
Grounding Everything: Emerging Localization Properties
in Vision-Language Transformers

Supplementary Material

The supplementary material is organized as follows: We
provide a link to a demo in Section A. We then cover addi-
tional implementation details and present the rollout of one
block in Section B. We further provide additional experi-
mental ablation results in Section C. In Section D, we give
more details on the analysis of localization properties and
provide additional studies about those properties and Sec-
tion E provides additional details about the grouping fac-
tors. Finally, we close with more qualitative examples and
their analysis in Section F.

A. Demo
We provide a HuggingFace demo at: https : / /
huggingface.co/spaces/WalidBouss/GEM

B. Additional Implementation Details
GEM is built in parallel to the vision transformer by pro-
cessing input features coming from the vision transformer
through a series of ensembled iterative-temperature regular-
ized self-self attention. We fix the number of iterations of
self-self attention to one for all layers, i.e., we apply one
step of self-self attention to the normalized projected fea-
tures and one step of self-self attention to the values using
the temperature heuristic as proposed section 3.1. Figure
7 shows the rolled-out processing pipeline for self-self at-
tention with one iteration and ensembled over queue-queue,
key-key, and value-value attention. In the first iteration step
self-self attention is computed on the respective query, key,
or value projection following Equation 5 (main paper), fol-
lowed by self-self attention of the respective projection ap-
plied to the value projection following Equation 6 (main pa-
per). Finally, all three projections are ensembled following
Equation 7 (main paper).

C. Additional Ablation
To gain a deeper understanding of the factors influencing
the performance of our method, we provide two additional
ablations. Namely, we disentangle GEM’s performance for
the depth of the vision transformer at which we apply self-
self-attention and evaluate the effect of adding the MLPs
from the vision transformer encoder after the self-self at-
tention in the alternative pathway.

Impact of path length: In Table 7 we evaluate the seg-
mentation performance of GEM applied to CLIP for two
model sizes (ViT-B/16 and ViT-B/32) for different starting
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Figure 7. Detailed Illustration of GEM for a number of iterations
for the iterative self-self attention equal to 1, where the block N
corresponds to L2 normalization.

layers. We report the mIoU on PascalVOC. For both ar-
chitectures, the performance remains significantly stable as
long as GEM is applied before the last layers with best per-
formance at a depth of three to five layers. We attribute
the performance stability to the fact that the skip connec-
tions are essentially an exponential moving average applied
at each layer. Therefore, the influence on the output fea-
tures of the first layers decays exponentially. In general, we
fix the depth d of GEM to equal to d = 4 for all reported
experiments.

Impact of MLP: Originally, the studied vision-language
models were trained using MLPs in their transformer
blocks. While MaskCLIP [8] and CLIPSurgery [17] al-
ready showed the negative impact of the MLP, we further
assess the influence of these MLPs on the downstream per-
formance for the GEM architecture. Table 7 reports the
mIoU on PascalVOC for ViT-B/16 and ViT-B/32 for dif-
ferent depths with and without the MLPs. We can see that
adding MLPs have a slight negative effect on the down-
stream performance. While this is not a significant drop, it
still shows that omitting MLPs will in general lead to better
results.

Projection impact on different backbones: Table 6
present the results of using different projections using dif-
ferent pretrained ViT-B/16 backbones. We observe that the
conclusions drawn section 3 indeed still hold for other pre-
trained weights than CLIP, i.e., that any projection let it be

https://huggingface.co/spaces/WalidBouss/GEM
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VLM Proj. VOC Context

CLIP

v-v 45.14 32.7
k-k 45.9 30.4
q-q 46.0 31.2
qkv 46.2 32.6

MetaCLIP

v-v 45.7 34.0
k-k 46.4 32.2
q-q 44.15 31.6
qkv 46.8 34.5

OpenCLIP

v-v 40.7 31.4
k-k 42.5 30.3
q-q 40.7 31.4
qkv 43.1 31.7

Table 6. Additional evaluation of v-v, k-k, q-q, and qkv for differ-
ent ViT-B/16 backbones.

v-v, k-k or q-q produces competitive performance within
our framework but qkv-ensemble produces overall better
performance without the need to choose a specific projec-
tion.

D. Analysis of Localization Properties
In Section 4.5 in the main paper, we examine the factors
contributing to the localization performance of the proposed
method. In the following we provide details on the met-
rics used, a further discussion of the results as well as an
analysis of those characteristics with respect to the depth of
the GEM path. We assume that for localization in vision-
language models, two essential properties must be ful-
filled: visual distinctiveness, which refers to the meaning-
ful grouping of visual feature representations, and vision-
language alignment, which refers to the alignment of these
groups with their respective textual descriptions encoded by
the language model. In the case of CLIP, vision-language
alignment translates to aligning patch tokens with the ViT
[CLS] token, as the [CLS] token was trained to correlate
with text embeddings through contrastive learning.

D.1. Visual Distinctiveness

For visual distinctiveness, we consider two metrics:

Patch-Patch Similarity. This captures the similarity
among patches within each layer. We define an overall path-
patch similarity as Spp = 1

n(n−1)

∑
i,j
i̸=j

xi · xT
j .

An increase in patch-patch similarity indicates a higher
tendency for tokens to share similar characteristics. How-
ever, high global path-patch similarity can also indicate that
all patch tokens are near-identical, thus reducing localiza-
tion effectiveness.

Object-Background Contrast. We, therefore, further
consider the object-background contrast. A critical charac-
teristic of a model’s localization proficiency is the ability to
ensure similarity among patch tokens representing the same
object while maintaining separation between those repre-
senting distinct objects. This characteristic permits the for-
mation of semantically coherent clusters within the embed-
ding space. To this end, we adapt the Michelson contrast to
measure the contrast in the similarity between foreground
and background patch tokens. For this evaluation, we lever-
age the segmentation masks of the training set of the Pas-
calVOC dataset [9]. For a given segmentation mask M of
an object, we first compute the overall inside-to-inside sim-
ilarity (noted SM

in,in) and inside-to-outside (SM
in,out):

SM
in,in =

1

m(m− 1)

∑
i,j∈M
i ̸=j

cos(xi, xj)
+,

SM
in,out =

1

m(n−m)

∑
i∈M
k/∈M

cos(xi, xk)
+

(9)

Here, m = |M | is the area covered by the mask, and the
positive part function is employed to clamp negative simi-
larities to zero, i.e. ·+ = max(0, ·). The object-background
contrast (CM ) for an object mask M is then defined as:

CM =
SM
in,in − SM

in,out

SM
in,in + SM

in,out

(10)

We average across all the masks in the dataset: MCM =
1

|M|
∑

M∈M CSM , with |M| being the total number of
masks. Note that the ground truth masks are only used for
analysis here.

D.2. Vision-Language Alignment

Second, we consider the problem of vision-language align-
ment. Here, we aim to measure the contrast between the
similarity of the text embedding representation of the class
and the foreground patch embeddings, compared to the sim-
ilarity of the text embedding and the background patches.

Text-Object-Background contrast. Let p ∈ Rn×d be the
patch token outputted by the vision transformer, where n is
the number of patches. For a segmentation mask M , the
associated class name is denoted as c(M), and we denote
tc(M) ∈ R1×d the text embedding of that class. We com-
pute the overall text-object similarity (noted TSM

txt,obj) and
text-background similarity (SM

txt,bg):

TSM
txt,obj =

1

m

∑
i∈M

cos(tc(M), pi)
+,

TSM
txt,bg =

1

n−m

∑
k/∈M

cos(tc(M), pk)
+

(11)



Backbone MLP
depth: 11 10 9 8 7 6 5 4 3 2 1
layer: L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

ViT-B/16 ✗ 45.1 45.4 45.4 45.5 45.5 45.3 45.6 45.5 45.2 43.8 4.8
ViT-B/16 ✓ 41.6 42.0 41.7 41.6 41.9 42.3 42.2 42.1 42.4 38.8 26.2
ViT-B/32 ✗ 41.0 41.0 41.1 41.2 41.2 41.3 41.4 41.5 40.3 26.1 5.1
ViT-B/32 ✓ 39.7 39.6 39.7 40.0 40.1 40.1 40.2 40.3 38.4 21.6 4.3

Table 7. Evaluation of depth and impact of MLP on PascalVOC. We report mIoU performance depending on the depth resp. the starting
layer of the self-self attention pipeline. It shows that starting at the middle layers provides best results, but also that higher layers can
provide good results. In general, self-self attention without MLP outperforms self-self attention with MLP.
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Figure 8. Object-Background contrast of CLIP (original) com-
pared to GEM for different starting depth on PascalVOC for CLIP-
ViT-B/16.

The text-object-background contrast for mask M is then

defined as: TCM =
TSM

txt,obj−TSM
txt,bg

TSM
txt,obj+TSM

txt,bg

This metric is subsequently averaged across all masks
in the dataset to derive the global text-object-background
contrast MTC = 1

|M|
∑

M∈M TCM .
A higher positive value for MTC signifies that fore-

ground patch embeddings are closer to their correspond-
ing text embeddings than background patch embeddings. A
negative value would indicate an inverse relationship.

D.3. Analysis

Figure 5 in the main paper shows the results for the de-
scribed metrics for CLIP, CLIPSurgery, and GEM for differ-
ent numbers of iterations. The observed increase in patch-
patch similarity from CLIP to CLIPSurgery, in Figure 5a, is
due to the clustering induced by the self-self attention. We
contribute the slight decrease for GEM to the added nor-
malization and temperature. This is recovered by the higher
object-background contrast of GEM over CLIPSurgery and
CLIP, pointing to the effective grouping of visual tokens and
their ability to distinguish between distinct objects. Further,
the analysis of text-object similarity demonstrates improved
alignment between visual tokens and text embeddings, en-
hancing vision-language integration. Notably, CLIP, while
exhibiting similar levels of visual distinctiveness in terms of
patch-patch similarity and object-background contrast, sig-
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Figure 9. Text-Object-Background contrast of CLIP (original)
compared to GEM for different starting depth on PascalVOC for
CLIP-ViT-B/16.

nificantly lags in terms of vision-language alignment, show-
ing a negative text-object contrast, which means that back-
ground patches tend to align more closely with object-class
text embeddings. This aligns with earlier findings in Li et al.
[17] and Mukhoti et al. [26].

We further analyze the impact of GEM with respect to
the depth of the self-self attention as well as in compari-
son to the original model for a CLIP ViT/B-16 model on
VOC. We show the object-background contrast (Figure 8)
as well as the text-object-background contrast (Figure 9)
after each layer as well as for different depths. While
the object-background contrast first drops by applying self-
self attention, it also shows that it usually recovers after
3-4 layers, while the original CLIP architecture keeps a
higher contrast, but significantly drops in the last three lay-
ers. Comparing this with the behavior of the text-object-
background contrast (Figure 9), we can see that the patch-
language alignment of the original CLIP backbone drops
significantly after layer six and only recovers in the last
layer while the alignment of the self-self attention module
consistently increases. Note that the original CLIP back-
bone always shows a negative text-object contrast, which
means that background patches are more closely aligned to
the object-class text embedding than the objects themselves
while GEM reaches a positive alignment in the last layers.
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Figure 10. Visualization of self-self attention on a set of 20 vectors: In the top 3 rows, a set of 20 vectors undergoing self-self attention for
iterations K = {3, 10, 30} and temperatures τ = {0.07, 0.1, 0.13, 0.18}. Displayed are the 20 data points (reduced to two dimensions via
PCA) and their color represents a smooth cluster membership (the vector into which they are transformed is translated into a color value.)
We further show the attention matrix for each configuration (the points were manually ordered for visual simplicity.) It shows that as the
number of iterations and/or the temperature increases, self-self attention produces larger fewer clusters.

E. Further Details on Cluster Analysis

Section 3.2 discusses the idea that self-self attention acts
as a form of clustering. In Figure 10 we extend the simula-
tion presented in Section 3.2 to more iterations and tempera-
tures. We further add the point-cluster associations reduced
to two dimensions via PCA to further visualize the cluster
formation. In general, we can observe that increasing the
number of iterations (from top to bottom) leads to fewer,
larger clusters. The same holds for the temperature param-
eter where a higher temperature also leads to larger, fewer
clusters.

Comparison to Kmeans: We compared our self-self at-
tention method with the Kmeans clustering algorithm. The
detailed comparison is shown in Table 8. In this compar-
ison, we looked at both the standard Kmeans and an en-
hanced version we call Multi-Head Kmeans, where we run
separate Kmeans for each attention head to try and get better
results. Although the performances of the Kmeans variants
are fair, they underperform our self-attention method. Ad-
ditionally, Kmeans was slower, even when using a GPU-
optimized version (kmeans pytorch2), and required
fine-tuning for each dataset to decide on the number of
clusters (K). This comparison highlights the advantages of
our method in terms of performance and flexibility. It also
shows how our self-self attention approach relates to tradi-
tional clustering methods like Kmeans

2https://github.com/subhadarship/kmeans_pytorch

Method K VOC Context Ade20k V7 fps

Vanilla Kmeans

2 43.0 25.0 8.8 46.0 2.9
3 28.2 29.8 11.3 46.9 2.7
5 42.6 30.1 12.9 47.4 2.4
7 42.3 30.3 13.5 47.4 2.1

10 41.8 30.3 13.9 47.5 1.6

Multi-Head Kmeans

2 42.9 27.4 9.8 46.9 2.8
3 44.1 30.0 12.1 47.9 2.7
5 43.5 31.0 13.7 48.2 2.3
7 42.7 31.0 14.0 48.3 2.0

10 42.9 30.8 14.3 48.3 1.5

GEM - 46.2 32.6 15.7 50.9 37.2

Table 8. Comparison of GEM with vanilla Kmeans and multi-head
Kmeans.

F. Qualitative Analysis

We finally provide additional qualitative results for GEM:

Comparison of vision-language models. Figure 11 com-
pares the localization performance of GEM applied to dif-
ferent vision-language models, namely, CLIP, OpenCLIP,
MetaCLIP and BLIP. Overall, MetaCLIP produces sharper
and more accurate localization compared to other models.
It is also able to better identify objects, e.g., only GEM-
MetaCLIP was able to localize “Glove” (Figure 11 Row 2).
Compared to that, GEM-BLIP, the only model trained with
a multi-objective loss (contrastive, image-text matching and
captioning) is still able to localize objects most of the time,
but its segmentation mask is less precise.

https://github.com/subhadarship/kmeans_pytorch


Comparison to other methods. Figure 12 offers a qual-
itative comparison between different open-vocabulary seg-
mentation methods. Included in the comparison are meth-
ods that use localization information (bounding box or
mask) during training, e.g., GroundingSAM and OVSeg,
that use a training strategy specifically tailored for segmen-
tation, e.g., GroupViT and SegCLIP, and training-free meth-
ods, e.g., MaskCLIP, CLIPSurgery and our method GEM.

Figure 12 shows that methods that were trained with
localization information output high-quality masks (see
“Cat”, “Squirrel” and “Jet Ski”) when the object is correctly
identified. However, they are not able to detect entities in
images that usually don’t appear in detection and segmen-
tation datasets. For example, neither GroundingSAM nor
OVSeg are able the localize the “Boxer” or the “Violin” in
the cartoon (Figure 12 row 8 & 9). This shows the limitation
of using handcrafted segmentation annotation during train-
ing as they require too much effort to annotate and hence
cover a much-restricted scope of entities.

Methods that either fine-tune a pretrained Vision-
Language like SegCLIP or train from scratch, are able to
accurately segment common objects, e.g., “Cat” (Row 3),
“Squirrel” (Row 6) and ”Lizard” (Row 4) in Figure 12 –
explaining the high performance they get on simply dataset
like PascalVOC. However, these methods are unable to seg-
ment the rarest entities like the “Jet Ski” (Row 2), “Logo”
(Row 7), or even the “Flag” (Row 11). We attribute this lack
of diversity to their training strategy that involves the cura-
tion of the vocabulary of the used image-text pairs, there-
fore, reducing the size of the learned vocabulary.

Conversely, training-free methods like MaskCLIP,
CLIPSurgery, and GEM benefit from the millions of image-
text pairs that vision-language models are trained on, to be
able to identify a diverse set of entities. While the segmen-
tation masks of such models are not as sharp as the one
outputted by GroundingSAM for example, they are able to
localize objects like “Tattoo” (Row 1), “Television” (Row
4) and “Rope” (Row 10) that GroundingSAM is not able
to localize. GEM outperforms its training-free counterparts
in terms of segmentation sharpness (more defined contours
and fewer holes) and is also able to localize objects missed
by MaskCLIP and CLIPSurgery,e.g., “Logo” (Row 7).
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Figure 11. Qualitative comparison of GEM applied to different
Vision-Language models.
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Figure 12. Qualitative comparison between different open-vocabulary segmentation methods, namely, GroundingSAM, OVSeg, SegCLIP,
GroupViT, MaskCLIP, CLIPSurgery and GEM.
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