
Original Variations for edit prompt +‘sunglasses ’

Figure 7. LEDITS++ easily produces variations of an edit (different (styles of) sunglasses) by resampling the inversion process. (Best

viewed in color)

Original Increase ‘smile’Decrease ‘smile’

Figure 8. Monotonicity of editing scale with LEDITS++. The original image (middle) is edited with varying scales of the same edit

(’smile’). The scale for ‘smile’ is semantically reflected in the images. (Best viewed in color)

Appendix

A. Broader (Societal) Impact

With LEDITS++, we aim to provide an easy-to-use image

editing framework. It lowers the barrier of entry for expe-

rienced artists and novices alike, allowing them to unlock

the full potential of generative AI in the pursuit of creative

expression. Moreover, it puts the user in control for fruit-

ful human-machine collaboration. Crucially, current text-

to-image models [29, 33, 37] hold the potential to wield a

profound influence on society. When applied in creative and

design domains, their dual use offers both promise and peril,

as highlighted by prior research [4, 11]. The models are

trained on large amounts of data from the web [40], granting

them the inherent capacity to generate content that may con-

travene societal norms, including the creation of inappropri-

ate material like pornography [39], or content that violates

law such as child abuse. More alarmingly, the inadvertent

generation of inappropriate content is precipitated by spu-

rious correlations within these models. Harmless prompts

can lead to the creation of decidedly objectionable content

[4, 11]. A prime example of this phenomenon lies in the

correlation between specific phrases and the perpetuation

of stereotypes, such as the connection between mentions of

ethnicity and economic status. For example, an increase of

the concept ‘black person’ may inadvertently amplify the

appearance of the concept ‘poverty.’

Conversely, methods like LEDITS++ also possess the

potential to mitigate bias and inappropriateness, a prospect

highlighted by prior research [10, 11], e.g. through dataset

augmentation [36]. Furthermore, established strategies

offer means to mitigate the generation of inappropriate

content [13, 39] that could be deployed in tandem with

LEDITS++. In summary, we advocate for a cautious ap-

proach to the utilization of these models, recognizing both

the risks and promises they bring to the realm of AI-

powered image editing.

B. Further Examples on LEDITS++ Properties

As discussed in Sec. 4, LEDITS++ versatility benefits from

re-sampling to provide variations of edits. The example in

Fig. 7 demonstrates the additional control non-deterministic

variations provide to the user, which can select the preferred

interpretation of the edit instruction.

The precision and versatility of LEDITS++ further ben-

efit from the fact that the magnitude of an editing concept

in the output scales monotonically with the edit scale se. In

Fig. 8, we can observe the effect of increasing se. Both for

positive and negative guidance, the change in scale corre-

lates with the strength of the smile or frown. Consequently,

any changes to the input image can be steered intuitively

using the edit guidance scale.

C. Experimental Details

Subsequently, we provide further details on the experiments

presented in the main body of the paper. We first provide



information on the reconstruction and runtime experiments

(Sec. 4), followed by the masking evaluation (Sec. 5) and

multi-conditioning experiments (Sec. 6). Details on the user

study are independently described in App. E. All experi-

ments were performed using the respective diffusers4 im-

plementation (version 0.20.2) with Stable Diffusion 1.5.

C.1. Properties

First, we go into detail on the reconstruction and runtime

experiments presented in Tab. 1.

C.1.1 Reconstruction Error

Since the Stable Diffusion VAE already induces errors

when reconstructing images, we considered the RMSE

over the 64x64 latent image instead. We randomly sampled

100 images from the 2017 COCO validation dataset, which

we attempted to reconstruct using the default configuration

of each method as described in the respective paper or

implementation. For methods that could potentially benefit

from a descriptive target prompt of the input image, we

considered an empty prompt, COCO caption as prompt,

and unconditioned generation (no CFG) and reported the

best score. Below, we outline the configuration for each

method.

LEDITS++ (Ours) &

Edit-friendly

DDPM [17]:

Perfect reconstruction for any

hyperparameter combination.

The error induced by machine

precision is inconsequential.

Imagic [18]: 1000 embedding learning steps

w/ learning rate 2e−3 and 1500

model tuning steps w/ learning

rate 5e − 7. Target prompt is

the original image caption. We

used 50 generation steps with α

and guidance scale 0.0

Pix2Pix-Zero [30]: Inversion with 100 steps, no

CFG, λ = 20 for auto cor-

rection and KL divergence,

and 5 regularization and auto

correction steps, respectively.

100 inference steps with cross-

attention guidance 0.0 and no

CFG. Source and target embed-

dings are null-vectors.

4
https://huggingface.co/docs/diffusers

DDIM Inversion: 1000 inversion steps and 50 gen-

eration steps. Both without

classifier-free guidance

SDEdit [26]: 40 diffusion steps (strength 0.8 at

50 default steps) with no CFG.

Notably, the small difference between DDIM and Pix2Pix-

Zero only holds for the pure reconstruction of an image.

Previous research has shown [28] that for DDIM inver-

sion, the accumulated error increases drastically when using

classifier-free guidance. Since CFG is necessary for editing,

the ”reconstruction” portion during editing becomes worse

for DDIM and remains stable for Pix2Pix-Zero.

C.1.2 Runtime

For runtime measurements, we consider the wallclock

runtime on a dedicated NVIDIA A100-SXM4-40GB GPU.

As a proxy task, we considered applying an ´oilpainting’

style to a photograph. We only measured the inversion

and generation loops, discarding any I/O or other pro-

cessing. For each method, we considered 100 runs with

hyperparameters based on the respective paper/official

implementation, as outlined below.

LEDITS++ (Ours): 20 inversion and 20 gen-

eration steps with thresh-

old λ = 0.1 and skip for

t = 0.75T .

Edit-friendly DDPM [17]: 100 inversion steps and

64 generation steps (i.e.

36 skip steps)

Imagic [18]: 1000 text embedding op-

timization steps, 1500

model finetuning steps,

50 inference steps

Pix2Pix-Zero [30]: 100 steps at inversion and

inference. 5 regulariza-

tion steps and auto cor-

rection steps for each in-

version step.

DDIM Inversion: 1000 inversion steps (w/o

CFG) and 50 generation

steps

SDEdit [26]: 40 diffusion steps

(strength 0.8 at 50 default

steps).

https://huggingface.co/docs/diffusers


An interesting observation is the fact that LEDITS++,

runs faster than SDEdit although both perform 40 diffu-

sion steps overall. However, SDEdit requires 80 total U-Net

evaluation (unconditioned and conditioned for each step)

step, whereas LEDITS++ only requires 60 (unconditioned

at each inversion step and unconditioned + conditioned at

each inference step). Performing 2 evaluations of the U-Net

is significantly slower than 1 evaluation even if performed

as a batch.

C.2. Implicit Mask Quality

We have already provided detailed information on the ex-

periment in Sec. 5. For further reference, we note that after

removing duplicate/ambiguous objects the dataset contains

4983 images and 29307 segmentation objects.

C.3. Multi-conditioning

The multi-conditioning experiment presented in Sec. 6.1,

used the following attributes:

• glasses
• smile
• hat
• wavy hair
• earrings

We used the first 100 images in CelebA that were labeled

to not contain any of the five target attributes. Seeds were

chosen at random but kept fixed across all experiments. For

the LPIPS and CLIP scores, we relied on the default imple-

mentation from torchmetrics5. Consequently, we used the

AlexNet variant with mean reduction and the original ViT-

L/14 CLIP checkpoint from OpenAI6. For the CLIP scores,

we calculated a dedicated score for each of the 3 applied

edits and considered the mean for each image.

The hyperparameter variations of each method were

run as a grid search over the hyperparameter ranges listed

below. Other parameters were kept at their default values.

For each method, we ran a grid search over a wider

range of parameters to identify reasonable boundaries and

subsequently discarded edge values leading to drops in

performance.

LEDITS++ (Ours): Skip between 0.2 and 0.3, Guid-

ance scale between 10.0 and

15.0, Threshold between 0.7 and

0.9

5
https://lightning.ai/docs/torchmetrics/stable/

6
https://huggingface.co/openai/clip-vit-large-patch14

Edit-friendly DDPM [17]: Skip steps between 20

and 40, Guidance scale

between 10.0 and 15.0

DDIM Inversion: Guidance Scale between

1.0 and 15.0

Imagic [18]: Guidance Scale between

2 and 6, and α between

0.1 and 1.3

Pix2Pix-Zero [30]: Guidance Scale between

1.0 and 10.0 and cross

guidance scale between 0

and 0.15

SDEdit [26]: Guidance scale between

5.0 and 10.0 and strength

between 0.2 and 0.8

D. TEdBench++

We propose TEdBench++7, a revised version of TEdBench

[18] which sets a new standard for benchmarking real text-

based image editing. It is publicly available, including

original images, edit instructions, and edited images with

LEDITS++ for benchmarking new methods. Figs. 6 and 11

as well as Tab. 2 demonstrated our generated images with

LEDITS++ to improve upon the previous SOTA method,

Imagic, setting a new reference for benchmarking. Next to

providing better-edited images, we also addressed several

inconsistencies in the target texts and missing tasks.

We show several inconsistencies of TEdBench in Fig. 9.

First, we corrected ambiguous text prompts such as a stand-

ing animal that is already standing Fig. 9 (top). This applied

to multiple images (horse, cat, bear, etc.). Instead, we pro-

pose “an {animal} standing on hind legs” to specify the tar-

get text and thus ask for a clear but more challenging edit.

Second, we correct for misspellings such as “enterance”

which should be “entrance” instead. While this may appear

negligible, DMs’ tokenizers may provide completely differ-

ent tokens in these cases: e.g., one token for the correct

word but three tokens for the misspelled word. In Fig. 9,

we show the impact of the corrections on the edit success

on LEDITS++. Although we use the exact same parameters

(seed, etc.), the edit of the original (left) to the middle fails,

whereas it is successful for the corrected prompts (right).

This way, we provide a higher-quality benchmark.

Further, we added novel tasks to the benchmark, mak-

ing it more challenging and accounting for a broader range

of tasks. In Fig. 6a, we show examples of the new tasks

we added: i) multi-editing (adding multiple concepts at the

7
https://figshare.com/s/7adc2b0fe1e0388dd99f

https://lightning.ai/docs/torchmetrics/stable/
https://huggingface.co/openai/clip-vit-large-patch14
https://figshare.com/s/7adc2b0fe1e0388dd99f


Figure 9. Exemplary inconsistencies in TEdBench and their cor-

rections in TEdBench++. Left is the original image, and in the

middle/right are images edited with LEDITS++ for the edit in-

structions above. All parameters (seed, etc.) are the same. As

can be seen, the edit success heavily depends on the clear and cor-

rect writing of the words. In the middle column, it does not work

(ambiguous (top) and misspelled (bottom)), whereas the edit is

successful in the right image (clear and correctly spelled).

same time), ii) object removal (removing an object while

staying consistent with the background and overall image

composition), iii) style transfer (changing the whole image,

i.e. all pixels without changing the overall image composi-

tion or object, only their style appearance), and iv) complex

replacements (adding and removing multiple concepts at the

same time).

With these extensions, we improve on the previous

benchmark and propose a higher-quality version. This way,

we hope to benefit the research community and set up a

new standard for benchmarking text-based real-image edit-

ing techniques.

E. User Study

Next to evaluating with automated metrics such as CLIP and

LPIPS scores, we also conducted a study with human evalu-

ators. We focus the user study on TEdBench(++). First, we

describe the experimental details for generating the images

for the study. Then, we describe the setup of the user study.

Experimental details We followed the approach of

Kawar et al. [18] and generated images for several seeds

and hyperparameters and hand-selected the best fitting im-

age (exemplary grid search shown in Fig. 13). Notably, we

evaluated only three seeds, whereas Kawar et al. evaluated

eight seeds. Furthermore, we limited the grid search to a

decent but small range for each hyperparameter.

For LEDITS++ (with SD1.5 and SD-XL), we set

the number of diffusion steps fixed to 50 steps and

Figure 10. Failure cases of LEDITS++ on TEdBench

grid-searched skip [0.0, 0.1, 0.2, 0.4], masking threshold

[0.6, 0.75, 0.9], and guidance scale [10, 15]. As a result,

we evaluated 72 images (= 3 seeds × 4 skips × 3 thresh-

olds × 2 scales) per benchmark sample. All other hyper-

parameters correspond to the default values of the diffusers

implementation. Consequently, the generated images with

LEDITS++ could be even further improved when evaluating

for more hyperparameters, e.g. more seeds (also see open

question discussion on seed in App. F).

For Imagic with SD1.5, we relied on 3 seeds

and 50 diffusion steps, too. We grid-searched

the guidance scale [5.0, 7.5, 10.0] and alpha value

[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2.0]. As a

result, we evaluated 108 images (= 3 seeds × 3 scales × 12

alphas) per benchmark sample. The remaining setup and

parameters correspond to the default values of the original

Imagic implementation with Imagen [18]. For Imagic

with Imagen, we had to rely on their curated outputs of

TEdBench since the model is not publicly available.

User study setup For the actual user studies, we chose

the following setups (cf. Fig. 12) on the platform thehive.ai.

Users had to pass a qualifying test, and during the actual

labeling, 15% of the tasks a user saw were honeypot tasks

(sanity check). Only if the qualifier test was passed error-

free and the honeypot accuracy was permanently above

95%, we accepted the given answers to ensure high-quality

evaluations. Users could zoom in/out and change several

image parameters, such as brightness and contrast to further

enable a high-quality assessment.

The first study (see Fig. 12a), which we also describe

in the main text in Tab. 2, evaluates the success rate of an

editing technique on TEdBench(++). To this end, we asked

users to assess the overall success of edits, i.e., if an edit

instruction was faithfully realized for a given input image.

Fig. 12a shows the setup, in which a user had to choose

between two options, whether the edit instruction has been

https://thehive.ai


(a) Image editing or generating a new image? (b) Coherence Trade-off: compositional robustness vs. object identity

Figure 11. Comparing failure cases of LEDITS++ and Imagic on TEdBench.

realized successfully or not. The setup consisted of a gen-

eral question-and-answer setting for all examples alongside

a specific edit text for each image pair. The original im-

age (always left) and the edited image (always right) were

shown in the center. Outputs from LEDITS++ and Imagic

were interleaved at random. The result is given in Tab. 2 in

which LEDITS++ clearly outperforms Imagic for both un-

derlying DMs and both versions of the benchmark bench-

marks.

We also conducted a second user study. In this study, we

asked the user to assess the image similarity of two meth-

ods to a reference image, see Fig. 12b. With this human

preference study, we investigate the image-to-image simi-

larity after editing, i.e., if the edited images still look sim-

ilar to the original one. Participants were shown the input

image (middle) and were asked to choose the better edit-

ing result from one of the two methods (left and right), us-

ing the common practice of Two-Alternative Forced Choice

(2AFC). The methods were randomly switched between left

and right to avoid confounding factors. To this end, we com-

pared LEDITS++ (with SD-XL) and Imagic (with Imagen)

on TEdBench. For this comparison, we considered only

images where both methods were labeled successful in the

prior study. In that study, users preferred LEDITS++ over

Imagic with 60% preference. As outlined previously, this

again emphasizes the precision of our method, which pre-

serves the overall image composition and results in high-

quality edits. Yet, the preference seems smaller than the

results with the LPIPS scores. We found this to be an ar-

tifact of imprecise user study design. A preference setup

generally suffers from bias such as subjects replacing gen-

eral questions with more specific ones [41] (e.g. “which

is more similar?” might be replaced by “in which did the

main object stay the same, regardless of the background?”

or “in which are the background and overall image com-

position better preserved regardless of the main object?”).

Hence, it is difficult to draw exact conclusions from this

study, but a clear trend is still visible. Moreover, as shown in

the main text in Tab. 2, we computed LPIPS scores, which

further clarify the results of the user study. Additionally,

we broadly discussed the similarity trade-off between ob-

ject identity/coherence and overall image composition in

the limitation sections of the main body (Sec. 7) and ap-

pendix (App. F).

F. Limitations and Further Discussion

In the following, we extend the discussion of the main body

with further examples and questions.

Model Dependency. In general, we observed the editing

success to be dependent on the underlying DM. In Fig. 15,

we show that the generation of a sitting giraffe depends on

the underlying DM. For both editing techniques, the weaker

SD1.5 variant fails but the more advanced variant succeeds.

Upon further investigation, we realized that SD1.5 is in-

capable at all of generating images of sitting giraffes. In

Fig. 16, we show exemplary images for the text prompt

“a sitting giraffe” (we generated 100 and all showed the



(a) Setup for user study: “was the editing successful?”

(b) Setup for user preference study: “which edited image is closer to the original image?”

Figure 12. User study setups for both user studies conducted. The first user study evaluates the edit success of an image editing method.

The second user study evaluates the user preference between two image editing methods regarding image-to-image similarity.

same result) and can see that none is actually sitting. In

contrast, SD-XL is able to output images of sitting giraffes

(cf. Fig. 17) and consequently enables LEDITS++ to per-

form the desired edit. This emphasizes the importance of

choosing an apt underlying DM for real image editing and

motivates future research to develop more powerful DMs

from which editing techniques will benefit, too.

Failure Cases and Open Questions. In the following, we

want to touch upon open questions and failure cases. In

Fig. 10, we show several failure cases of LEDITS++. In the

first case, the cat is indeed edited from a sitting to a stand-

ing cat. Yet, the identity of the cat has changed, i.e., the

shape of the tail and the fur color have changed. We show

further examples in Fig. 11. However, defining what makes

an edit acceptable remains challenging and may differ be-

tween users, applications, and context. In general, however,

there are two reasons for the discussed limitations. First,

LEDITS++ limits its edits to the identified relevant regions.

Consequently, the background and image composition will

be preserved, but the edit within this region depends on var-

ious factors, including hyperparameter strength, underlying

DM, and random seed. Second, a lack of descriptiveness

of the editing prompt with respect to the specific identity of

an object can lead to changes thereof. Especially if generic

terms such as ‘cat’ are used to edit the image. To guaran-

tee the preservation of the object’s identity, methods like

Textual Inversion [12], or Break-a-Scene [1] could be em-

ployed.

The other three examples in Fig. 10 show failure cases

of LEDITS++beyond changes of object identity, i.e., cases

in which the edit instruction is not or not sufficiently real-

ized. There are several reasons for such failures, includ-

ing a general lack of concept understanding in the under-
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Figure 13. Grid search results for LEDITS++ for TEdBench(++). We show the grid search for the image “cat.jpeg” from the benchmark

and the target text “a cat wearing a hat”. From left to right the parameters are increased. We searched three parameters, the skip steps,

the guidance scale, and the masking threshold. As can be seen, the stronger the parameters, the more changes are made to the image. On

the other hand, too weak parameters do not change the image, i.e. do not realize the target text. This highlights the trade-off between edit

success and preservation of the image composition and object identity. All images are generated for the same seed (for TEdBench(++) we

evaluated 3 seeds per benchmark entry, whereas Imagic used 8 seeds).

lying DM (discussed above), incorrect masking of the rel-

evant region, wrong hyperparameter choices, or challeng-

ing prompts. For example, what exactly is a “breakdancing

dog” supposed to look like? We even considered removing

this entry from the benchmark but found it very challenging

at the same time and, therefore, kept it. Moreover, we found

the edit success rate and quality to depend on the used seed.

This is in line with current work on the impact of the used

seed on the diffusion process [38]. Samuel et al. propose a

new method to identify fitting seeds, which could be applied

to LEDITS++ as well to find satisfying editing seeds.

Masking and User Interaction The automatically-

inferred implicit masks allow for easy use of

LEDITS++ without users tediously providing masks.

Nonetheless, user intentions are diverse and cannot always

be automatically inferred. Sometimes, individual user

masks provide better control over the editing process. Such

user masks can be easily integrated into LEDITS++. In

Fig. 14, we show customized image editing with individual

user masking. LEDITS++ can be easily extended with

user masks to facilitate user preferences. Sometimes

LEDITS++’s implicit masks do not meet user preferences

or it is difficult to textually describe the relevant image

region. Next to using dedicated models to obtain image

masks, users can simply provide their own masks. In our

setup, we did not evaluate this scenario as it drastically

increases resources in terms of computation or human

labor. Yet, it can be easily integrated into LEDITS++.

Fig. 14 shows the original image can be edited well with

LEDITS++. Moreover, dedicated user masks help focus

on a specific image region. This is specifically helpful

for logical and compositional instructions (current models

struggle with “left”/“right” etc.), for one specific object if

multiple are present (one specific “orange” from several

ones), and for both combined. This way, LEDITS++ stays

lightweight in its default with implicit masking, but can

still and easily handle user masks and thereby implement

individual user experience.

G. Further Results

Subsequently, we present further results, qualitative exam-

ples, and visual ablations.

G.1. Qualitative examples

We show further results in Fig. 21. We remove “cat” and

add a diverse set of animals instead. Interestingly, this

works for a variety of animals, that share no or only little

similarity, such as “flamingo” or “parrot”. Furthermore, the

newly occurring background is inpainted semantically sen-

sible, too. Additionally, we show more qualitative examples

in Fig. 22.

G.2. Ablations

In Fig. 13, we show an ablation of LEDITS++ for TEd-

Bench(++). This grid search illustrates the impact of dif-

ferent hyperparameters on the trade-off between edit suc-

cess and the preservation of the overall image composition/

object identity.

G.3. Semantic Grounding Ablations

We performed extensive ablations on semantic grounding

by re-running LEDITS++ on Sec. 5’s benchmark with-

out any grounding. The results in Fig. 18 show that

LEDITS++ will still achieve strong instruction alignment

(high CLIP score) without grounding, but semantic mask-

ing is key to keeping the generated image similar to the in-

put (low LPIPS score). Moreover, grounding allows for a

clearer trade-off between instruction alignment and image

similarity in the first place. We believe these ablations fos-

ter a deeper understanding of the importance of semantic

grounding in the LEDITS++ pipeline.



Figure 14. Customized and complex image editing with LEDITS++ for individual user masking. LEDITS++ can be easily extended with

user masks to facilitate user preferences. The first column shows the original images and the second and fourth show the edited images with

LEDITS++ and the target text above. The third column shows user-provided masks, marking the relevant region for the edit instruction. In

the second column, LEDITS++ uses implicit masking as implemented in our default approach, and in the fourth column LEDITS++ uses

the explicit user-provided masks from the third column.

Figure 15. Impact of underlying DM. The original image (leftmost) should be edited with the target text “a photo of a sitting giraffe”. The

edit success depends on the underlying DM: with SD1.5 it fails whereas it works fine with more advanced DMs (SD-XL and Imagen). This

holds for both methods LEDITS++ and Imagic.

Figure 16. Generated Images with SD1.5 for “a photo of a sitting giraffe”. The model consistently fails to generate a giraffe in that specific

pose.

G.4. Explanatory Visualization of Monotonicity

The monotonicity of the LEDITS++ guidance scale is an

important contribution of the method. Importantly, the in-

ferred masks are mostly isolated from changes to the guid-

ance scale. In the example shown in Fig. 19, we would

expect the masks for ‘smiling’ to always target the area

around the mouth and eyes. Within these identified regions,



Figure 17. Generated Images with SDXL for “a photo of a sitting giraffe”.
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Figure 18. Semantic Grounding Ablations. Semantic grounding is an essential component of LEDITS++ that helps preserving overall

image composition and realizing concise edit instructions. (Best viewed in color)

the magnitude of applied changes correlates directly with

the changing scale, as evident from the provided heatmap.

Here, we can also observe that different areas are prioritized

depending on the magnitude of the change. The initial fo-

cus is clearly on the mouth, with strong changes in the eyes

only appearing for larger scales.

G.5. Masking and Artifacts

LEDITS++ can faithfully edit reflections/shadows of ob-

jects, even with masking (cf. Fig. 1 & 20). This ability

strongly depends on the underlying diffusion model. In

the example in Fig. 6b, the underlying diffusion model

simply failed to correctly correlate the couple and their

shadow/reflection. However, in Fig. 20 where SDXL is ap-

plied, the reflection is edited as well.
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Figure 19. Masking and guidance scale. Within the identified edit regions, the magnitude of applied changes correlates directly with the

changing scale. (Best viewed in color)

Figure 20. LEDITS++ can easily handle complex edits such as reflections. (Best viewed in color)

Figure 21. Object replacement with LEDITS++. The leftmost image is the original image and the other images are edited with

LEDITS++ and the target text below. We apply diverse replacements of the main object with the overall image composition being pre-

served. Interestingly, the background is filled and interpolated very well, e.g. for “flamingo” or “parrot”. (Best viewed in color)
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Figure 22. Further qualitative examples of image editing with LEDITS++, highlighting its versatility and precision (Best viewed in color)
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