85.97 87.76

Table S5. Models performance comparison on test and validation sets using two different checkpoint choices: (a) Optimal: A checkpoint
selected based on the performance on the pixel-level annotated validation set, and (b) Last: The checkpoint obtained after training each
model for 20 epochs. Please see Sec. S4.2 for the in-depth discussion.

Training Parameters Inference
GFLOPS Hours Epochs # Trainable # Full GFLOPS Secs.

CLIP 189.47 3.76 20 149M 149M 89.02 0.21
CLIPSurgery 231.41 4.08 20 162M 162M 113.64 0.73
Ours 346.36 7.31 20 16M 165M 121.59 1.05

Table S6. Note that the parameters of cross-attention layers (added complexity in our model over CLIPSurgery) are used only during training.

S4.3. Segmenting out Individual Categories

To explore the model’s ability to isolate individual sketch
categories through thresholding, as described in Sec. 3.4 in
the main paper, we assess two model versions, where (1)
the optimal checkpoint is used, selected based on the per-
formance on the validation set and (2) the last checkpoint
is used (from the 20th epoch). We measure pixel accuracy
(Acc@P) of segmenting a sketch into an individual category
and the rest (background), employing varying threshold val-
ues. Fig. S6 shows the plot of segmentation accuracy with
different threshold values on test and validation sets when
either optimal Fig. S6(a.) or last Fig. S6(b.) checkpoints are
used.

When optimal checkpoint is used When using the opti-
mal checkpoint, the model consistently achieves strong per-
formance on validation and test sets, achieving 86.06% and
85.71% Acc@P, respectively, albeit at different threshold
values (0.79 and 0.71, respectively). This implies that the
label assignment confidence is slightly lower on the unseen
sketches in new styles. However, despite this, the model
maintains a consistently strong performance on these new
sketches and styles.

When the last checkpoint is used When we use the
model from the last checkpoint, the best performance on
the validation and test sets is obtained with slightly lower
threshold values of 0.73 and 0.68, respectively. This im-
plies that there is a correlation between the model’s confi-
dence and its performance.

S5. Computational Cost
We detail in Tab. S6 the computational cost of our method
compared to CLIP and CLIPSurgery. Our two-level hi-
erarchical network design introduces additional complex-
ity, through value-value self-attention and cross-attention
blocks. However, we maintain a comparable level of com-
plexity to CLIPSurgery during inference. This slight com-
putational increase is justified given the substantial 13 mIoU
points improvement over CLIP Surgery⋆⋆ (as shown in
Tab. 4 in the main paper). Our code can be further opti-
mized to reach the performance of CLIPSurgery at infer-
ence time.
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