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This supplementary material provides technicalities and
detailed analysis of the experiments that were omitted in
the main paper due to space limitations. We provide the
reader with explicit formulations of the evaluation metrics
in Section 1. We then share additional implementation de-
tails in Section 2. In Section 3, we present additional quan-
titative and qualitative results. In Section 4, we illustrate
some limitations of our method. For a more comprehensive
comparison showcasing the performance of our method, we
have also included a supplementary video clip. We strongly
encourage readers to watch the supplementary video for a
better assessment of the proposed method’s performance.

1. Evaluation
Metrics. All quantitative evaluations were carried out us-
ing Chamfer distance, F-score and mean angular error
(MAE) between the reconstructed mesh P and the ground
truth one G. For a reconstructed point x̂ ∈ P , its distance to
the ground truth is defined as follows:

dx̂→G = min
x∈G

∥x̂− x∥, (1)

and vice versa for a ground truth point x ∈ G and its dis-
tance to the reconstructed mesh.

The distance measures are accumulated over the entire
meshes to define the Chamfer distance

CD =
1

2

(
1

|P|
∑
x̂∈P

dx̂→G +
1

|G|
∑
x∈G

dx→P

)
(2)

and the F-score

F (ϵ) =
2P (ϵ)R(ϵ)

P (ϵ) +R(ϵ)
, (3)

where
P (ϵ) =

1

|P|
∑
x̂∈P

[dx̂→G < ϵ] (4)

and
R(ϵ) =

1

|G|
∑
x∈G

[dx→P < ϵ] (5)

are precision and recall measures, respectively, [.] is the
Iverson bracket and ϵ is the distance threshold.

The mesh segmentations into low visibility and high cur-
vature areas are performed on the ground truth meshes. Be-
cause the geometry of the reconstruction differs from that of

the ground truth, the segmentation procedure yields differ-
ent areas when applied to the reconstruction. For this rea-
son, the reported results for low visibility and high curva-
ture areas only consider the Chamfer distance term indicat-
ing the average distances between the ground truth vertices
and their nearest neighbors in the reconstructed mesh.

For the MAE computation, the reconstructed and ground
truth meshes are projected onto image planes and the nor-
mals are computed at each pixel. The MAE over all the
pixels M is written as

MAE =
1

|M |
∑
k∈M

cos−1(n̂⊤
k nk). (6)

DiLiGenT-MV dataset. All the state-of-the-art methods
were evaluated from the meshes that were kindly provided
by their authors. For all evaluated meshes, we eliminated
all internal vertices. Then, a mesh upsampling for both esti-
mated and ground truth meshes was then performed in order
to achieve a point density of 0.1 mm. The computations of
Chamfer distance and F-score were specifically conducted
for distances under 5 mm in order to mitigate the impact of
outliers (inspired by the DTU evaluation [5]).

We observed a few defects in the ground truth meshes
from the DiLiGenT-MV dataset in concave areas. Notably,
such imperfections are well visible at the back of Bear’s
head (Fig. 1) and the spout’s inner area of Pot2 (Fig. 2).
Although these areas represent a small amount of vertices,
they were discarded in all evaluations so as to avoid penal-
izing methods which faithfully reconstruct them.

Manual efforts in [9]. Li19 [9] is mentioned as requiring
manual efforts. Indeed, the authors manually establish point
correspondences in textureless areas. See [9] for details.

2. Implementation details

We recall that to simulate the radiance values in Step 4 de-
scribed in Section 4 of the main paper, we choose as lighting
triplet the one which is optimal, relatively to the normal nk.
Following [2], this optimal triplet is equally spaced in tilt
120 degrees apart with a slant angle of 54.74 degrees. Con-
cretely, the expression of Lk as a function of nk is written:

Lk = RkLcanonic (7)
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Figure 1. Rear view of the 3D heatmaps representing errors for the
Bear dataset in terms of Chamfer distance. (a) The ground truth
from DiLiGenT-MV lacks any vertices in the rectangular aperture.
For that reason, any method which faithfully reconstructs this area
is penalized (area shown in red). This area is thus discarded in all
evaluations, providing heatmaps such as (b).

(a) (b)

Figure 2. Cross-section of Pot2’s spout delivered by (a) the ground
truth of the DiLiGenT-MV dataset and (b) our reconstruction
method. Our method shows a deeper reconstruction of the internal
wall of the spout. This area is thus discarded in all evaluations to
avoid penalizing methods that faithfully reconstructs it.

where Rk = U with [U,Σ,U] = SVD(nkn
⊤
k ) and

Lcanonic =

sin(ϕ) sin(ϕ) cos(θ) sin(ϕ) cos(2θ)
0 sin(ϕ) sin(θ) sin(ϕ) sin(2θ)

cos(ϕ) cos(ϕ) cos(ϕ)

 (8)

with θ = 120π
180 and ϕ = 54.74π

180 .

3. Additional Results
In this section, we extend the experiments of the main pa-
per by providing further statistical analysis and qualitative
comparisons.

Comparison with mono-illumination NeuS. We pro-
pose an additional comparison of our method against the
multi-view mono-illumination 3D reconstruction method
NeuS [11]. While NeuS is not directly applicable in multi-
view multi-light acquisition settings in theory, it may be-
come feasible under certain conditions. This feasibility

hinges on factors such as the number, spatial distribution
and types of lighting conditions, and the object material
properties. One can leverage a heuristic method, initially
proposed in [9] and later employed for obtaining pixel
depths using MVS in [6, 8]. This heuristic involves approx-
imating input images captured under mono-illumination for
each viewpoint by taking the median of pixel intensities ob-
tained under varying illumination. See, e.g., [9] for detailed
information.

A qualitative comparison between the results of mono-
illumination NeuS using this heuristic and the ones from
our method is provided in Fig. 3. As can be seen, our pro-
posed approach provides a much finer level of details. In
particular, mono-illumination NeuS requires a high num-
ber of viewpoints, with a drastic decline in the reconstruc-
tion quality when using 5 viewpoints. On the contrary, our
method shows stable results, only losing some fine details
over concave areas. Moreover, even with all viewpoints
used, mono-illumination NeuS fails in reliably reconstruct-
ing the low visibility and high curvature areas. In addition to
Fig. 3 (right), this can be observed in the quantitative eval-
uation provided in Table 1, where mono-illumination NeuS
shows a reconstruction error 62% higher than ours on low
visibility areas and 46% higher than ours on high curvature
areas.

Photometric stereo method. Our method can be em-
ployed with any PS method. To illustrate this flexibility, we
evaluate the reconstruction accuracy on the Buddha dataset
while taking as input the normal maps from CNN-PS [3],
used in Kaya22-23 [6, 8], and SDPS-Net [1], used in PS-
NeRF [12], in addition to the one obtained using normal
maps from SDM-UniPS [4] reported in the main paper. The
results are reported in Table 2. As expected, we observe
that the choice of a particular PS technique influences the
final outcome, yet our framework consistently improves the
results in comparison with previous works, including those
based on multi-objective optimizations [6, 8].

CNN-PS SDPS-Net SDM-UniPS
Buddha Kaya23 Ours PS-NeRF Ours Ours
H. curv. 0.35 0.29 0.51 0.31 0.26
Low curv. 0.24 0.22 0.33 0.25 0.23
All 0.25 0.22 0.34 0.25 0.23

Table 2. Results of our method with different input normals,
namely CNN-PS (used in Kaya22-23), SDPS-Net (used in PS-
NeRF) and SDM-UniPS. High curvature corresponds to the results
averaged over all the vertices whose absolute curvature is higher
than 3.3. Our method shows to perform best irrespective of the PS
method being used.
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Figure 3. Qualitative comparison of Buddha and Reading between mono-illumination NeuS and our method, for different number of input
viewpoints.

Chamfer distance (visibility 1-5) ↓ Chamfer distance (high curvature) ↓
Methods Bear Buddha Cow Pot2 Reading Average Bear Buddha Cow Pot2 Reading Average
Park16 1.07 0.75 0.41 0.47 0.7 0.68 1.64 0.58 0.98 0.56 0.65 0.88
Li19† 0.63 1.03 0.37 0.54 0.81 0.67 0.59 0.65 0.38 0.34 0.57 0.51
NeuS 0.58 0.52 0.17 0.32 0.54 0.42 0.28 0.46 0.21 0.39 0.38 0.35
Kaya22 0.48 0.51 0.32 0.5 0.7 0.5 0.33 0.43 0.31 0.41 0.45 0.38
PS-NeRF 0.48 0.62 0.3 0.66 0.64 0.54 0.42 0.5 0.42 0.44 0.44 0.45
Kaya23 0.46 0.35 0.39 0.42 0.44 0.41 0.33 0.29 0.19 0.3 0.33 0.29
MVPSNet 0.43 0.68 0.27 0.49 0.57 0.49 0.56 0.58 0.52 0.47 0.54 0.53
Ours 0.23 0.27 0.19 0.19 0.43 0.26 0.22 0.23 0.26 0.23 0.25 0.24

Table 1. Chamfer distance on (a) low visibility and (b) high curvature areas. Best results. Second best results.



Ablation. We complete our ablation study with qualita-
tive results on the ear and the knot of Buddha shown in
Fig. 4.
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Figure 4. Qualitative comparison on the knot and the ear of Bud-
dha between our results and those without the use of reflectance
and optimal lighting, disabled individually. Our method exhibits
better results in both cases.

Additional benchmarking. We provide in Fig. 7 a qual-
itative comparison of the angular error maps on the five
objects of DiLiGenT-MV, for our method and state-of-the-
art ones, namely Park16 [10], Li19 [9], Kaya22 [7], PS-
NeRF [12], Kaya23 [8], MVPSNet [13] and also SDM-
UniPS [4] although it does not provide a full 3D recon-
struction. The recovered geometry shows to be overall
more accurate with our method. Interestingly, our recov-
ered normals overcome the PS ones, especially in concave
areas where inter-reflections bias the single-viewpoint re-
construction. Lastly, we provide further quantitative com-
parisons, namely precision and recall in Fig. 5, and MAE
on low visibility and high curvature areas in Table 3. Our
proposed approach consistently yields the most accurate re-
constructions.
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Figure 5. (a) Precision (higher is better) and (b) recall (higher is
better) as functions of the distance error threshold, in comparison
with other state-of-the-art methods.

4. Limitations
The reconstructions obtained through the proposed method
yet exhibit a few poorly reconstructed areas, as illustrated
in Fig. 6, particularly for Reading’s neck and Bear’s right
ear. The suboptimal reconstruction of Reading’s neck can
be attributed, in part, to inacurracies of the normal estimates
from SDM-UniPS. However, the underlying causes of these
discrepancies have yet to be systematically identified.

(a) (b)

Figure 6. Regions in Bear (a) and Reading (b) where our method
exhibits limitations.
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