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A. IDRCell100k Construction

We acquired the IDRCell100K dataset using a distributed
High-Performance Computing (HPC) cluster managed
by HTCondor. Employing multi-processing and multi-
threading techniques, the dataset was efficiently down-
loaded over two weeks. IDRCell100K serves as an initial,
diverse channel configuration dataset, a pioneering resource
in this domain to the best of our knowledge. Although
currently small in scale, it provides an excellent basis for
self-supervised learning applications, including training on
high-quality microscopy images and evaluating channel-
adaptive architectures with a multichannel dataset.

Figure 6. The imaging method distribution within IDRCell-100k,
highlighting the dataset’s variety in microscopy techniques. This
diversity is crucial for developing models capable of interpreting
cells imaged under various conditions, despite certain methods be-
ing less represented due to higher acquisition costs and technical
complexities.

To ensure a broad data distribution, we randomly se-
lected 1,300 images from each study with at least this
amount of data available. These images were uniformly
chosen from the 8,050,408 images in the ”Cell” section of
the Image Data Resources datalake. The curated dataset
comprises 104,093 multiplexed images, corresponding to
308,898 channel, and features 1 to 10 channels per image.
IDRCell100k encompasses microscopy images from 79 dif-
ferent assays and 7 distinct imaging methods (see Fig. 6).
It will be made freely accessible under an open license, and
would require 183GB of disk space for storage.

B. Evaluation Tasks and Datasets

CYCLoPs

Dataset Description. The CYCLoPs (Collection of Yeast
Cells Localization Patterns) dataset* is a specialized collec-
tion of 27,058 single-cell yeast images, designed to sup-
port research in eukaryotic cell biology. This dataset amal-
gamates systematic genetics, high-throughput microscopy,
and image analysis to reveal protein interactions within
cells. A distinctive feature of CYCLoPs is its dual-channel
imaging: one channel highlights the protein of interest,
and the other visualizes the cytosol. This setup is ad-
vantageous for precise visualization and subsequent com-
putational analysis. The dataset’s standardization and de-
tailed annotations facilitate its application in machine learn-
ing, particularly in deep learning-based classification tasks,
without necessitating extensive prior domain knowledge.

Figure 7. The CYCLoPs dataset: A depiction of 16 distinct classes
representing diverse protein localizations within the yeast cell,
each class corresponding to a unique subcellular region.

Task Description. The primary analytical task with the
CYCLoPs dataset is the classification of proteins’ subcel-
lular localizations in yeast cells. This task is critical for
understanding protein network dynamics and cellular func-
tions. Accurate classification of protein localizations pro-
vides insights into their roles and interactions within the
cell, essential for advancing knowledge in cellular biology
and proteomics. The dataset’s high-quality, dual-channel
images enable precise localization, making it a valuable re-
source for developing and testing deep learning models for
protein localization prediction in eukaryotic cells.

*The dataset can be accessed on Kaggle: CYCLoPs Dataset.

https://www.kaggle.com/datasets/stanleyhua/cyclops-protein-loc


Figure 8. A selective overview of the diverse microscopy image types in IDRCell-100k, illustrating the dataset’s variety. The aim is to
achieve a broad and heterogeneous distribution of training data.

BBBC048

Dataset Description. The BBBC048 dataset†, part of the
Broad Bioimage Benchmark Collection, comprises 32,266
images of Jurkat cells, a type of human immune cell. These
cells were grown asynchronously and imaged using the Im-
ageStream platform. The dataset’s uniqueness lies in its
dual staining approach: Propidium Iodide for DNA content
quantification and MPM2 antibody for identifying cells in
the mitotic phase of the cell cycle. Created by the Flow Cy-
tometry Core Facility at Newcastle University, this dataset
is specifically designed to support cell cycle reconstruction
and disease progression analysis, particularly through deep
learning methods.

Figure 9. Representative Image from BBBC048: A Jurkat cell
stained with Propidium Iodide and MPM2 antibody, exemplifying
the dataset’s dual-staining technique for cell cycle analysis.

Task Description. The primary task with the BBBC048
†More details on the dataset are found here : BBBC048.

dataset is to classify discrete stages of the cell cycle. This
task is crucial for understanding cellular dynamics and dis-
ease progression, particularly in the context of cancer re-
search and other biological processes. The dataset has
demonstrated its utility in this regard by achieving a six-
fold reduction in error rate for cell cycle stage classification
compared to previous boosting-based approaches. Accu-
rate cell cycle stage classification using deep learning mod-
els not only advances our understanding of cellular mecha-
nisms but also has potential applications in therapeutic in-
terventions. The BBBC048 dataset thus serves as a pivotal
resource for developing robust and generalizable models for
cell cycle prediction and analysis from raw image data.

BloodMNIST

Dataset Description. BloodMNIST, a part of the MedM-
NIST collection[48], is a dataset focused on images of nor-
mal blood cells. It was created from blood samples col-
lected from individuals free of infections, hematologic or
oncologic diseases, and not undergoing any pharmacologic
treatments. The dataset contains a total of 17,092 images,
which are divided into 7 classes. Each class represents a
different type of normal cell found in human blood. The
original high-resolution images (3 × 360 × 363 pixels) (see
Fig.11) have been resized to fit the standardized MedM-
NIST format of 3 x 28 x 28 pixels. This resizing maintains
the dataset’s utility while ensuring compatibility with the
broader MedMNIST framework.

https://bbbc.broadinstitute.org/BBBC048/


Figure 10. Randomly sampled BBBC048 images across various
Cell Cycle Stages. Each column represents a multiplexed image
from a distinct cell cycle, with each row corresponding to a differ-
ent channel for the same cell. The visualization suggests specific
channels (predominantly the middle row) and their Intra-Channel
interactions is sufficient for effective cell cycle classification, low-
ering down the need to extract Inter-Channel information.

Figure 11. Sample Observations from BloodMNIST: The top row
displays the 7 different classes of normal blood cells, showcasing
the dataset’s variety in cellular types.

Task Description. The primary application of the
BloodMNIST dataset is in various biological and medical
image analysis tasks, prominently including the classifica-

tion of blood cell types. These tasks are crucial for under-
standing the characteristics of normal blood cells, which
can have implications for diagnosing and studying blood-
related diseases. The dataset’s structure and diverse cell
types make it an excellent resource for training and testing
machine learning models, especially for classification tasks.
Utilizing BloodMNIST provides a means to assess the per-
formance and generalization capabilities of pretrained mod-
els in biological imaging, offering insights into how well
these models can adapt and apply their learned knowledge
to a range of biological tasks.

NF-kB Nuclear Translocation Assay

Dataset Description. The NF-kB Nuclear Translocation
Assay in HCC1143 Cancer Cells dataset focuses on the
translocation of the NF-kB protein from the cytoplasm to
the nucleus within HCC1143 cancer cells. This process is
central to activating the NF-kB pathway, a critical element
in cellular responses to various stimuli, especially in cancer
biology. The assay encompasses several stages: cell culture,
cell seeding, treatment, fixation and permeabilization, and
staining. During treatment, cells are exposed to TNF-alpha
to induce NF-kB translocation. Staining is performed using
specific antibodies for NF-kB and DAPI for nuclear label-
ing, ensuring clear differentiation between cytoplasmic and
nuclear regions. The images acquired through high-content
screening fluorescence microscopy provide detailed visual-
izations of NF-kB translocation post-treatment.

Figure 12. Representative Images from the NF-kB Nuclear
Translocation Assay: Visualizing NF-kB protein movement in
HCC1143 cancer cells, post TNF-alpha treatment.

Task Description. This assay focuses on quantifying
NF-kB translocation from the cytoplasm to the nucleus—a
crucial regression task in understanding cancer biology. It
provides a standardized approach to assess NF-kB activa-
tion in response to TNF-alpha. By comparing treated and
untreated cells, the assay enables the delineation of NF-kB
activation’s degree and kinetics. This is pivotal for under-



standing the dynamics of NF-kB movement and its implica-
tions in cancer biology. The data derived from this assay can
be used across different cell lines and under varying condi-
tions, making it a valuable tool for future studies aimed at
quantifying translocation extent and deciphering its broader
implications in the field of cancer biology.

BBBC021

Dataset Description. The BBBC021 dataset‡ from the
Broad Bioimage Benchmark Collection contains 39,600
images of MCF-7 breast cancer cells. These cells, a rele-
vant model for p53-wildtype breast cancer research, were
treated with 113 small molecules at eight different concen-
trations. The imaging process employed fluorescent mi-
croscopy to highlight DNA, F-actin, and Beta-tubulin. This
dataset offers an extensive view into the cellular morphol-
ogy of MCF-7 cells under various pharmacological condi-
tions, making it an invaluable resource for drug discovery
and cell biology research.

MoA Task Description. The primary task associated
with the BBBC021 dataset is the prediction of drug mech-
anisms of action (MoA) through image-based phenotypic
profiling. This involves analyzing cellular morphologi-
cal changes induced by a diverse range of chemical com-
pounds. The dataset facilitates the identification of 12 dis-
tinct primary mechanisms, providing critical insights into
how different compounds affect cellular morphology and
behavior. This information is essential in drug discovery, as
it helps in understanding the therapeutic effects and MoA
of various compounds. The detailed cellular response anal-
ysis to these compounds is key to identifying new drug can-
didates and comprehending the cellular impact of existing
drugs, thereby contributing significantly to cancer research
and treatment.

Channel Prediction Task Description. In the realm
of cell morphology analysis, the ability to predict cellu-
lar components imaged in different channels is pivotal.
Given the practical limitations in the number of channels
that can be imaged before cell degradation, predicting one
channel based on others could enhance cell understanding
at reduced costs and augment existing datasets. For the
BBBC021 dataset, a key task is predicting the Actin com-
ponent (second channel) using the other two channels. We
specifically approach this task in this paper by utilizing only
the CLS token representation from the input channels for
Actin channel prediction, allowing an assessment of the
specific effects and fidelity of our model representations in
channel prediction.

Bray et al

Dataset Description. The Bray et al. dataset[5], detailed
in Gigascience, presents an extensive array of images and

‡Further information is available at BBBC021.

morphological profiles derived from the Cell Painting as-
say. It encompasses 919,265 five-channel fields of view,
featuring images from 30,000 small-molecule treatments
and covering 30,616 distinct compounds. This dataset is
particularly valuable for its detailed morphological features
extracted from individual cells and at population levels, in-
cluding quality-control metrics and chemical annotations
for the compounds used. It stands as a significant resource
for comparing cellular states under various chemical pertur-
bations, offering a comprehensive view of cell morphology
and function under diverse treatment conditions.

MoA Task Description. The primary task associated
with the Bray et al. dataset is, similarly to BBBC021, to ex-
plore Mechanisms of Action (MoA) and cellular responses
to a wide range of chemical treatments. This involves ana-
lyzing how different small molecules impact cell morphol-
ogy and function. The dataset’s extensive collection of im-
ages and detailed morphological profiles allow for in-depth
studies of the effects of these treatments at both the single-
cell and population levels. Such analyses are crucial in cel-
lular biology research, providing insights into the diverse
impacts of small molecules on cells. This dataset serves as
a rich foundation for developing and testing computational
methods in drug discovery and cell biology, aiding in the
advancement of research in these fields.

C. Model details

Architectural Differences

In the field of bioimaging, different approaches are adopted
to encode images with multiple channels into a unified rep-
resentation, each with its distinct methodology and out-
comes, as shown in Figure 13.

The One Channel Encoding approach, prevalent in exist-
ing works, treats each channel of an image independently,
creating a latent representation for each channel which are
then concatenated. This method, while effective for images
with uniform channel counts, faces challenges with hetero-
geneous datasets. It lacks the capacity to encode various
datasets into a single representation, limiting its applicabil-
ity for diverse bioimage datasets.

ChAda-ViT, or Channel Adaptive Vision Transformer,
presents a novel approach. It encodes images with vary-
ing channel dimensions into a single fixed-size embedding
space, incorporating both Inter-Channel and Intra-Channel
attention. This method leverages token padding and mask-
ing techniques, adapted from NLP transformers, to handle
images with different numbers of channels. Additionally, it
introduces channel embeddings to preserve channel-specific
information. ChAda-ViT’s architecture enables it to process
a greater number of input tokens compared to standard Vi-
sion Transformer models, thus accommodating the variabil-
ity in channel count while maintaining the integrity of the

https://bbbc.broadinstitute.org/BBBC021/


Figure 13. Comparative Architectural Overview: This figure illustrates the distinct methodologies of One Channel Encoding (left), Inter-
Channel Only (center) and ChAda-Vit (right) approaches in bioimage processing. It highlights the unique processing strategies and atten-
tion mechanisms employed by each method to handle multi-channel bioimages.

self-attention mechanism.
Another variant in this realm is the Inter-Channel only

approach. This method tokenizes each channel as a sin-
gle large patch, compelling the model to focus solely on
inter-channel relationships. By omitting Intra-Channel at-
tention, this approach concentrates on the features derived
from the relationships between individual channels, differ-
ing from the one-channel approach and ChAda-ViT, which
consider both intra and inter-channel dynamics.

Patch-wise Channel Processing

Given an image  I of dimensions  H \times W \times C  , where  H, W, 
and  C denote the height, width, and number of channels
respectively, we dissect each channel into non-overlapping
patches. For each channel  c , the patch at spatial location
 (i, j)   is denoted as  P_{c, i, j}  , and is of dimensions  p \times p   where
 p = 16   in our optimal model configuration.
Formally, the process of patch extraction and linear projec-
tion can be expressed as follows:

  P_{c, i, j} = I[c, i \cdot p : (i+1) \cdot p, j \cdot p : (j+1) \cdot p]                   

Subsequently, each patch  P_{c, i, j}  is linearly projected using a
shared Conv2D layer  f with learned parameters  \theta , yielding
the projected patch  \hat {P}_{c, i, j}  :

  \hat {P}_{c, i, j} = f(P_{c, i, j}; \theta )    

Thus, each channel of image  I is transformed into a
set of linearly projected patches, and the operation is per-

formed identically across all channels to maintain a con-
sistent projection space. This results in a set of projected
patches  \hat {P}  for the entire image  I , which are then further pro-
cessed through subsequent stages of the Channel-Adaptive
Vision Transformer architecture.

Positional Embeddings

Positional information is crucial for retaining the spatial
layout of an image through the transformation process. To
encode this information, we introduce a differentiable posi-
tional embedding to each patch. The positional embedding
for a patch at spatial location  (i, j)   is denoted as  \text {pos}_{i,j}  .
Formally, the positional embedding is added to the linearly
projected patch  \hat {P}_{c, i, j}  from the previous stage as follows:

  \tilde {P}_{c, i, j} = \hat {P}_{c, i, j} + \text {pos}_{i,j}    

This operation is performed for each patch, across all
channels, ensuring that patches located at the same spatial
coordinates, albeit in different channels, receive the same
positional embedding.

Through this mechanism, the spatial coherence of the
original image is preserved across its transformation into
the joint embedding space.
The positional embeddings  \text {pos}_{i,j}  are learnable parameters
that are optimized during the training process to better cap-
ture the spatial relationships among patches.



Channel Embeddings

Channel embeddings are also introduced to encapsulate the
channel order information, ensuring the model can discern
patches from different channels even when they are at the
same spatial location. Let  \text {chan}_c  denote the channel embed-
ding for channel  c .
The channel embedding is added to the previously obtained
representation  \tilde {P}_{c, i, j}  from the positional embedding stage as
follows:

  \bar {P}_{c, i, j} = \tilde {P}_{c, i, j} + \text {chan}_c    

This operation augments the patch representation with
channel-specific information, ensuring that the model can
differentiate patches from distinct channels. The channel
embeddings  \text {chan}_c  are learnable parameters that are opti-
mized during the training process, allowing the model to
learn and represent channel-wise order information effec-
tively.
Through the integration of channel embeddings, our model
can robustly handle the differentiation between patches
across channels, addressing a critical challenge in process-
ing multichannel images.

Padding Mechanism for Uniform Sequence Generation

In order to standardize the sequence length across different
multichannel images, a padding strategy is employed. Let
 C_{\text {max}}  denote the maximum number of channels across the
dataset, and  C denote the number of channels in a given
image  I . The difference  D = C_{\text {max}} - C   denotes the number
of missing channels that need to be padded.
For each missing channel  d where  d = 1, 2, \ldots , D        , a
padding token  \text {pad}_d  is generated and appended to the se-
quence of patches. Formally, the padded sequence of
patches for image  I is denoted as  \text {Seq}_{\text {pad}}(I)  and is given
by:

  \text {Seq}_{\text {pad}}(I) = \{\bar {P}_{c, i, j} \}_{c=1}^C \oplus \{\text {pad}_d\}_{d=1}^D     

, where  \{\bar {P}_{c, i, j} \}_{c=1}^C  denotes the sequence of channel-
augmented patches from the previous stage,  \{\text {pad}_d\}_{d=1}^D 

denotes the set of padding tokens for the missing channels
and where  \oplus denotes the concatenation operation.

This padding mechanism ensures that the sequence length
is uniform across all images, facilitating a consistent input
structure for the subsequent processing within the Trans-
former architecture.

Handling Padded Sequences in Self-Attention

The self-attention mechanism is central to the Transformer
architecture. However, the presence of padded tokens can

distort the attention computation. To tackle this, we utilize
a src key padding mask to indicate the locations of
the padded tokens, ensuring they are excluded from the
attention computation.

Let  \text {Seq}_{\text {pad}}(I)  denote the padded sequence of
patches for image  I from the previous stage. The
src key padding mask is a binary mask of dimen-
sions  N \times T   , where  N is the batch size and  T is the
sequence length, with ones indicating the locations of
padded tokens and zeros elsewhere.

This src key padding mask for image  I is constructed
as follows:

  \text {mask}_{n,t} = \begin {cases} 0 & \text {if } \text {Seq}_{\text {pad}}(I)[t] \text { is a padded token} \\ 1 & \text {otherwise} \end {cases} 


     


The self-attention computation is then modified to ex-
clude the influence of padded tokens. Let  Q, K, V   de-
note the query, key, and value matrices respectively, and
 \text {Attn}(Q, K, V)    denote the original attention computation.
The modified attention computation  \text {Attn}_{\text {mask}}(Q, K, V)    is
given by:

  \text {Attn}_{\text {mask}}(Q, K, V) = \text {Attn}(Q \odot \text {mask}, K \odot \text {mask}, V \odot \text {mask})      

, where  \odot denotes element-wise multiplication. Through
this modification, the self-attention mechanism effectively
ignores the padded tokens, ensuring accurate attention com-
putation across the real patches.

Class Token Integration

A distinct class token, denoted as [CLS], is prepended to
the sequence of patches to obtain a global representation
of the image. The class token is a differentiable parameter
that is optimized during the training process. Let  \text {Seq}_{\text {pad}}(I) 
denote the padded sequence of patches for image  I from
the previous stage.

Thus the sequence with the class token, denoted as
 \text {Seq}_{\text {CLS}}(I) , is constructed as follows:

  \text {Seq}_{\text {CLS}}(I) = [CLS] \oplus \text {Seq}_{\text {pad}}(I)   

, where  \oplus denotes the concatenation operation.

This updated sequence  \text {Seq}_{\text {CLS}}(I)  is then fed into the
Transformer, which processes the sequence through its
multiple layers of self-attention and feed-forward networks.
The final representation of the [CLS] token captures a
global representation of the image, which is utilized for



downstream tasks.

TokenLearner in Interchannel only ViT

The TokenLearner mechanism plays a pivotal role in the
interchannel-only Vision Transformer architecture. It is es-
sentially a series of convolutional layers with the primary
objective of the TokenLearner to segment each channel of
an image into one condensed token. This segmentation is
akin to creating a mosaic, where each token represents a
concentrated summary of information from a specific chan-
nel of the image.
Formally, the TokenLearner operates as follows:

  \Psi _{c} = \Lambda (I[c]; \Theta )   

Here,  \Psi _{c}  represents the transformation of channel  c into a
tokenized output. The function  \Lambda denotes the convolutional
layers within the TokenLearner, characterized by learnable
parameters  \Theta . The input  I[c]  represents the channel  c of the
image  I .
The convolutional layers within the TokenLearner are
meticulously designed to process each channel  c of the im-
age  I , converting them into a series of large tokens. These
tokens are the essence of the image’s information con-
densed into more manageable and informative segments.
This approach allows the TokenLearner to maintain a con-
sistent tokenization process across all channels of each im-
age, ensuring uniformity and coherence in the representa-
tion of the image’s information. The resultant tokenized
channels are then seamlessly integrated into the ViT archi-
tecture, enabling the model to process and interpret the im-
age data with enhanced efficiency and precision.

Through this method, the TokenLearner was meant to
learn meaningful feature maps for any channel in order to
”tokenize” them into a smaller embedding space.

D. Experimental Evaluation
Our experimental approach encompasses several distinct
methods to assess the performance of our models across a
range of tasks. All experiments were performed under 5
different seeds, and the mean and standard deviation of the
results were reported :

Linear Probing: For datasets BloodMNIST, BBBC048,
CYCLoPs, and NF-kB Nuclear Translocation Assay
(Transloc), we employed linear probing. This involved
freezing the encoder of our model and appending a train-
able linear layer to the CLS token. The linear layer was
then trained specifically for the task associated with each
dataset. This method allows us to evaluate the representa-
tional quality of the encoded features in a variety of biolog-
ical contexts.

Channel Reconstruction: In this task, we focus on re-
constructing a target channel from given input channels.
The encoder is kept frozen, and a simple decoder is added
atop the CLS token. The decoder comprises of two fully
connected layers, five convolutional layers, followed by a
sigmoid function, to predict the target channel accurately.
We ensured that the decoder was scaled to maintain an
equivalent number of parameters (approximately 5.2 mil-
lion) for both the One Channel Approach and ChAda-ViT,
facilitating a fair comparison of their reconstruction capa-
bilities.

Performance Metrics: For classification tasks, we uti-
lize top-1 accuracy as our primary metric. For regression
tasks, the R2 score is employed to measure the accuracy
of our predictions. Specifically, for the Channel Predic-
tion task, we use Mean Absolute Error (MAE) and Mean
Squared Error (MSE), along with the R2 score. Here, the
prediction involves comparing the flattened predicted chan-
nel against the flattened target channel. This comparison is
conducted on the entire dataset in a single evaluation, pro-
viding a comprehensive view of our model’s prediction ac-
curacy.

E. Additional Evaluations

Linear Eval KNN Eval
BBBC048 Cyclops BBBC048 Cyclops

ChAda-ViT Moyen16 77±0.38 71.89±3.49 78.37±0.22 51.12±3.87
One Channel ViT Tiny/16 77.48±0.14 70.9±3.02 78.43±0.04 38.82±0.08
3 Ch. ViT Tiny/16 72.08±0.14 40.2±2.36 77.79±0.02 37.24±2.38

Table 3. Using All Token Evaluation setting, ChAda outperforms
both One Channel Approach and the standard 3 Channel ViT
(trained on the 3 channel subset of the IDRCell100k), proving the
added value of integrating channel level attention over classic ap-
proaches.



Figure 14. Left : Comparison of evaluation results using ChAda-ViT Moyen/16 with CLS token eval and All output token eval. All token
evaluation shows a higher performance than using CLS token. Right : Scaling laws of the performance of the model with All Token Eval,
when trained with more parameters and larger embedding sizes, confirming the scalability of the ChAda-ViT architecture.

Figure 15. Additional Attention Maps for images with 2 channels (right) and 5 channels (left), with One Channel ViT and ChAda-ViT.



Figure 16. Channel Prediction in BBBC021: Demonstrating ChAda-ViT’s enhanced spatial distribution accuracy in reconstructing cell
images, compared to the One Channel approach. This superiority is evident even with a basic convolutional decoder utilizing only the CLS
token, as highlighted in the first row of examples.


