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This supplemental document provides additional information to support the findings in the main manuscript. Specifi-
cally, we discuss details on the evaluation dataset, provide further results, ablation experiments, training details, network
architecture, and runtime evaluations.

Contents

1. Dataset 1
1.1. RCCB + Gated Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Accumulated Pointclouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Lost Cargo Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Additional Network Details 3
2.1. Additional Details on Pose Estimation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Attention-based Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. Stereo Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Training and Implementation Details 5
3.1. Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Training of Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Runtime Evaluation 7

5. Additional Ablation Experiments 7
5.1. Evaluation of Pose Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2. Evaluation of Attention-based Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3. Sensor Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6. Additional Qualitative Results 9
6.1. Lost Cargo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. Dataset
In this section, we provide more details on the long-range depth dataset used for training and testing.

1.1. RCCB + Gated Dataset

We adopt the dataset from Walz et al. [23] and refine the provided RCCB stereo camera data. The RCCB camera utilizes
an AR0820 sensor. All sensors were housed in a portable sensor cube as showcased in Figure 1. The RCCB stereo system
captures 16-bit HDR imagery at 15 Hz with a 3848x2168 resolution. The gated camera records 10-bit images at 120 Hz and
1280x720 resolution, which is further divided into three slices alongside two additional HDR-like captures without active
illumination, following [23]. The RCCBs maximum exposure time is limited to 7 ms together with a readout time of 30 ms;
this allows for 24Hz repetition times matching that of the 5-slice configuration of the gating setting. Further we utilize the
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Figure 1. The prototype vehicle for data acquisition is equipped with a stereo gated imaging system, a flood-light flash source (not visible
in the image, mounted at the front tow hitch), a standard RGB automotive stereo camera, a Velodyne VLS128 scanning LiDAR, and an
RCCB stereo camera setup.

provided LiDAR data from [23], which runs at 10 Hz and a vertical resolutions of 128 lines and range of up to 200 m for
high reflective targets. Calibration and time synchronization ensure data consistency across sensors.

The dataset comprises varying conditions: day, night and inclement weather—the dataset boasts 107,348 samples. For
comparability with Gated Stereo [23], we use the same training-/validation and test-split, dividing the dataset in 54320
samples for training, 728 samples for validation, and 2463 samples for testing.

1.2. Accumulated Pointclouds

To allow for even greater evaluation distances than in [23] beyond 160 m and to achieve high resolution ground-truth,
we use a densely constructed LiDAR map derived from a custom adaptation of the LIO-SAM algorithm, as detailed in
Shan et al. [20]. LIO-SAM takes as input the measurements from the car IMU and Global Navigation Satellite System
(GNSS) sensor in addition to the LiDAR point cloud. The mapping module consists of three components, LiDAR point
cloud ego motion correction, factor graph based IMU motion prediction, and factor graph based global map optimization.
Point cloud ego-motion correction is performed using the IMU measurements and odometry. The algorithm’s output includes
a LiDAR pointcloud along with the calculated position and orientation of the LiDAR, Gated, and RCCB camera sensors, each
determined at their respective measurement timestamps. The LiDAR pointcloud is then projected into the camera view using
the computed position and orientation. The LiDAR map, being an accumulation of data over an entire scene, contains depth
values that extend beyond the maximum range measurable by current depth-estimation and depth-sensing techniques used
for in-vehicle, on-the-fly processing. Therefore we limit maximum depth values to a range of 220m. When LiDAR points
are accumulated over a scene, this process naturally includes points representing occluded objects, as well as motion artifacts
from dynamic objects, when projecting these points into the camera frame. As a countermeasure, we apply a decimation to
the projected LiDAR points, following the method by Uhrig et al. [21]. Different from their approach, that uses SGM [8]
depth maps to clean the pointcloud projection by removing all LiDAR points exhibiting large relative errors, we deploy the
CREStereo stereo [10] algorithm as we found that it generalizes well for different image modalities and is able to reliably
filter outliers. Specifically, we exclude points of the projected accumulated pointcloud zacc if the predicted stereo depth
zstereo disagrees as follows

M1 =

{
1, if |zstereo−zacc|

zacc
< 0.3

0, otherwise.
(1)

Assigning a value of zero to the excluded points matches the treatment of missing values in sparse LiDAR data, ensuring
these points are likewise disregarded in the loss calculation process. Here, M1 is a boolean mask, which is multiplied with
the accumulated LiDAR depth zacc to create the filtered pointcloud

ẑfiltered = M1 ⊙ zacc. (2)

Subsequent to the filtering-step, the sparse LiDAR map zsparse is added to the filtered pointcloud

zfiltered = M2 ⊙ ẑfiltered + zsparse, (3)



where M2 is a boolean mask, ensuring the priorization of the sparse LiDAR measurements, when available, that is

M2 =

{
1, if zsparse = 0

0, otherwise.
(4)

In summary, we generate 5834 samples for the training dataset. For the test dataset, dense LiDAR maps are created for
655 frames, with alignment and accuracy ensured through manual filtering. Qualitative examples of the raw projected point-
cloud and the corresponding filtered pointcloud compared to the sparse LiDAR are shown in Figure 2. A visualization of
reconstructed scenes with pointclouds, is shown in Figure 3.

1.3. Lost Cargo Dataset

For additional qualitative evaluation, we captured data that includes staged scenes with small objects on the ground show-
casing both the advantage of the high resolution of a color array and the depth accuracy of the gated modality. We emulate
lost cargo scenarios that infrequently occur on highways and roads. Those scenarios are critical for a safe operation as they
tackle sensor resolution limits, requiring an early detection at long ranges with small object dimensions. Often, these objects
are caused by various cargo or vehicle parts found on the road, presenting a significant hazard. We stage these scenarios as
their natural occurrence is very rare. This data was gathered during day and night in Northern America. The dataset features
’lost cargo’-like objects like tires, lost bumpers, and humans on the ground, simulating post-crash scenarios, and other items.
Additional qualitative examples of lost-cargo depth estimation are provided in Section 6.1.

2. Additional Network Details
In this section, we provide detailed descriptions of the network architecture for the pose network, attention-based fusion,

and stereo network of the proposed model.

2.1. Additional Details on Pose Estimation Network

Both gated and RCCB stereo setups are time-synchronized to microsecond precision. Due to automatic exposure and
shutter timing, the RCCB camera can accumulate small time offsets, effectively resulting in a time-synchronization offset of
up to 20ms between gated cameras and RCCB cameras. To mitigate the influence of resulting misaligned images, we employ
a pose estimation network which predicts a rotation and translation component from coarsely aligned features, warped into a
common view using the predicted depth and calibrated poses. This network operates at all refinement stages except for the
coarsest level, utilizing feature maps of varying resolutions. To achieve consistent results from a single PoseNet, all feature
maps are resized prior and have 1

16 th the width and height of the RCCB image. The input feature maps to the PoseNet is the
gated feature map generated by the stereo networks backbone and the coarsly aligned RCCB-feature map from the preceding
warping operation. In addition to the feature maps, an additional feature map containing the time offset in ms is created by
repeating this value over the complete feature map input size, see Table 1. The PoseNet predicts a feature vector of length,
see Table 2. The first three values in the sequence represent an Euler rotation vector, while the last three values define a
translation vector. To confine the output range, we multiply the first 5 values by 0.05 and the last value by 0.8, effectively
limiting the output values the PoseNet can generate. The values fall within a range consistent with what can be expected from
vehicle motion. In this context, the final value indicates the vehicle longitudinal translation movement. This accounts for a
larger offset, especially at higher speeds, of up to 0.8 meters.

2.2. Attention-based Fusion

In our approach, gated and RCCB features are fused after the preceding alignment step. The network has information
from both the RCCB and the gated modalities and perform well in all cases, even when one modality is failing. The focus of
the fused features should lie on the informative modality. To achieve this, we introduce an attention-based fusing mechanism
that is able to highlight certain feature maps and features that are beneficial to the networks prediction. The network archi-
tecture is defined in Table 3. The inputs are the registered RCCB and gated images, generated with the refined pose from
PoseNet. During the fusion process, we employ a combination of global and local attention mechanisms. These are capable
of predicting weighted features that effectively highlight the most beneficial features.

2.3. Stereo Network

Our stereo network performs iterative refinement based on GRU layers. We adopt adaptive group correlation layers
from [10]. In our feature extraction process, we inherit MPViT-S [9] to learn the dense representations F c

l , F
c
r , F

g
l , F

g
r for



Figure 2. Sparse LiDAR and accumulated and filtered LiDAR, see text. LiDAR points are enhanced for visibility. By filtering, occluded
points and artifacts from dynamic objects are removed.

the stereo matching. MPViT is a transformer-based backbone f c
b , f

g
b that is designed to extract features for dense prediction

tasks. For the shared-weight encoders for gated images, we enable a 5-channel input for the utilization of three active and two



Figure 3. Visualization of an aggregated scene for evaluation, reconstructed with LiDAR points: The left side is a zoomed-out view of a
larger scene, while the right side shows a zoomed-in perspective, highlighting the accurate reconstruction of cars, trees, houses, and smaller
structures.

passive inputs, which are concatenated channel-wise to form five-channel inputs Igl , I
g
r . The shared-weight RCCB encoder

encodes three-channel RGB input images Icl , I
c
r . The feature maps are downsampled to create four refinement stages at

different resolutions. The refinement stages are defined 1
48 ,

1
24 ,

1
12 ,

1
4 for the RCCB image resolution and 1

16 ,
1
8 ,

1
4 ,

3
4 for the

gated resolution respectively. In our network, we execute our CSM in every refinement step to register and fuse cross-spectral
features. Within the CSM, PoseNet (see Section 2.1) and attention-based fusion (see Section 2.2) are carried out.

3. Training and Implementation Details
Next, we provide additional details on the training process and implementation of the proposed method. We recall the

overall training loss of the proposed method is defined as

Lstereo = c1Lreproj + c2Lrecon + c3Llidar, (5)

with constants c1 = 0.05, c2 = 0.01, c3 = 1.
In the early stages of training, we warp with pre-computed depth map generated from a pre-trained CREStereo [10]

network for RCCB view depth map generation and Gated Stereo [23] for gated view depth map generation. We found that
this accelerates training significantly, as feature warping and, hence, alignment and fusion is independent from the generated

INTERMDIATE FEATURES (POSENET)
Layer # Output Shape

1a Gated Feature Map 128× H
16 × W

16

1b RCCB-Warp Feature Map 128× H
16 × W

16

2 Time-Offset Feature Map 1× H
16 × W

16

3 Time-Offset Feature Map 1× H
32 × W

32

4 Time-Offset Feature Map 1× H
64 × W

64

Table 1. Representation of intermediate features of PoseNet decoder. Gated feature map is product of stereo-backbone. RCCB-warp
feature map is generated through preceding coarse alignment step. Time-offset feature map is measured time-offset between RCCB and
gated images, repeated over respective feature map size.



POSENET (DECODER)
Layer # Layer Description Output Shape

5 Concat #1a ⊕ #1b 256× H
16 × W

16

6 ConvSqueeze Conv (1x1)
256× H

16 × W
16ReLU

7 Concat #6 ⊕ #2 257× H
16 × W

16

8a ConvBlock-1 Conv (3x3) 257× H
32 × W

32

8b ScatterND Update with #3
257× H

32 × W
32ReLU

9a ConvBlock-2 Conv (3x3) 257× H
64 × W

64

9b ScatterND Update with #4 257× H
64 × W

64

10 ConvBlock-3 Conv (1x1) 6× H
64 × W

64

11 Reshape
1× 1× 6Tanh

Table 2. Architecture for PoseNet decoder. The ScatterND operation replaces the last channel of the current feature map with corresponding
time-offset feature map.

FUSION

Layer # Layer Description Output Shape
1a LocalAttentionBlock-1 (Gated) 128× H

X × W
X

1b LocalAttentionBlock-1 (RCCB) 128× H
X × W

X

1c GlobalAttentionBlock-1 (Gated) 1× H
X × W

X

1d GlobalAttentionBlock-1 (RCCB) 1× H
X × W

X

2a Addition #1a + #1c
128× H

X × W
XSigmoid

2b Addition #1b + #1d
128× H

X × W
XSigmoid

3a Addition #2a + #2b 128× H
X × W

X

3b Division #2a / #3a 128× H
X × W

X

3c Division #2b / #3a 128× H
X × W

X

4a Multiplication 2 · Gated ⊙ #3b 128× H
X × W

X

4b Multiplication 2 · RCCB ⊙ #3c 128× H
X × W

X

4c Addition #4a + #4b 128× H
X × W

X

5a LocalAttentionBlock-2 (#4b) 128× H
X × W

X

5b GlobalAttentionBlock-2 (#4c) 1× H
X × W

X

5c Addition #5a + #5b
128× H

X × W
XSigmoid

6a Multiplication #5c ⊙ #4a 128× H
X × W

X

6b Multiplication (1−#5c) ⊙ #4b 128× H
X × W

X

6c Addition #6a + #6b 128× H
X × W

X

Table 3. Architecture for Fusion Layer. Local and Global Attention blocks are adapted from [4]. Fusion is applied in every refinement
stage of the stereo network, therefore the output shape of each layer is determined by X ∈ {48, 24, 12, 4} with respect to the height H and
width W of the RCCB image.

depth outputs. During later stages and for testing, we fully rely on the iterative depth predictions from our cross-spectral
stereo network.



3.1. Implementation Details

The backbones f c
b , f

g
b of our stereo-network follow the MPViT-S architecture from [9]. For the attention a, we implement

the MS-CAM module, introduced by [4]. To reduce computational complexity, pose refinement with PoseNet p is executed
once per refinement stage, reusing the same pose for subsequent CSM passes. We crop both the RCCB and gated images to
ensure similar fields of view, resulting in resolutions of 512x1024 pixels for gated and 1536x3072 pixels for RCCB images.
The depth map resolution matches that of the RCCB images at 1536x3072 pixels. Data analysis shows a minimum LiDAR
acquisition distance of 4.3 metres, which is recovered by our algorithm. We train our network for 30 epochs total, with a
batch size of 4. For the first 20 epochs, the network is trained at 1/3 resolution, skipping the last upsample layer, with a
learning rate of 5 · 10−3 and a weight decay of 10−2 using ADAMW [15] with β1 = 0.9, β2 = 0.999. In the final 10 epochs,
the network undergoes training at a constant learning rate of 3 · 10−6 and incorporates full-resolution images. Here, the
newly added layer is initialized with the weights from the prior refinement stage. In total we employ 28 refinement steps
split into the four scales in the sequence 6, 6, 12, 4. The network architecture is optimized on 4 NVIDIA RTX A6000 GPUs
with 48GB memory each. For the reported quantitative results, we employ a total of 28 refinement steps for training and
testing, distributed as 6, 6, 12, 4 across the refinement stages at 1

48 ,
1
24 ,

1
12 ,

1
4 with respect to the RCCB image resolution,

respectively.

3.2. Training of Baseline Methods

In order to fairly compare our proposed model with current state-of-the-art methods, we use the same training, validation,
and testing datasets for all baseline methods as were used for our method. For [1,2,5–7,11,12,14,16,18,22,25,26], we adopt
the results generated by [23]. Instead of initiating training from scratch, they opted to use pre-existing, publicly available
models that were well-suited for their needs, fine-tuning them on the Gated Stereo [23] dataset. We adopt a similar approach
in our methodology. We utilize CREStereo [10] as baseline for high-resolution RCCB images. We employ a model that has
been fine-tuned on the ETH3D [19] dataset, and further fine-tune it on our data using sparse LiDAR depth supervision. To
process the high-resolution RCCB data, we implement a two-stage inference strategy, similar to that proposed by [10]. In
this method, disparity is first estimated using RCCB images downsampled to one third it’s original resolution, and the model
output is then used to initialize a second prediction step using the full-resolution images. CS-Stereo [27] was trained in a
self-supervised manner enforcing left-right consistency. Due to the significant disparities in appearance between NIR and
RGB images, it is not directly possible to enforce photometric consistency across these different modalities. Consequently,
they utilize auxiliary material information for spectral translation, which aids in creating a pseudo-NIR image. Our dataset
presents two major challenges that preclude the direct application of the referenced training approach. Firstly, the utilization
of active gated images, containing time-of-flight data from illumination, varies greatly from passive NIR images, particularly
at night, which breaks the process of spectral translation from RGB. Secondly, the training method depends on additional
material information, which our dataset does not include. Therefore we finetune this method using LiDAR supervision.
We train using rectified RCCB-gated stereo pairs. To achieve this, we specifically use the three active gated slices and
downsample the RCCB images to one-third of their original size. This approach ensures that both images in the pair have
equal resolution. We apply the same training strategy and image sets to UCSSM [13], choosing to fine-tune it using LiDAR
supervision additionally. This approach was necessitated as the model did not converge when trained on our data using their
originally proposed self-supervision only. The limitation arises because their method, which relies on spectral translation for
left-right supervision, is not capable of generating active gated images.

4. Runtime Evaluation
To maximize efficiency, we exploit the temporal redundancy found in the scene geometry by incorporating information

from preceding frames. Specifically, we inherit the approach of [3], cold-starting disparity prediction in the first frame and
predicting depth as detailed in Section 3.1. For subsequent scenes, we warp previous disparity estimations into the current
frame using an estimated transformation matrix utilizing Softmax Splatting to handle occlusions [17]. The warped disparity
is used to warm-start disparity prediction, resulting in the need of only 2 GRU layers. Our optimized setup is optimized in our
prototype system with four parallel A6000 GPUs, distributing the feature extractors, and operates with equal resolution as
Gated Stereo [23] at 11.78 Hz for FP16, matching the recording rate of the LiDAR reference sensor. Doubling the resolution
of the RCCB camera comes at a runtime cost of 39%.

5. Additional Ablation Experiments
In the following, we present additional ablation experiments to validate the choices we make for our method.



5.1. Evaluation of Pose Network

To validate the effectiveness of the pose aspect of our method, we disable the pose prediction step in our ablation. This
leads to an increase of the MAE averaged over day and night by 2.1%. Qualitatively, the updated poses can be validated by
comparing RCCB images warped into the gated frame using the calibrated and the updated poses. An example validating
the effectiveness the approach is given in Figure 4. A quantitative evaluation of this kind is not possible due to the differing
appearances of gated and RCCB images.

Figure 4. In certain cases, the temporal offset between the RCCB and gated cameras causes misalignment of the images. This is evident
when the RCCB image is warped into the gated frame using the predicted depth, as shown in the top row. However, by using the refined
pose from the pose network and subsequent adjustment, these misalignments can be significantly reduced. This is demonstrated in the
images in the bottom row, where an overlay of gated and warped RCCB image is shown and a better alignment of the bus-stop sign is
evident.

5.2. Evaluation of Attention-based Fusion

In this section, we further validate our attention-based fusion approach, introduced in Section 2.2. We exchange attention-
based fusion with simple addition of the left gated feature map F g

l and the left RCCB feature map warped into the gated
frame F

c|g
l for the case of depth prediction for the left gated image frame. For addition-based fusion, the fused features F̂

are obtained through

F̂ =
1

2
F g
l +

1

2
F

c|g
l . (6)

This operation weights both feature maps the same in all cases and is not able to weight certain features more or less. In our
ablation, we find that using addition-based fusion over attention-based fusion increases the MAE averaged over day and night
by 7.3%. Qualitatively, the method makes less use of the RCCB features, leading to a lack of certain details, see Figure 5.

5.3. Sensor Ablation

To evaluate our dual stereo setup approach, we ablate it with the best possible methods that only employ a subset of the
available sensors. Therefore, we conduct four experiments. Firstly, we evaluate the use of only one monocular gated sensor.
Secondly, we compare it to RCCB stereo images. Subsequently, we compare one single RCCB imager and one single gated
imager. Finally, we compare it to the Gated Stereo [23] imaging approach. Additionally, we implement our method switching
the RCCB stereo camera with an RGB stereo camera.

To benchmark our method against methods that use monocular setups, we implement ManyDepth [24] utilizing a single
gated camera. We extend the existing training approach with LiDAR supervision. This strong gated baseline exceeds the
performance of Gated2Gated [22] through more complex neural architectures and multi-frame analysis. Secondly, for the
comparison to the RCCB stereo camera setup, we build on top of CREStereo [10], achieving the best possible passive color
camera setup in daytime conditions as detailed in Table 1 of the main manuscript. Subsequently, we compare it to one cross-
modal stereo setup built from a single gated camera and one RCCB camera. As with the RCCB setup, it builds upon [10].
We deviate from the original implementation by learning one feature extractor per modality and allowing 5-channel inputs



Figure 5. Qualitatively, the use of attention-based fusion leads to a more consistent depiction of fine structures, which are sometimes
missed with addition-based fusion. Failure cases of addition-based fusion are highlighted. In the top row, the guide post is missed by
addition-based fusion. In the second row, tree trunks and traffic light details are missed. In the third row, a pole is lost.

to accommodate the three gated slices and two passive NIR HDR images. We train this method using LiDAR supervision,
achieving competitive results during the day compared to state-of-the-art mono-gated [6, 22] and cross-spectral RGB-NIR
methods [13, 27]. However, this approach falls short at night, as it cannot bridge the larger domain difference between
the active gated cues and passive RCCB images. Hence, also the gated cues fall short, and the approach drops below the
monocular gated approach detailed in Table 3 of the main manuscript.

Finally, all single modalities don’t meet the same level of the performance achieved by Gated Stereo [23], highlighting
the value of a stereo-gated imaging setup, especially in scenarios with intense ambient lighting. Consequently, only the
combination of cross-spectral data with our proposed training scheme to bridge the modalities can surpass the gated approach,
achieving state-of-the-art results by combining the unique advantages of each modality and offering high resolution from
color arrays and superior depth estimation from gated images.

For validating our decision to use RCCB images instead of RGB images which are included in the dataset as well, we
train our method tailored to the usage of the RGB stereo images. The depth prediction performance is inferior to the Gated
RCCB Stereo in all metrics, particularly noticeable at night with a 9.8% lower RMSE, as shown in Tab 4. This shows the
benefit of the RCCB color array achieving 30% higher sensitivity compared to the RGGB array, maximizing signal-to-noise
ratio in night conditions. Moreover, while the RGB camera boasts a higher resolution of 2MP compared to the gated camera
1MP, it significantly lags behind the RCCB camera 8MP resolution. Consequently, the resolution of fine details in the depth
maps is lower for RGB in our setup, as illustrated in Figure 6. Most notably, Gated RGB Stereo, although inferior to Gated
RCCB Stereo, shows better performance both qualitatively and quantitatively compared to Gated Stereo [23], demonstrating
the effectiveness of our approach in combining complementary sensors for improved depth estimation.

6. Additional Qualitative Results
In this section, we present additional qualitative results of the proposed method and competing methods, including monoc-

ular gated [22], monocular RGB [12], stereo RGB [14], stereo RCCB [10], and cross-spectral rgb-nir [13, 27] approaches.
Figures 7, 8, 9, and 10 present the depth map predictions from existing methods alongside the corresponding RCCB, gated,
RGB, and LiDAR measurements. Our method produces depth estimates with enhanced sharpness and clarity both day and

Evaluated on accumulated LiDAR Ground-Truth Points
DAY NIGHT

Model RMSE MAE δ1 δ2 δ3 RMSE MAE δ1 δ2 δ3

GATED STEREO [23] 14.24 8.67 86.76 98.76 99.41 14.03 8.93 84.21 98.83 99.46
GATED RGB STEREO 11.42 7.22 89.66 99.29 99.70 13.20 8.43 85.52 99.19 99.74

GATED RCCB STEREO 10.69 6.83 90.25 99.57 99.81 12.02 7.94 86.05 99.71 99.90

Table 4. Additional comparison to Gated RGB Stereo approach.



Figure 6. Qualitative comparison highlighting the advantages of Gated RCCB Stereo method, in contrast to Gated RGB Stereo and Gated
Stereo [23].

night. Compared to Gated Stereo [23], which estimates depth accurately during the day through the use of passive gated
slices, our method performs favorably both qualitatively and quantitatively through the utilization of high-resolution RCCB
images. In Figure 7, we accurately estimate the depth of the third car and the street light, which Gated Stereo [23] fails
to identify. Our cross-spectral approach, particularly effective at night, utilizes RCCB images when they are available. In
scenarios where RCCB data might not be accessible due to nighttime conditions, the method effectively compensates by
harnessing the additional illumination from the gated imaging system. Figure 9 and Figure 10 highlight the benefit of our
method compared to CREStereo [10] and Gated Stereo [23] which each utilize only one of the modalities. Compared to
state-of-the-art cross-spectral methods UCSSM [13] and CS-Stereo [27], our method shows a clear improvement, as both
methods fail to discern any details both day and night. Our method performs better than both RAFT-Stereo [14] and Depth-
former [12] in terms of detail and overall performance. Our advantage is especially noticeable at night, when RGB-based
methods struggle with insufficient illumination. While Gated2Gated [22] outperforms RGB methods in terms of detail at
night, it lacks during daytime with sufficient ambient light present and is consistently outperformed by our method in all
scenarios.

6.1. Lost Cargo

We qualitatively compare our method to the best method per modality, namely Gated Stereo [23] and CREStereo [10],
focusing on detecting small, potentially hazardous ’lost cargo’ objects. For a more detailed description of the lost cargo
dataset, see Section 1.3. Our cross-spectral method consistently estimates depth for lost cargo objects both day and night,
generating depth maps with sharp edges and clear details. CREStereo [10] performs well, when passive illumination is
sufficient. However, it is less consistent than our method, missing objects even during well-lit daytime conditions, as seen
for the package and the tire. During the night, CREStereo [10] depth is compromised due to missing illumination, where
it fails to accurately represent the shapes of the objects or misses them completely. Gated Stereo [23] performs better than
CREStereo [10] at night, better representing the shape of the objects. However it is limited due to a lower resolution and
performs generally not as well during the day. Our Gated RCCB Stereo approach consistently outperforms both methods
by integrating the complementary features of the two camera systems. This includes the active illumination provided by the
gated imaging system and the higher resolution offered by the RCCB stereo camera.
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Figure 7. Additional qualitative comparison of our method to existing depth estimation methods during daytime. Our approach, in
comparison to the next-best methods, Gated Stereo [23] and CREStereo [10], excels in estimating depth with finer details and sharper
edges. For instance, in the first image, Gated Stereo misses the third car, and in the second image, both Gated Stereo and CREStereo are
unable to accurately estimate the depth of the street light.



Figure 8. Additional qualitative comparison of our method to existing depth estimation methods. Our method stands out as the only one
capable of accurately estimating depth for the motorcyclist, the traffic light, and the guide post.



Figure 9. Additional qualitative comparison of our method to existing depth estimation methods. Particularly at night, our cross-spectral
approach surpasses state-of-the-art methods in capturing details, effectively and accurately depicting distant, small structures like street
signs and distant trees.



Figure 10. Qualitative comparison of our method to other state-of-the-art methods. Our Gated RCCB Stereo generates highly-detailed
accurate depth maps and all other methods fail to do. In the third column, our method distinctly excels by clearly estimating the shapes of
both pedestrians and objects in the background, thus significantly surpassing the quality of Gated Stereo [23].



Figure 11. Lost-cargo Evaluation for Depth of Small Objects at Long Distances. We compare here our method to Gated Stereo [23]
and CREStereo [10] (RCCB) as next-best methods using the gated and RGB modality. Our method reliably produces accurate depth
measurements for lost-cargo objects, shown here for different ranges and varying time of day. Gated Stereo struggles with lost-cargo due
to the low-resolution sensor. RGB depth performance is limited to well-lit scenarios. This highlights the benefit of our cross-spectral setup,
outperforming also LiDAR where lost-cargo detection is difficult due to sparsity.


